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Abstract

We present a nontrivial extension to Bose’s method for the construction of Steiner triple
systems, generalizing the traditional use of commutative and idempotent quasigroups to employ a
new algebraic structure called a 3-tri algebra. Links between Steiner triple systems and 2-(v; 3; 3)
designs via 3-tri algebras are also explored. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Background

Let X be a ;nite set. A set system or con'guration is a pair (X;A), where A⊆ 2X .
The order of the set system is |X |. The elements of X are points and the elements of
A are blocks. A t-(v; k; �) design is a k-uniform set system (X;A) of order v such
that every t-subset of X is contained in precisely � blocks of A. A 2-(v; 3; 1) design
is a Steiner triple system of order v and is denoted by STS(v). A (k; ‘)-con'guration
in an STS (X;A) is a subset of ‘ blocks in A whose union is a k-element subset
of X . The Pasch con'guration or quadrilateral is the (6; 4)-con;guration on elements
(say) a; b; c; d; e; f with blocks {a; b; c}; {a; d; e}; {f; d; b} and {f; c; e}. An STS is
anti-Pasch (or quadrilateral-free) if it does not contain the (6; 4)-con;guration.

A 3-oriented graph is a graph in which each edge e (with endpoints x and y) has
one of three possible orientations: positive, negative, or null oriented from x to y. The
edge e is positive oriented from x to y if and only if it is negative oriented from y to
x; when e is null oriented the roles of x and y can be freely interchanged. We draw
a positive oriented edge from x to y by an arrow from x to y and a null oriented
edge without arrows. A 3-oriented graph is simple if, for every pair of vertices x
and y, the graph contains at most one positive, one negative, and one null oriented
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edge from x to y. In a 3-oriented simple graph we can use without ambiguity (x; y)1,
(x; y)−1, and (x; y)0 to denote a positive, negative, and null oriented edge from x to y,
respectively.

Let G be a 3-oriented simple graph. A path P in G through the vertices x0; : : : ; xn,
n¿ 1, is denoted by P= x0; x

�1
1 ; : : : ; x

�n
n , where �1; : : : ; �n ∈{1;−1; 0}, if and only if P

uses the edges (x0; x1)�1 ; : : : ; (xn−1; xn)�n . When P is a cycle, we write P=(x�00 ; x
�1
1 : : : ;

x�n−1
n−1), with �0 = �n. If �0+�1+· · ·+�n−1 ≡ 0mod � for some �¿0, P is �-balanced. A

two-factor of G in which all cycles are �-balanced is �-balanced. A triangulation is a
partition of the edges in G into cycles of length 3, and a triangulation is 3-balanced if
all its paths are 3-balanced. As we soon see, 3-balanced triangulations of a 3-oriented
simple graph are closely related to Steiner triple systems.

The graph with v vertices in which each pair of vertices is joined by three par-
allel edges is denoted by 3Kv, and 3 HKv denotes the 3-oriented simple graph with v
vertices in which each pair x and y of vertices is joined by a positive, a negative,
and a null oriented edge from x to y. For both graphs, the vertex sets V (3Kv)=
V (3 HKv)= {0; 1; : : : ; v− 1}.

2. A generalization of Bose’s method

Bose’s method [1] is one of the most important and well-known paradigms in design
theory. Our objective is to develop a natural generalization.

Theorem 2.1. Every 3-balanced triangulation of 3 HKv yields an STS(3v).

Proof. Let T be a 3-balanced triangulation of 3 HKv. Let us de;ne:

X = {(a; i) | a∈{0; : : : ; v− 1} and i∈{0; 1; 2}};
A1 = {{(a; 0); (a; 1); (a; 2)} | a∈{0; : : : ; v− 1}}

and for each T =(a�a ; b�b ; c�c)∈T

AT = {{(a; j); (b; (j + �b)mod 3); (c; (j + �b + �c)mod 3)} | j=0; 1; 2}:
AT is well-de;ned, since if we use a diKerent representation of T , say (b�b ; c�c ; a�a),
we get

A′
T = {{(b; k); (c; (k + �c)mod 3); (a; (k + �c + �a)mod 3)} | k =0; 1; 2}:

Making the change of variable k =(j + �b)mod 3, and applying the fact that
�a + �b + �c≡ 0mod 3, we ;nd that A′

T =AT . The other representations of T produce
the same set.

