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Radionuclide Imaging
A Molecular Key to the Atherosclerotic Plaque

Harald F. Langer, MD,* Roland Haubner, PHD,† Bernd J. Pichler, PHD,‡ Meinrad Gawaz, MD*

Tübingen, Germany; and Innsbruck, Austria

Despite primary and secondary prevention, serious cardiovascular events such as unstable angina or myo-
cardial infarction still account for one-third of all deaths worldwide. Therefore, identifying individual patients
with vulnerable plaques at high risk for plaque rupture is a central challenge in cardiovascular medicine.
Several noninvasive techniques, such as magnetic resonance imaging, multislice computed tomography,
and electron beam tomography are currently being tested for their ability to identify such patients by mor-
phological criteria. In contrast, molecular imaging techniques use radiolabeled molecules to detect func-
tional aspects in atherosclerotic plaques by visualizing their biological activity. Based upon the knowledge
about the pathophysiology of atherosclerosis, various studies in vitro and in vivo and the first clinical trials
have used different tracers for plaque imaging studies, including radioactive-labeled lipoproteins, compo-
nents of the coagulation system, cytokines, mediators of the metalloproteinase system, cell adhesion re-
ceptors, and even whole cells. This review gives an update on the relevant noninvasive plaque imaging ap-
proaches using nuclear imaging techniques to detect atherosclerotic vascular lesions. (J Am Coll Cardiol
2008;52:1–12) © 2008 by the American College of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2008.03.036
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ardiovascular diseases are the most frequent causes of death
n the Western world and represent a central challenge for

odern research and medicine. Rupture of the atherosclerotic
laque accounts for approximately 70% of fatal acute myocar-
ial infarctions and/or sudden coronary deaths (1). Throm-
otic complications, which arise from rupture or erosion of a
ulnerable plaque, may be clinically silent yet contribute to the
atural history of plaque progression and ultimately luminal
tenosis (1). Therefore, it seems to be essential to acquire
nformation beyond the resulting degree of stenosis detected by
ngiography. Over the past years, profound knowledge about
he mechanisms involved in atherogenesis was obtained due to
mbitious and excellent research. In the future, it is our
esponsibility to extend this knowledge by utilizing the field
f molecular plaque imaging to obtain new strategies to
etect vulnerable atherosclerotic plaques that cause critical
ardiovascular complications.

he “Vulnerable Plaque”

o identify apparently healthy subjects at risk for future
ardiovascular events, a consensus of experts has recently

rom the *Medizinische Klinik III, Eberhard Karls Universität Tübingen, Tübingen,
ermany; †Universitätsklinik für Nuklearmedizin, Medizinische Universität Inns-

ruck, Innsbruck, Austria; and the ‡Laboratory for Preclinical Imaging and Imaging
echnology, Clinic of Radiology, University of Tübingen, Tübingen, Germany. Dr.
anger is currently affiliated with the Experimental Immunology Branch, National
ancer Institute, National Institutes of Health, Bethesda, Maryland.
m
Manuscript received January 18, 2008; revised manuscript received March 20,

008, accepted March 24, 2008.
efined criteria for the diagnosis of “vulnerable plaques” (1).
esides minor criteria like calcified nodules, yellow appear-
nce of the plaque, or intraplaque hemorrhage, major
riteria have been established that represent different aspects
f the rupture-prone plaque (Fig. 1). Major criteria are
ctive inflammation, thrombogenicity, and plaque injury.
urther major criteria are related to plaque morphology and

nclude a thin cap, a large lipid core, or severe luminal
tenosis (1). Many groups have focused on anatomic imag-
ng modalities such as intravascular ultrasound, magnetic
esonance imaging (MRI), multislice computed tomogra-
hy (MSCT), and electron beam tomography to view the
ulnerable plaque (2–4).

Recent approaches using radionuclide imaging are
ased upon the pathophysiology of atherogenesis and
ave been evaluated to detect atherosclerotic lesions with
strong focus on the functional aspects of a plaque (Fig.
). The development of atherosclerotic plaques is a
rocess of complex, consecutive, and interacting steps
nvolving chemokines, the up-regulation of adhesion

olecules, recruitment of inflammatory cells to the arte-
ial wall, transmigration of these cells, and the develop-
ent of lipid-laden macrophages (the so-called foam

ells) from invading monocytes (5). As a result of these
rocesses, the early lesion of atherosclerosis—the fatty
treak—appears. Subsequently, more complex lesions de-
elop mediated by proliferation and migration of smooth
uscle cells and excessive production of extracellular

atrix proteins (5). Superficial erosions or fracture of the
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fibrous cap lead to plaque disrup-
tion followed by thrombus forma-
tion (6). Over the past years, dis-
tinct mediators and regulators
involved in the cascade of athero-
sclerosis have been identified,
which can be used to develop tools
for the detection and characteriza-
tion of atherosclerotic plaques by
means of noninvasive molecular
imaging (Table 1). The different
approaches include radionuclide-
labeled lipoproteins (7), compo-
nents of the coagulation system
(8), cytokines (9), mediators of the
matrix-metalloproteinase (MMP)
system (10), cell receptors (11),
and even whole cells (12). This
review gives an update on the rel-
evant noninvasive approaches in
plaque imaging with a focus on
radionuclide-based techniques to
detect vulnerable vascular lesions.

Nuclear Imaging Versus
Other Noninvasive
Modalities to Visualize the
Atherosclerotic Plaque

Coronary angiography has so far
been the gold standard to assess
narrowing of the vessel lumen.
Other invasive techniques have
been introduced that provide addi-

ional information for plaque characterization, including intra-
ascular coronary ultrasound, angioscopy, intravascular elastog-

Morphology

Inflammation

Stenosis Injury

Thrombogenicity

Proteolysis

Figure 1 Major Criteria Defining the “Vulnerable Plaque”

Vulnerable atherosclerotic plaques are characterized by distinct attributes
regarding morphology, stenosis, inflammation, thrombogenicity, injury, and
enhanced proteinase activity.

Abbreviations
and Acronyms

ApoE � apolipoprotein E

CT � computed
tomography

FCH � fluorocholine

FDG � fluorodeoxyglucose

GPVI � glycoprotein VI

LDL � low-density
lipoprotein

MCP � monocyte
chemoattractant protein

MDA2 � malondialdehyde
epitope on oxidized low-
density lipoprotein

MMP � matrix
metalloproteinase

MRI � magnetic resonance
imaging

MSCT � multislice
computed tomography

NIRF � near-infrared
fluorescent

ox-LDL � oxidized low-
density lipoprotein

PET � positron emission
tomography

RGD � protein sequence
“arginine-glycine-aspartic
acid”

SPECT � single-photon
emission computed
tomography.
H

aphy, termography, or optical coherence tomography. All of
hese techniques have the disadvantage of being invasive.
oward the same end, increasing effort has been placed on
oninvasive imaging techniques. The 3 major modalities used
re MRI, MSCT, and nuclear imaging, each of them having
dvantages and disadvantages. In addition to stenosis detec-
ion, electron beam computed tomography (CT), dual source
dual energy), and MSCT are capable of picturing the coronary
rtery wall. By using MSCT, various components of the
therosclerotic wall may be distinguishable, allowing for iden-
ification of calcified areas or hypodensities, which correlate to
cholucent areas seen with intravascular ultrasound (13,14).

hile such hypodense areas are suggestive of lipid-rich
laques, differential diagnosis of such areas can include other
issue types such as less dense fibrous tissue. Thus, while
roviding a better spatial resolution than nuclear imaging
echniques, CT-based techniques may give less information on
istinct plaque components aside from the level of calcification.
sing MRI, T1- and T2-weighted imaging can provide in

itro information of the atheromatous core, collageneous cap,
nd calcifications (15). Although MRI provides good spatial
esolution, results at the coronary artery level have not yet been
onvincing, as the arteries are small, tortuous vessels in con-
inuous movement, which causes image aquisition difficulties.

Platelets

Apoptosis

Angiogenesis

Cell recruitment

Lipoproteins

ECM

Monocyte

Macrophage

Monocytes
Macrophages
L19                      

RGDLDL                                    
ox-LDL
MDA2                                                   

Annexin-V

Platelets
GPIIb-IIIa, GPVI                                                  
Fibrin                                                    
Collagen, fibronectin

Chemotaxis
MCP-1                

Metabolical
activity

FDG                               
FCH

Proteolysis
Plaque destabilization

MMPs
Cathepsin K                     

Thrombogenicity

Figure 2 Molecular Principles
to Detect Vulnerable Atherosclerotic Plaques

Based upon the increasing molecular knowledge regarding atherogenesis, dif-
ferent principles have been successfully used to image atherosclerotic
plaques. One major complex is the molecular imaging of inflammation, which
includes enhanced metabolic activity, chemotaxis, cell recruitment, and lipopro-
tein accumulation. Furthermore, mediators of angiogenesis, apoptosis, and
matrix metalloproteinase (MMP) activity have been successfully applied.
Another promising approach to detect vulnerable atherosclerotic plaque is the
visualization of plaque thrombogenicity, including thrombosis and exposure of
thrombogenic subendothelial matrix proteins. ECM � extracellular matrix; FCH
� fluorocholine; FDG � fluorodeoxyglucose; GP � glycoprotein; LDL � low-
density lipoprotein; L19 � antibody against the extra-domain B of fibronectin;
MCP � monocyte chemoattractant protein; MDA2 � malondialdehyde epitope
on oxidized low-density lipoprotein; ox-LDL � oxidized low-density lipoprotein;
RGD � protein sequence “arginine-glycine-aspartic acid.”
owever, contrast-enhanced sequences have been tested and
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hown to improve the sensitivity of the method (16).
omputed tomography and MRI mainly provide informa-

ion based on morphology or anatomy.
The strength of nuclear imaging is its ability to provide

uantitative information on a functional level such as density of
specific receptor or the metabolic activity of a plaque. Nuclear

maging is based on radiolabeled biomarkers with a signal
ensitivity in the pico-molar range, which is 1 million to 1
illion times above that of MRI or CT. Thus, nuclear imaging
ay be the most promising approach for vulnerable plaque

etection. Currently, the leading modality in nuclear medicine
s positron emission tomography (PET), which acquires im-
ges with a spatial resolution up to 4 to 5 mm, thereby
mproving on the performance of single-photon emission
omputed tomography (SPECT), which has a resolution of 10
o 15 mm. To obtain good-quality images, the radiotracer
ust have rapid clearance from the bloodstream and a good

arget-to-background ratio. Given the small size of the plaque,
n which the radionuclide concentrates, a high background
ignal can impair the quality of PET or SPECT images. Thus,
he identification of promising highly specific molecular targets

ifferent Approaches to Visualize Atherosclerosis by Radionuclide I

Table 1 Different Approaches to Visualize Atherosclerosis by R

Underlying Plaque Biology Radionuclide Tracer

Inflammation 99mTc-LDL

Lipoprotein accumulation 123I-LDL
125I-LDL
99mTc-ox-LDL
123I-MDA2 (Ab to ox-LDL epitope)
125I-IK17 (Ab to ox-LDL epitope)
123I-SP4 (apoliprotein B fragment)
125I-SP4

Chemotaxis 125I-MCP-1 (chemotactic molecule)

Angiogenesis 125I-c(RGD(I)yV) (peptide binding �v�3)
99mTc-(NC100692) (peptide binding �v�3)