We claim that (X;A) with A=A1 ∪ (
⋃
T ∈T AT ) is an STS(3v). In fact, let

B= {(a; i); (b; j)} be a two-subset of X ; if a= b, then {(a; 0); (a; 1); (a; 2)} is the unique
block in A containing B; otherwise B is contained in exactly one of the blocks in AT ,
where T is the unique triangle in T containing the edge (a; b)(j−i) mod 3.
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Bose’s method builds Steiner triple systems using a special type of 3-balanced tri-
angulations of 3 HKv. A Bose triangulation is a 3-balanced triangulation of 3 HKv such
that each of its triangles can be expressed as (a0; b1; c−1) for appropriate elements
a; b; c∈{0; : : : ; v− 1}.

A latin square of order n is an n× n array, each cell of which contains exactly one
of the symbols in {0; : : : ; n − 1}, such that each row and each column of the array
contains the symbols in {0; : : : ; n− 1} exactly once. A quasigroup of order n is a pair
(Q; ◦), where Q is a set of size n and ◦ is a binary operation on Q such that for every
pair of elements a; b∈Q, the equations a ◦ x= b and y ◦ a= b have unique solutions.
The tabular representation of a quasigroup of order n is a latin square of order n.

Proposition 2.2. Every Bose triangulation produces a commutative and idempotent
quasigroup. Conversely every commutative and idempotent quasigroup produces a
Bose triangulation.

Proof. Let T be a Bose triangulation of 3 HKv. If Q= {0; : : : ; v − 1} and a; b∈Q we
de;ne

a ◦ b=
{
c if (a0; c1; b−1)∈T;

a if a= b:

The binary operation ◦ is de;ned for every pair a; b∈Q because there exists exactly
one triangle in T containing the edge (a; b)0. The operation ◦ is commutative and
idempotent, as follows. The equation a ◦ x= b has only one solution in x because only
the triangle (a0; b1; x−1) in T contains the edge (a; b)1 for some x, and the equation
b ◦ y= a has only one solution in y because only the triangle (b0; a1; y−1) in T

contains the edge (a; b)−1 for some y. Hence (Q; ◦) is a commutative and idempotent
quasigroup.

In the other direction, let (Q; ◦) be a commutative and idempotent quasigroup. De;ne
T= {(a0; c1; b−1) | a; b∈Q and a ◦ b= c}. Every triangle in this set is well-de;ned
because (a0; c1; b−1)= (b0; c1; a−1). Let a; b be arbitrarily chosen elements in Q, (a; b)0

belongs only to the triangle (a0; c1; b−1) for some c∈Q because ◦ is a well-de;ned
binary operation. Then (a; b)1 belongs only to the triangle (a0; b1; x−1), where x is
the unique solution to the equation a ◦ x= b; and (a; b)−1 belongs only to the triangle
(b0; a1; y−1), where y is the unique solution to the equation b◦y= a. T is 3-balanced,
and it is a Bose triangulation.

If we take a commutative and idempotent quasigroup (Q; ◦) of order v, build from
it the Bose triangulation T given by Proposition 2.2 and ;nally build from T the
STS(3v) given by Theorem 2.1, then the resulting STS is the same as that obtained
from (Q; ◦) by using Bose’s method directly. Bose triangulations provide only one
way to ;nd 3-balanced triangulations of 3 HKv, but there are others. There are many
possibilities, but we are interested in those 3-balanced triangulations with additional
algebraic structure.
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Fig. 1. A uniform triangulation of 3 HK7.

A uniform triangulation of 3 HKv is a 3-balanced triangulation of 3 HKv such that each
of its triangles can be expressed as (a0; b1; c−1) or (a0; b−1; c1) for appropriate elements
a; b; c∈{0; : : : ; v − 1}. Triangles of the ;rst type are positive and those of the second
type, negative. A positive triangle cannot be expressed as a negative one, nor vice versa.
A Bose triangulation does not permit the mixture of positive and negative triangles, but
in a uniform triangulation we admit this possibility. The following uniform triangulation
of 3 HKv for v=7 is graphically represented in Fig. 1:

T7 = {{00; 11; 2−1}; {40; 1−1; 01}; {60; 11; 4−1}; {10; 61; 4−1}; {40; 6−1; 21};
{20; 61; 3−1}; {20; 31; 6−1}; {10; 3−1; 21}; {50; 31; 1−1}; {30; 51; 1−1};
{10; 5−1; 61}; {60; 51; 0−1}; {60; 01; 5−1}; {30; 0−1; 61}; {40; 01; 3−1};
{00; 41; 3−1}; {30; 4−1; 51}; {50; 41; 2−1}; {50; 21; 4−1}; {00; 2−1; 51};
{00; 21; 1−1}}:

When this triangulation is used in the construction of Theorem 2.1 we get an STS(21)
isomorphic to the following, reading columns as triples:

000000000011111111122222222233333334444444555555666667777888899aabccdd
13579bdfhj3469acfgi345678abe678begi5689abd789abc79beg9aef9abfcgceedhfh
2468acegik578bdehjk9fidcjgkhadcfkhjecgkhjikhdfgjijhfkhbgjekdifiijigkkj

A direct analysis shows that it is anti-Pasch. It is well known (see [4]) that Bose’s
method does not produce an anti-Pasch STS(21), so our extension is not trivial.

3. 3-tri algebras

In the same way that Bose’s method can be formulated in terms of commutative
and idempotent quasigroups, the construction given in Theorem 2.1 can be stated by
using 3-tri algebras, algebraic structures that generalize quasigroups.

A 3-tri algebra (read as three triangulation algebra) of order v¿0 is a pair
M= (C; ◦), where C is a set with cardinality v and ◦ is a binary, closed, commu-
tative and idempotent operation over C such that for every pair of distinct elements
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Fig. 2. Multiplication table of a 3-tri algebra.

a; b∈C the equations

a ◦ x= b; (1)

b ◦ y= a; (2)

with unknowns x and y, satisfy one and only one of the conditions:

1. There are exactly two solutions for x and none for y.
2. There are exactly two solutions for y and none for x.
3. There is exactly one solution for x and one for y.

Every commutative and idempotent quasigroup is a 3-tri algebra. One example of
3-tri algebra which is not a quasigroup is the pair ({0; : : : ; 6}; ◦), where ◦ is the oper-
ation shown in Fig. 2. This is the 3-tri algebra used to generate the STS(21) given in
Section 2.

The multiplication table of a 3-tri algebra has a structure similar to that of a
uniform square. However, an element can appear twice (at most) in a row; an el-
ement j does not appear in a row i if and only if i appears twice in the row
j. Any idempotent and symmetric matrix with this property corresponds to a 3-tri
algebra.

4. 3-tri algebras and 2-(C; 3; 3) designs

Our main interest in 3-tri algebras is their capacity to generalize Bose’s method.
However, as we show here, they have a strong link with 2-(v; 3; 3) designs. Let
M= ({0; : : : ; v − 1}; ◦) be a 3-tri algebra. For every unordered pair {i; j} of diKer-

ent elements in {0; : : : ; v − 1}, the set TM;{i; j}
def= {i; j; i ◦ j} (or T{i; j} when there

is no confusion with the 3-tri algebra) is triple induced by i and j in M. The set

TM
def= {T{i; j} | {i; j}⊂{0; : : : ; v− 1}; i = j} is the set of triples induced by M.

Let M= ({0; 1; : : : ; 7}; ◦) be the 3-tri algebra with the operation in Fig. 2, then

TM = {T{0;1} = {0; 1; 2}; T{0;2} = {0; 2; 1}; T{0;3} = {0; 3; 4}; T{0;4} = {0; 4; 1};
T{0;5} = {0; 5; 2}; T{0;6} = {0; 6; 5}; T{1;2} = {1; 2; 3}; T{1;3} = {1; 3; 5};
T{1;4} = {1; 4; 6}; T{1;5} = {1; 5; 3}; T{1;6} = {1; 6; 5}; T{2;3} = {2; 3; 6};
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T{2;4} = {2; 4; 6}; T{2;5} = {2; 5; 4}; T{2;6} = {2; 6; 3}; T{3;4} = {3; 4; 0};
T{3;5} = {3; 5; 4}; T{3;6} = {3; 6; 0}; T{4;5} = {4; 5; 2}; T{4;6} = {4; 6; 1};
T{5;6} = {5; 6; 0}}:

As we can see it is a 2-(7; 3; 3) design, and in fact we have the following general
result.