Monocyte recruitment/activity 111In-monocytes
18F-FDG (metabolic activity)
18F-FDG
18F-FDG
18F-FDG in comparison with 18F-FCH

VHSPNKK-modified magnetofluorescent nan
(VNP) (VCAM-1 expression)

Apoptosis 99mTc-annexin V (phosphatidylserine expres
99mTc-annexin V
99mTc-annexin V
99mTc-annexin V

Proteolysis 123I-HO-CGS27023 A (MMP inhibitor)

GHPGGPQKC-NH2 (cathepsin K substrate)—

Thrombogenicity and cell recruitment 111In-platelets
111In-platelets
125I-GPVI/123I-GPVI (platelet collagen recep
99mTc-DMP-444 (GPIIb-IIIa inhibitor)
99mTc-T2G1s Fab (fibrinogen binding)
125I-L19 (fibronectin binding)

CH � fluorocholine; FDG � fluorodeoxyglucose; GP � glycoprotein; HUVEC � human umbilical v
alondialdehyde epitope on oxidized low-density lipoprotein; MMP � matrix metalloproteinase;

arginine-glycine-aspartic acid”; VCAM � vascular cell adhesion molecule.
s of central importance. Another problem that complicates a
maging of coronary arteries is related to vessel anatomy and
eart pulsatility. Although the fast imaging protocols of MRI
r CT are advantageous over the relatively slow PET or
PECT imaging, modalities such as cardiac gating can im-
rove motion artefacts in cardiac imaging. Current research in
maging technology centers on the development of multimo-
ality scanners, such as PET/CT or more recently PET/MRI,
o provide comprehensive morphological and functional infor-
ation during 1 scan session. Such technical advance, in

articular PET/MRI, has enormous potential in the field of
ardiac imaging as it allows for simultaneous data acquisition,
hich is a huge improvement compared with the sequential

canning protocols of PET/CT. Although these approaches do
ot improve spatial resolution of the PET technique, they
rovide valuable information about the localization of the
cquired signal.

adionuclide Imaging of Plaque

etabolic activity. Atherosclerotic plaques are character-
zed by an accumulation of cells with high metabolic

ng

uclide Imaging

Experimental Setting Reference

Human carotid/ileofemoral artery Lees at al. 1988 (48)

Human carotid artery Virgolini et al. 1991 (53)

Rabbit aorta Virgolini et al. 1991 (54)

Human carotid artery Iuliano et al. 1996 (57)

Rabbit arteries Tsimikas et al. 1999 (49)

Mouse aorta Shaw et al. 2001 (50)

Rabbit aorta Hardoff et al. 1993 (51)

Rabbit aorta Lu et al. 1996 (52)

Rabbit aorta Ohtsuki et al. 2001 (9)

Murine ischemic hindlimbs/HUVECs Lee at al. 2005 (33)

Murine ischemic hindlimbs Hua et al. 2005 (47)

Human arteries Virgolini et al. 1990 (17)

Rabbit iliac artery Lederman et al. 2001 (18)

Human carotid artery Rudd et al. 2002 (20)

Human arteries Ben Haim et al. 2004 (19)

Mouse aortae Matter et al. 2007 (24)

icle Mouse carotid artery Kelly et al. 2005 (31)

Rabbit aorta Kolodgie et al. 2003 (72)

Human carotid artery Kietselaer et al. 2004 (70)

Swine coronary artery Johnson et al. 2005 (71)

Mouse aorta Isobe et al. 2006 (75)

Mouse carotid artery Schäfers et al. 2004 (10)

robe Mouse aortae and human carotid arteries Jaffer et al. 2007 (66)

Human carotid artery Minar et al. 1989 (76)

Human carotid artery Moriwaki et al. 1995 (77)

Mouse carotid artery Gawaz et al. 2005 (11)

Canine coronary artery Mitchel et al. 2000 (78)

Canine femoral/carotid artery Cerqueira et al. 1992 (79)

Mouse aorta Matter et al. 2004 (82)

othelial cell; LDL � low-density lipoprotein; MCP � monocyte chemoattractant protein; MDA2 �

near-infrared fluorescent; ox-LDL � oxidized low-density lipoprotein; RGD � protein sequence
magi
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ctivity. Therefore, various approaches addressed the prin-
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iple of metabolic activity to image atherosclerosis. Strate-
ies to find a feasible molecular target included the imaging
f metabolically active cells, metabolic substrates, or in-
reased uptake of molecules in active cells. One of the earlier
ttempts to visualize atherosclerotic lesions used 111In-
abeled patient-derived monocytes, which were reinjected,
nd relied on the presumption that these monocytes become
nvasive plaque macrophages (17). A more practical way to
mage metabolically active macrophages and inflammation
n general is the use of 18F-radiolabled fluorodeoxyglucose
18F-FDG) (18,19). Fluorodeoxyglucose competes with
lucose for uptake into metabolically active cells such as
acrophages, and it is already established in clinical practice

or imaging of tumors or for assessment of myocardial
iability. As this substance is therefore readily available, its
se is an attractive strategy for imaging atherosclerotic
esions, and several FDG-based studies have been carried
ut. In one instance for example, a clinical study successfully
mployed autoradiography to visualize 18F-FDG uptake in
acrophage-rich lesions of carotid endarterectomy speci-
ens ex vivo (20).
A recently published study suggested the use of alterna-