Proposition 4.1. For any 3-tri algebra M of order v; TM is a 2-(v; 3; 3) design.

Proof. Every pair of distinct elements a; b∈{0; : : : ; v − 1} belongs to exactly three
diKerent triples in TM. One is T{a;b}, and the other two are:
Case 1: T{a;x1} and T{a;x2}, where x1 and x2 are the two solutions to Eq. (1), or
Case 2: T{b;y1} and T{b;y2}, where y1 and y2 are the two solutions to Eq. (2), or
Case 3: T{a;x1} and T{b;y1}, where x1 and y1 are the solutions to Eqs. (1)

and (2).

TM is also called the 2-(v; 3; 3) design induced by M. Proposition 4.1 is a generaliza-
tion of the well-known fact (see [2], for example) that an idempotent and commutative
quasigroup can be used to produce a 2-(v; 3; 3) design. A converse is valid for 3-tri
algebras:

Proposition 4.2. Every 2-(v; 3; 3) design generates a family of 3-tri algebras.

Proof. Let ({0; : : : ; v − 1};T) be a 2-(v; 3; 3) design. Let GT be the bipartite graph
with bipartition V1 = {{a; b} | a = b; a; b∈{0; : : : ; v − 1}} and V2 =T, two vertices
{i; j}∈V1 and T ∈V2 being joined by an edge if and only if {i; j}⊂T . Then GT is a
3-regular graph. We establish that each of its perfect matchings produces a 3-tri algebra
of order v.

Let M ⊂E(G) be one such matching. We use the notation M (i; j)= {i; j; k} if and
only if ({i; j}; {i; j; k})∈M . De;ne a binary operation ◦M on {0; : : : ; v− 1} by

i ◦M j=

{
k if i = j and M (i; j)= {i; j; k};
i if i= j:

Every set {a; b}∈V1 is contained in three and only three triples in T, so there exist
two diKerent elements c and d satisfying one of the following:
Case 1: {a; b} belongs simultaneously to M (a; b), M (a; c)= {a; b; c} and M (a; d)=

{a; b; d}.
Case 2: {a; b} belongs simultaneously to M (a; b), M (b; c)= {a; b; c} and M (b; d)=

{a; b; d}.
Case 3: {a; b} belongs simultaneously to M (a; b), M (a; c)= {a; b; c} and M (b; d)=

{a; b; d}.
The solutions for x and y to the equations a ◦M x= b and b ◦M y= a are as follows.

In Case 1, c and d are solutions in x and y has no solution. In Case 2, c and d
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are solutions in y and x has no solution. Finally in Case 3, c is a solution in x and
d a solution in y. Then ◦M is a commutative and idempotent binary operation. We
conclude that ({0; : : : ; v− 1}; ◦M ) is a 3-tri algebra produced from M .

5. Uniform triangulations and 3-tri algebras

As we saw in Theorem 2.1, the generalization of Bose’s construction rests on our
ability to ;nd 3-balanced triangulations of 3 HKv. The 3-tri algebras form an intermediate
step between 3-balanced triangulations and quasigroups. In fact, 3-tri algebras of order
v are ‘almost’ equivalent to uniform triangulations of 3 HKv.

Proposition 5.1. There exist a one to one correspondence between the set of uniform
triangulations of 3 HKv and the set of 3-tri algebras of order v.

Proof. Let U be a uniform triangulation of 3 HKv. We build the 3-tri algebra MU =

({0; : : : ; v−1}; ◦U), where i◦Uj def= k if and only if one of the following three conditions
is satis;ed:

1. i= j= k.
2. (i0; k1; j−1)∈U.
3. (i0; k−1; j1)∈U.

Then ◦U is a commutative and idempotent binary operation. On the other hand, if a, b
are diKerent elements in {0; : : : ; v−1}, then (a; b)0 ∈T0, (a; b)1 ∈T1 and (a; b)−1 ∈T−1,
where T0; T1 and T−1 are 3-diKerent triangles in U. There exist two diKerent elements
c; d∈{0; : : : ; v− 1} such that only one of the following cases is satis;ed:
Case 1: T1 = (a0; b1; c−1) and T−1 = (a0; b−1; d1).
Case 2: T1 = (b0; a−1; c1) and T−1 = (b0; a1; d−1).
Case 3: T1 = (a0; b1; c−1) and T−1 = (b0; a1; d−1).
The solutions in x and y to the equations a ◦U x= b and b ◦U y= a are as follows.

In Case 1, c and d are solutions in x, and y has no solution. In Case 2, c and d are
solutions in y, and x has no solution. Finally in Case 3, c is a solution in x and d a
solution in y. We conclude that MU is a 3-tri algebra.

The converse of this proposition does not hold. Only some 3-tri algebras, to be
characterized, produce uniform 3-tri algebras of 3 HKv. Let M= ({0; : : : ; v − 1}; ◦) be
a 3-tri algebra of order v. The Bose graph of M, denoted BM, is a graph with the
triples in TM as vertices, two vertices T{i1 ;j1} and T{i2 ;j2} being joined by an edge
if and only if the corresponding triples share a pair {i; j} such that {i; j} = {i1; j1}
and {i; j} = {i2; j2}. The same idea can be expressed in terms of M by saying that
T{i1 ;j1} and T{i2 ;j2} are adjacent if one of the following conditions is true (as shown in
Fig. 3):

Condition 1: j1 = i2 ◦ j2 and i2 = i1 ◦ j1.
Condition 2: j1 = i2 and i1 ◦ j1 = i2 ◦ j2.
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Fig. 3. Adjacencies in BM.

Fig. 4. The Bose graph of the 3-tri algebra in Section 3.

An edge in BM is positive if it satis;es Condition 1; otherwise it is negative. Fig. 4
depicts the Bose graph of the 3-tri algebra in Fig. 2. In this case the graph is a cycle.

Lemma 5.2. If M=({0; : : : ; v−1}; ◦) is a 3-tri algebra; then BM is a 2-regular simple
graph.

Proof. A triple T{a;b} = {a; b; c} in V (BM)=TM is only adjacent to triples containing
{a; c} and {b; c}. Since TM is a 2-(v; 3; 3) design, other than T{a;b} there are only two
triples containing {a; c}. One is T{a;c}, but it is not adjacent to T{a;b}. The other is
one of the following two possibilities:
Case 1: T{a;x}, where a ◦ x= c and x = b; or
Case 2: T{c;y}, where c ◦ y= a.
The case depends upon the solutions of the equations a ◦ x= c and c ◦ y= a. In

either situations such a triple is the only one adjacent to T{a;b} which contains {a; c}.
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Fig. 5. Multiplication table of an unsignable 3-tri algebra.

Similarly T{a;b} is also adjacent to only one of the following triples containing {b; c}:
Case 1′: T{b;x′} where b ◦ x′ = c and x′ = a; or
Case 2′: T{c;y′} where c ◦ y′ = b.
The triple from Cases 1 and 2, T{a;b}, and the triple from Cases 1′ and 2′ are

diKerent, so T{a;b} has degree two and its incident edges are neither loops nor parallel
edges in BM. We conclude that this is a 2-regular simple graph.

Let M be a 3-tri algebra of order v. Any function ! : {{i; j} | i = j and i; j∈
{0; : : : ; v−1}}→{+;−} such that for every edge e=(T{a;b}; T{c;d}) in E(BM) !(a; b)=
!(c; d) if and only if e is positive is a signing of M. If M has at least one signing it
is signable; otherwise it is unsignable.

Lemma 5.3. A 3-tri algebra M is signable if and only if every cycle in BM has an
even number of negative edges.

Proof. Let ! be a signing of M and let P=T{a0 ;b0}; : : : ; T{ak ;bk} be a path in BM,
!(ak ; bk)= !(a0; b0)(−1)n, where n is the number of negative edges in P; so ! is well
de;ned if and only if the number of negative edges in every cycle of BM is even.

The multiplication table of an unsignable 3-tri algebra is given in Fig. 5. It is
unsignable because its Bose graph contains the cycle (T{4;5}; T{5;6}; T{4;6}) in which
the three edges are negative. Let M= ({0; : : : ; v−1}; ◦) be a signable 3-tri algebra, and
let ! be one of its signings. For every pair a; b of diKerent elements in {0; : : : ; v −
1}, the 3-oriented cycle HTM;!;a;b

def= (a0; (a ◦ b)!(a;b); b−!(a;b)) (or HTa;b when there is no
confusion with M and !) is the 3-oriented cycle induced by M, !, a and b. The set
HTM;!

def= { HTa;b | a = b and a; b∈{0; : : : ; v− 1}} is the set of 3-cycles induced by M and
!. The sets TM and HTM;! are essentially the same, but in the latter we have chosen
orientations.