ive tracers that operate on a similar principle, namely
uorocholine (FCH). 18F-labeled fluorocholine (18F-FCH)
as been introduced as a tracer for imaging both brain and
rostate cancers. This choline derivative is taken up into
ells by specific transport mechanisms, phosphorylated by
holine kinase, metabolized to phosphatidylcholine, and
ventually incorporated into the cell membrane (21,22). The
ncreased choline uptake in highly proliferative cells such as
umor cells (23) and activated macrophages (22) has been
elated to an up-regulation of choline kinase as well as an
ncreased activity of choline-specific transporters (23). Cho-
ine kinase expression and activity seem to be similar in
ormal and atherosclerotic murine aortae (24). Thus, en-
anced 18F-FCH uptake in activated murine plaque mac-
ophages is not caused by changes in choline kinase, but
ather by increased choline transport (24). The rapid uptake
within 30 min) of 18F-FCH into inflammatory tissues
upports this notion (25,26). To demonstrate the relative
fficacy of 18F-FCH versus 18F-FDG, Matter et al. (24)
njected apolipoprotein E (ApoE)-deficient mice intrave-
ously with either tracer. En face measurements of aortae

solated 20 min after 18F-FCH injections demonstrated a
ery good correlation between fat stainings and autoradiog-
aphies achieving a sensitivity of 84% to detect plaques while
8F-FDG reached a lower sensitivity of 64% (24).
hemotaxis. In the early atherosclerotic plaque, chemo-

ines play an essential role, as they attract inflammatory cells
o the lesion and keep the inflammation process progressing
5). One strategy to image atherosclerotic plaques is, thus, to
isualize the expression of chemokines or their receptors
ithin the vascular wall. Similar to chemokines, adhesion

eceptors mediate the recruitment of inflammatory cells to

he atherosclerotic plaque. Thus, potential imaging strate- v
ies are to visualize chemokines, chemokine receptors or
dhesion receptors, or ligands.

Monocyte chemoattractant protein (MCP)-1 is one of
he strongest chemotactic agents, attracting inflammatory
ells to the atherosclerotic plaque (5,27). Although MCP-1
s not expressed in healthy vessels, various stimuli (e.g.,
umor necrosis factor and other cytokines) can induce the
xpression and secretion of MCP-1 in endothelial cells,
ascular smooth muscle cells, or cardiomyocytes, which by
riggering and sustaining leukocyte accumulation promote
nflammation (28). Elevated levels of circulating MCP-1
ave been found in patients with congestive heart failure
nd coronary artery disease and have been adversely corre-
ated with disease progression (29). Ohtsuki et al. (9)
nalyzed the localization of its receptor by using 125I-

CP-1 (half-time �10 min) in atheromas of cholesterol-
ed rabbits 4 weeks after arterial injury of the iliac artery and
he abdominal aorta. The activity of 125I-MCP-1 correlated
ith macrophage content per unit area as detected by

mmunohistochemistry using an antibody specific for rabbit
acrophages. Furthermore, ex-vivo autoradiography re-

ealed high 125I-MCP-1 activity within the vascular lesions.
long with chemotaxis, the up-regulation of adhesion
olecules on endothelial cells or leucocytes is also involved

n atherosclerotic inflammation. Recently, an established
eceptor ligand pair, vascular cell adhesion molecule
VCAM)-1 (endothelial cells) and very late antigen-4 (leu-
ocytes), has been used to visualize atherosclerotic plaques
30,31). Using a novel VCAM-1 peptide affinity ligand
dentified by phage display that was conjugated to a mag-
etofluorescent nanoparticle, atherosclerotic plaques were
isualized by MRI as the ligand was actively internalized by
CAM-1–expressing cells (31). While the number and

ange of studies are limited, the use of chemokines may be
promising candidate for noninvasive plaque imaging in

uture clinical practice.
ngiogenesis/�v�3 integrin. Accumulating evidence sug-
ests that the extent of neovascularization is closely linked
o the inflammatory reaction and infiltration of macro-
hages/foam cells within atherosclerotic plaques. A study of
69 advanced human atherosclerotic plaques concluded that
icrovessel formation is strongly correlated with both

laque rupture and the signature features of vulnerable
laques (32). So far, noteworthy studies have used 1
olecular target involved in the angiogenesis process, the

v�3 integrin (33). This integrin is a heterodimeric trans-
embrane glycoprotein, which mediates cell/cell and cell/
atrix interactions, but is also involved in signal transduc-

ion from inside as well as outside the cell.
The �v�3 integrin is expressed on various cells originating

rom the mesenchyme and on a variety of cell types in the
lood vessel (including endothelial cells, smooth muscle
ells, fibroblasts, macrophages, and platelets). It is a pro-
iscuous integrin that binds to many different ligands

ncluding a number of extracellular matrix proteins such as

itronectin, fibronectin, osteopontin, fibrinogen, and von
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illebrand factor, through the interaction with the Arg-
ly-Asp (RGD) motif (34,35). The �v�3 integrin is highly

xpressed in angiogenic or activated endothelial cells but
ot, or to a much lower extent, in quiescent endothelial cells
36,37).

Radioactive-labeled �v�3 antagonists and nuclear medi-
ine imaging techniques may provide a helpful tool to study
nd quantify angiogenetic processes in plaque development.
owever, most studies concerning tracer development and

valuation were carried out using tumor models (38). The
ajority of compounds described are based on the �v-

elective cyclic pentapeptide with the amino acid sequence
yclo(-Arg-Gly-Asp-DPhe-Va-) (39). The type of tracer
howed comparable affinity and selectivity as the lead
tructure in vitro and receptor-specific accumulation in the
umor in vivo (40). However, the predominantly hepatobili-
ry elimination of the tracer demonstrated high activity
oncentrations in the liver and intestine. Thus, several
trategies to improve the pharmacokinetics of radiolabeled
eptides have been undertaken. They include conjugation
ith sugar moieties, hydrophilic amino acids, and polyeth-
lene glycol. The glycosylation approach (41,42), which is
ased on the introduction of sugar amino acids, resulted in
racers with good pharmacokinetic properties. In a murine
umor model, 18F-Galacto-RGD (RGD: 1 letter code for
he amino acids Arg-Gly-Asp, which are essential for
inding to the receptor) allowed noninvasive determination
f �v�3 expression in the tumor vasculature (Fig. 3) (43).
urrently, 18F-Galacto-RGD has been evaluated in a first