Proposition 5.4. If M=({0; : : : ; v − 1}; ◦) is a signable 3-tri algebra of order v and
! is one of its signings; then HTM;! is a uniform triangulation of 3 HKv.



106 C. Colbourn, F. Sagols / Discrete Mathematics 237 (2001) 97–107

Proof. Let a; b be two diKerent elements in {0; : : : ; v − 1}. We establish that each of
the edges (a; b)0; (a; b)1 and (a; b)−1 belongs to exactly one 3-cycle in HTM;!. Evidently
(a; b)0 belongs only to HTa;b. Now we have three possibilities:
Case 1: The equation a ◦ x= b has two solutions in x, say c and d. (T{c;a}; T{a;d})

is a negative edge in BM, so !(a; d)= − !(a; c), and thus (a; b)!(a;c) belongs to
HTa;c =(a0; b!(a;c); c−!(a;c)) and (a; b)−!(a;c) belongs to HTa;d=(a0; b−!(a;c); c!(a;c)). No
other 3-cycle in HTM;! contains {a; b}.
Case 2: The equation b ◦ y= a has two solutions in y. This is similar to Case 1.
Case 3: The equations a ◦ x= b and b ◦ y= a have one solution in x and one in

y, say x= c and y=d. (T{c;a}; T{b;d}) is a positive edge in BM, so !(b; d)= !(a; c),
and thus (a; b)!(a;c) belongs to HTa;c =(a0; b!(a;c); c−!(a;c)) and (a; b)−!(a;c) belongs to
HTb;d=(b0; a!(b;d); c−!(b;d)). No other 3-cycle in HTM;! contains {a; b}.

Since all 3-cycles in HTM;! have the form of a uniform triangulation we conclude
that it is a uniform triangulation of 3 HKv.

6. The Skolem method

We use the idea of Theorem 2.1 to generalize the Skolem method (see [2], for
example). Let v be a positive even integer, say v=2n. Denote by 3 HK

′
v the graph

3 HKv − {(a; n + a)−1 | a∈{0; : : : ; n − 1}} ∪ {(n + a; n + a)1 | a∈{0; : : : ; n}}. Then 3 HK
′
v

is not simple, since we have replaced a perfect matching of negative edges in 3 HKv by
positive loops on the vertices n; n+ 1; : : : ; 2n− 1.

Theorem 6.1. Every 3-balanced triangulation of 3 HK
′
v yields an STS(3v+ 1).

Proof. Let T be a 3-balanced triangulation of 3 HK
′
v. Let us de;ne:

X = {(a; i) | a∈{0; : : : ; n− 1} and i∈{0; 1; 2}} ∪ {∞};
A∞ = {{(a; (i + 1)mod 3); (a+ n; i);∞} | a=0; 1; : : : ; n− 1};
A1 = {{(a; 0); (a; 1); (a; 2)} | a=0; 1; : : : ; n− 1}

and for each

T =(a�a ; b�b ; c�c)∈T;

AT = {{(a; j); (b; (j + �b)mod 3); (c; (j + �b + �c)mod 3)} | j=0; 1; 2}:
In the same manner as in the proof of Theorem 2.1, (X;A) with A=A∞ ∪A1 ∪

(
⋃
T ∈T AT ) is an STS(3v).

It is possible to develop an algebraic structure similar to 3-tri algebras to ;nd
3-balanced triangulations of 3 HK

′
v. However the resulting structure does not share the

nice properties of 3-tri algebras and we prefer to omit it.
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7. Conclusions

Theorem 2.1 gives us a technique to generalize one of the most important methods
to construct Steiner triple systems. The real potential of this construction depends upon
our ability to generate 3-balanced triangulations of 3 HKv. The 3-tri algebras give some
solutions to this problem, but they are not the only possibility. The general problem
of determining all 3-balanced triangulations of 3 HKv remains open.

The construction of signable 3-tri algebras is not easy; we have studied some methods
which are reported in Ref. [3]. We showed that it is possible to generate 3-tri algebras
appropriate for the construction of anti-Pasch Steiner triple systems. These methods are
based on an interesting application of the eight queens problem.
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