linical trial and demonstrates rapid predominant renal
xcretion and high metabolic stability resulting in good
umor/background ratios and, thus, high-quality imaging
43,44). Moreover, this initial study indicates that tracer
ccumulation correlates with �v�3 expression on blood
essels in the tumor lesions (Fig. 3). While a large set of
tudies demonstrating that the data concerning imaging
umor-induced angiogenesis can be translated to imaging,
he pathogenesis of plaque formation has yet to be com-
iled. Initial findings using �v�3-targeted nanoparticles and
agnetic resonance (45) as well as �v�3-targeted micro-

ubbles and contrast ultrasound imaging (46) indicate that
adiolabeled �v�3-targeted tracer may be used to define the
urden and evolution of atherosclerosis and the responsive-
ess of patients to corresponding therapies. Furthermore, a
ecent study employing a murine hindlimb ischemia model
llustrated that a 99mTc-labeled peptide (NC100692) targeted
o �v�3 integrin selectively localized to endothelial cells in
egions of increased angiogenesis and could be used for
oninvasive serial “hot spot” imaging of angiogenesis (47).
ipoproteins. Lipoproteins, particularly low-density li-
oproteins (LDLs), contribute substantially to early le-
ion formation. These mainly oxidized lipoproteins ini-
iate and sustain the inflammation process and are
ssential for foam cell generation (5). Strategies to utilize
he involvement of lipoproteins in atherogenesis include

he use of radiolabeled lipoproteins by themselves, detection t
f epitopes within the lipoproteins (e.g., by the use of
adiolabeled antibodies) or radiolabeled endogeneous recep-
ors for lipoproteins (48–52). In initial studies, foam-cell-
ich early atherosclerotic lesions were detected by radiola-
eled autologous LDL molecules in both human and animal
tudies (53,54). Using a rabbit model of balloon-induced
theroma, Virgolini et al. (54) found a positive correlation
etween 125I uptake and the extent of foam cell infiltration.
owever, the use of radiolabeled LDL is not without

ifficulty as significant tracer activity appears within the
lood pool even several hours after injection and hampers
he detection of lipid-laden plaques. Further investigations
ave, therefore, focused on oxidized low-density lipoprotein
ox-LDL) or various epitopes of ox-LDL because of improved
laque-to-background ratio, the improved uptake into
acrophage-rich tissues, and the rapid clearance from the

lood pool. In addition, in this method there is no need to
btain autologous blood from the patients. Most of these
tudies have focused on malondialdehyde epitope on ox-
DL (MDA2), a radiolabeled murine monoclonal anti-
ody, which binds to the malondialdehyde epitope on
x-LDL, and there is a significantly higher uptake of
25I-MDA2 in lipid-rich lesions of atherosclerotic mice and
abbits compared with the uptake in healthy arteries
55,56). After dietary intervention, the same tracer was
uccessfully used to track changes in macrophage foam cell
ensity. In a clinical trial where 99mTc ox-LDL was used in
umans (57), tomographic scintigraphy of the neck in
atients suffering from transient ischemic attacks revealed
ccumulation of radiolabeled LDL preparations in the
arotid artery affected by atherosclerotic lesions. We have
ollowed a somewhat different approach. Mediating the
ptake of LDL, particularly ox-LDL, into macrophages
cavenger receptors (e.g., CD68, SR-A, CLA-1/SR-BI,
D36, LOX-1, and SR-PSOX) play a key role in athero-

clerotic lesion formation (Fig. 4A) (58). Thus, we conju-
ated 124I to the scavenger receptor CD68 (soluble CD68-
c) thereby using this molecule as our imaging probe.
D68 has been recently described to be important for foam

ell formation, as it binds ox-LDL, mediates its uptake (59),
nd may, therefore, be a useful tool for the detection of
therosclerotic plaques by the visualization of LDL (Fig.
B). In our study, wild type or ApoE�/� mice (17 weeks
ld) were fed with a high cholesterol diet and injected with
190 �Ci (7MBq) 124I-CD68-Fc, intravenously. After

8 h, animals were sacrificed and evaluated by ex vivo
utoradiography (Fig. 4C). In addition, sudan red staining
as performed to compare radioactivity with plaque forma-

ion (Fig. 4C). We found a good correlation of signal with
he extent of the lesion. While preliminary, our data suggest
hat CD68 is a potent molecular marker for the detection of
therosclerosis. These findings have to be verified by further
rofound investigations.
roteolysis. Through degradation of the extracellular ma-
rix, proteases contribute to the progression and complica-
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ions of atherosclerotic lesions. At later stages of atheroscle-
osis, a lesion core is covered by a fibrous cap, which consists
ainly of smooth muscle cells and extracellular matrix and

eparates the lipid-rich core from the bloodstream (5).
Interstitial collagen molecules, adjacent to others like

brin, confer most of the tensile strength on the fibrous
ap, and several tightly regulated processes determine the
evels of collagen required for stability of this structure
6). Certain proinflammatory cytokines, such as interferon-
amma, can inhibit collagen production by smooth mus-
le cells, the principle source of this extracellular matrix
acromolecule in the arterial wall. Hence, the degree

Figure 3 Detection of Neoangiogenesis

(Top) (A) Coronal image section from a 18F-Galacto-RGD positron emission tomog
right axilla obtained 60 min after tracer injection. The image shows a clearly contr
almost all areas of the body. (B and C) Patient with a soft tissue sarcoma dorsal
tomography and the corresponding computed tomography scan shows that the reg
nonenhancing hypodense center shows no tracer uptake. (C) Immunohistochemis
onstrates intense staining predominantly of tumor vasculature. (Bottom) (D) Imm
strates that the squamous cell carcinoma of human origin do not express the �v�

�3-subunit indicates that the tumor vasculature is �v�3-positive. (F and G) Transa
der acquired 90 min after 18F-Galacto-RGD injection show a clearly contrasting tum
tumor vasculature. Tracer accumulation can be blocked by injecting 18-mg cyclo
receptor-specific accumulation. Adapted from Haubner et al. (43).
f plaque vulnerability is influenced by factors such as i
verall size, core size, cap thickness, cap inflammation,
nd cap fatigue.

Enhanced turnover of the extracellular matrix is known to be
he reason for destabilization of the vulnerable fibrous cap. The
ells mainly responsible for this process are monocytes, which
ifferentiate to macrophages within the atherosclerotic lesion.
he destabilization is mediated by MMPs, which can be

eleased by activated macrophages, endothelial, and other
ascular cells. Known mediators of such inflammatory pro-
esses are tumor necrosis factor-� and CD40L (60,61).

Strategies to image proteolytic activity included the use of
adiolabeled MMP inhibitors, substrates of MMPs, MMP

of a patient with a malignant melanoma and a lymph node metastasis at the
tumor and rapid predominately renal elimination with low background activity in
right knee joint. (B) The image fusion of the 18F-Galacto-RGD positron emission
f intense tracer uptake correspond with the enhancing tumor wall, whereas the
peripheral tumor section using the anti-�v�3 monoclonal antibody LM609 dem-

tochemical staining of tumor sections using the anti-�v�3 mAb LM609 demon-
rin. (E) In contrast, staining of sections with an antibody against the murine
ages of nude mice bearing a human squamous cell carcinoma at the right shoul-
e signal reflects tracer accumulation due to �v�3 expression exclusively in the
ly-Asp-DPhe-Val-) per kilogram mouse 10 min before tracer injection indicates
raphy
asting
of the
ions o
try of a
unohis

3 integ
xial im
or. Th
(-Arg-G
nhibitors, and cathepsins.
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Schäfers et al. (10) used a broad-spectrum MMP inhib-
tor conjugated to 123I to develop the radioligand 123I-HO-
GS 27023A for in-vivo imaging of MMP activity. Four
eeks after induction of arterial injury in the carotid artery
f ApoE�/� mice fed a cholesterol-rich diet, the tracer was
njected retro-orbitally, and uptake was measured. During
he first 2 h, a steadily increasing uptake could be detected.
pecificity was verified by predisposing cells with unlabeled
GS 27023A. A very elegant way to make use of enhanced
MP activity in tissues was recently published by Chen

t al. (62), who used a novel long-circulating, quenched
ear-infrared fluorescent (NIRF) probe, that is activated
y MMP-2 and -9, the essential proteases for the
athophysiology of atherosclerotic lesions. In vitro, the
uorescence signal changes can be detected after activa-
ion with MMP-2 or -9 at the specific wavelengths of the
ttached fluorochrome Cy5.5 by use of a fluorescence
late reader. For in vivo experiments, the authors chose a
ouse myocardial infarction model to monitor MMP

ctivity within the infarcted region. Near-infrared fluo-
escent imaging of MMP activity increased within 1 to 2
eeks after arterial ligation, a result that was confirmed
y parallel in-vitro methods including zymography and
everse transcription-polymerase chain reaction analysis
f MMP expression.
Choudhary et al. (63) used carotid endarterectomy spec-

Monocyte

Macrophage
Foam cell

Phagocytosis
Scavenger receptors
-CD68

-Lox-1

-SR-A

-CD36

-SR-BI

-CLA1

-SR-PSOX

-SR-BLH

A C

B

Human Fc

CD68
124I

Lipid Core

LDL

Figure 4 Detection of Atherosclerotic Plaques by Radiolabeled

(A) (Oxidized) lipoproteins initiate and sustain the inflammation process in atheros
ate the uptake of lipoproteins into macrophages and, thus, contribute substantiall
conjugated to an Fc-fragment was radiolabeled with 124I and used to detect athero
cholesterol diet for 17 weeks. Subsequently, mice were injected intravenously with
uate tracer activity in the aortic arch. Activity of 124ICD68-FC was enhanced in Apo
as shown by sudan red staining in the aortic arch specimen (top). LDL � low-dens
men and multicontrast MRI to generate 3-dimensional i
econstructions and evaluate spatial distribution of MMPs
nd their inhibitors (tissue inhibitors of metalloproteinases)
n carotid atherosclerotic lesions. They found that their
istribution is highly heterogeneous and reflects lesion

ocation, size, and composition (63). Notably, the greater
bundance of MMP-9 in the plaque area suggests that it is
major MMP mediating remodeling in this area. In grossly
ormal areas, the level of total MMPs is lower and domi-
ated by MMP-2. The authors concluded that remodeling
f atheroma and normal arterial wall are mediated by
ifferent MMPs (63). The results are consistent with
revious observations that MMP-9, but not MMP-2, was
ecessary for organization of collagen by smooth muscle
ells (64).

In addition to MMPs, the cathepsin family of pro-
eases was tested for use in plaque imaging studies. Chen
t al. (65) optically imaged cathepsin B activity in
xperimental atherosclerosis in vivo using a NIRF ap-
roach. Similarly, Jaffer et al. (66) were able to visualize
therosclerotic plaques very recently in both mice and
umans using a NIRF imaging agent consisting of the
athepsin K peptide substrate (GHPGGPQKC-NH2)
inked to an activatable fluorogenic polymer. Taken
ogether, MMPs represent a very promising target for
oninvasive imaging, as they are essential for different
athophysiologic processes including tumor progression,

Wildtype ApoE-/-

sudan III staining

124I-CD68-Fc

8-Fc

ic lesions and are essential for foam cell generation. Scavenger receptors medi-
am cell formation. (B) A soluble dimeric form of the scavenger receptor CD68
sis in vivo. (C) Apolipoprotein E �/� (ApoE�/�) or wild type mice were fed a high
D68-Fc and sacrificed after 48 h. Ex-vivo nuclear imaging was performed to eval-
compared with wild type mice (bottom) and correlated well with plaque extension
oprotein.
CD6

clerot
y to fo
sclero
124IC

E�/�

ity lip
nflammation, and atherogenesis.
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poptosis. Apoptosis has been shown to be one of the
haracteristics of atherosclerotic plaques (67). Animal stud-
es of hypercholesterolemia showed both proliferation and
ell death of smooth muscle cells in early intimal lesions
68,69). Mentionable studies so far focused on annexin V
sing this molecule in a radiolabeled form (70). During the
rocess of apoptosis, phosphatidylserine, a phospholipid
ormally residing on the inner cell membrane of viable cells,

s externalized and, thus, available to affinity ligands such as
nnexin V.

In a model of porcine coronary atherosclerosis, apoptosis
f cells in the vascular wall of coronary arteries was detected
y SPECT using 99mTc-annexin V (71). Thirteen of 22
njured coronary vessels of animals receiving a high-fat
iet showed focal 99mTc-annexin V uptake. Another
roup made use of the same marker to detect experimen-
al atheroma in the aorta of balloon-injured rabbits in
ivo (72). In this study, histologically verified macro-
hage apoptosis showed a positive correlation with tracer
ptake. Several clinical studies using annexin V as a
adionuclide tracer have been carried out so far. In a study
ith 18 cardiac allograft recipients, 5 patients had posi-

ive myocardial uptake of annexin V (13 negative) (73).
s these 5 patients revealed at least moderate transplant

ejection and caspase-3 staining in the biopsy specimen,
he authors proposed the clinical feasibility of annexin V
maging for noninvasive detection of transplant rejection.
nother group also tried to visualize myocardial infarc-

ion by 99mTc-annexin V uptake (74), and in this trial 6
f 7 patients showed increased uptake of the tracer in
arly and late SPECT images. Lastly, a recent study
urther underlined the hypothesis that atherosclerotic
esions induced by a high-cholesterol diet in ApoE�/�

ice can be detected by apoptotic markers (75). Athero-
clerotic plaques in the aorta were visualized by 99man-
exin A5 using microSPECT and the quantitative uptake
f this tracer correlated with histological plaque extent
nd macrophage content (75). Despite these very prom-
sing results, further experimental and clinical studies
ave to be carried out to further establish the efficacy of
mploying nuclear imaging of programmed cell death for
oninvasive detection of the vulnerable atherosclerotic
laque.
hrombogenicity and cell recruitment. The majority of
yocardial infarctions are caused by development of a

hrombus in coronary vessels at the site of vascular lesions
erosion, plaque rupture) (Fig. 5A). Therefore, thromboge-
icity is a central feature of plaque vulnerability. A prereq-
isite for the formation of a thrombus is the exposure of
ubendothelial matrix components resulting in enhanced
ell recruitment. Plaque imaging approaches derived from
his principle include the use of cells participating in
hrombus formation, the detection of soluble coagulation
actors, or the visualization of exposed subendothelial

atrix. i
Early approaches used radionuclide-labeled platelets or
ater radionuclide-labeled platelet inhibitors to detect vul-
erable plaques (76–78). As the coagulation cascade results

n the development of a fibrin-rich thrombus, Cerqueira
t al. (79) used a radiolabeled monoclonal antibody frag-
ent 99mTc-T2G1s Fab, which is specific for fibrin, in a

anine carotid and femoral artery injury model. The tracer
as shown to bind twice as strong to trauma-induced

hrombotic arteries compared with arteries in sham-
perated animals (79). Another group also demonstrated
he feasibility of in vivo detection of acute and subacute
hrombosis using a fibrin-binding contrast agent in an
nimal model of atherosclerosis by an MRI approach (80).

plaque imaging study was performed using a F(ab=)2
onoclonal antibody (TRF1) against the human fragment
dimer of cross-linked fibrin for atherosclerotic plaques.

therosclerotic segments of carotid and femoral arteries of
patients and 5 control segments of atherosclerosis-free

nternal mammary arteries were drawn from 11 male pa-
ients undergoing bypass surgery (81). The 125I-TRF1
ntibody was used to distinguish atherosclerotic fragments,
atty streaks, and normal endothelium. The significantly
igher binding of TRF to atherosclerotic plaques compared
ith that in normal vessels was specific, as a control

ntibody showed no binding (81).
Within vulnerable atherosclerotic lesions, extracellular
atrix proteins like collagen or fibronectin are exposed that

re highly thrombogenic to circulating platelets and coagu-
ation but also represent potential targets for imaging
echniques. Matter et al. (82) used an 125I-labeled antibody
19, which targets the extradomain B of fibronectin and

njected atherosclerotic ApoE�/� mice (82). By this ap-
roach, atherosclerotic plaques were detected after 3 days
ith signal-to-noise ratios of 105:1 at 3 days (82). Further-
ore, increased expression of extradomain-B domain in

uman atherosclerotic plaques can be detected by immuno-
istochemical studies. Our group has followed a similar
pproach by visualizing collagen exposed to blood flow.

etection of vulnerable plaques by radiolabeled platelet
lycoprotein VI (GPVI). We made use of the major
latelet collagen receptor GPVI, which plays a critical role
n the process of thrombosis at sites of atherosclerotic
esions. As the main extracellular matrix protein of arteries,
brillar collagen acts as a strong activator of platelets and
upports platelet-dependent thrombus formation (83,84).
ecently, platelet GPVI has been identified as the major
latelet collagen receptor in vivo (85). GPVI is a 60 to 65
DA type I transmembrane glycoprotein, which belongs to
he immunoglobulin superfamily (83). The soluble dimeric
orm of human GPVI conjugated to an Fc-fragment, which
as radioiodinated (Fig. 5B), was capable of detecting

esions of injured carotid arteries in mice through ex vivo
nd in vivo imaging (11). In 1 study, 5 min after induction
f injury, 124I-GPVI (or equivalent amounts of the radio-
odinated Fc-fragment as a negative control) was injected

ntravenously. An experimental mouse model of vascular
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njury was used, and wire-induced injury of the carotid
rtery was performed as described previously (86). In this
anner, vascular lesions were clearly detected with high

esolution using a dedicated small-animal PET scanner
MicroPET Focus 120, Siemens, Knoxville, Tennessee)
Fig. 5C), and images were matched with CT data (Fig.
C). The extent of the ex vivo autoradiography signal
orrelated with lesion formation as verified by lesion extent
n the explanted artery specimen (Fig. 5D). These experi-

ental data suggest that the soluble form of the platelet
ollagen receptor GPVI allows detection of thrombogenic
nd, thus, vulnerable arterial lesions.

Taken together, the thrombogenicity of atherosclerotic
laques is one of the most promising approaches to detect-
ng vulnerable plaques.

linical Perspective

he strength of molecular imaging is based on the fact
hat most diseases have an underlying biological basis

Blood flow

Platelet

Endothelium

Atherosclerotic lesionIntact vessel

Platelet
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Figure 5 Detection of Vulnerable, Thrombogenic Plaques by Ra

(A) Pathophysiology of platelet adhesion, secretion, and thrombus formation at sit
intact vessel, platelets do not adhere to the endothelial monolayer under physiolo
von Willebrand factor (vWF) and collagen are exposed to blood flow. Platelet adhes
platelets. 3) After activation of the integrins �2�1 (collagen receptor) and �IIb�3 (fi
cellular matrix proteins. 4) Subsequently, platelets get activated and secrete distin
�IIb�3 receptors and thrombus formation. (B) A soluble dimeric form of human pla
Glycoprotein VI is essential to establish the first interaction of platelets with an ex
thrombogenic and, thus, vulnerable plaques. (C and D) Apolipoprotein E�/� mice
120, Siemens, Knoxville, Tennessee) (left). Images were acquired 24 h after adminis
images were correlated with computed tomographic (CT) data (right) to verify anatomi
imaging was performed to evaluate tracer activity in the aortic arch (top). The bottom
with plaque extension (left). The signal could be nearly abolished, when nonlabeled G
hat is not visualized by traditional imaging methods. e
urthermore, it will most likely contribute to a person-
lized medicine by helping to tailor drug selection to an
ndividual’s proteome and genome (87). Imaging of
mportant molecular targets could transform clinical

anagement for diagnosis, risk stratification, selection,
nd efficacy assessment of molecule-based therapeutics. If
ethods are optimized, we may be able to decide which

atients harbor high-risk atherosclerotic plaques that will
ltimately cause myocardial infarction or stroke. Other
pplications include determining which post-myocardial
nfarction patients will develop pathological ventricular
emodeling and rapid progression to heart failure. Direct
isualization of the underlying biology in the diseased
issue may identify patients at high risk for cardiovascular
omplications, allowing the clinician to tailor disease
anagement on the basis of risk. Molecular imaging may

ot only identify patients at high risk for cardiovascular
vents (death, myocardial infarction, stroke) not identi-
ed by routine clinical evaluation (e.g., history, physical
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rotein, exercise treadmill testing), but also the charac-
erization of lesion vulnerability in high-risk areas of the
oronary vasculature (e.g., the proximal one-third of each
f the coronary arteries [88]) may be possible. Once the
esion has been determined to be of particularly high risk,
ovel local therapies such as intracoronary drug-eluting
tents or local drug delivery with suitable drug-delivery
alloon catheters could be justified. At present, the
election of many target-specific therapeutics depends on
opulation-based studies or randomized clinical trials.
hese approaches, however, do not routinely assess the
iological variability of the disease process in individual
atients. Thus, molecular plaque imaging will help to
elect individualized treatment strategies based on the
olecular profile of vulnerable plaques identified in

articular patients. In keeping with this, several promis-
ng atherosclerosis-targeted imaging agents have already
ndergone testing in the clinic or are on the clinical
orizon (Fig. 6) (87).

onclusions

ver the past years, clinical data and observations have
mphasized the need for a more profound characterization
f atherosclerotic plaques. It is essential to acquire informa-
ion beyond the resulting degree of stenosis detected by
ngiography. Epidemiologic studies have shown that a

ANT

L

A

C Transverse

Transverse

Coronal

Coronal

Figure 6 Molecular Imaging of Apoptosis in Atherosclerosis Us

Technetium-99m labeled annexin A5 accumulates in unstable atherosclerotic plaq
recent transient ischemic attack. (B) Annexin A5 in sections of the resected plaqu
(C) appears in the carotid artery of a patient with a transient ischemic attack 3 m
corresponding smooth-muscle-cell-rich lesion. Images provided courtesy of Dr. Bas
lands. Reprinted, with permission, from Kietselaer et al. (70).
onsiderable amount of patients with sudden cardiac events
ave no alarming symptoms before a serious event (89).
urthermore, acute coronary syndromes often result from
laque rupture at sites with no or only moderate luminal
arrowing detected by angiography (90,91). Molecular im-
ging of atherosclerotic plaques offers new strategies to
etect vulnerable atherosclerotic plaques that are prone to
hrombus formation. Increasing our knowledge about the
olecular biology of plaque vulnerability and identification

f new mediators will prove most promising and challenging
nd will propel the field of plaque imaging to the forefront
f cardiology.

eprint requests and correspondence: Dr. Harald Langer,
edizinische Klinik III, Eberhard Karls Universität Tübingen,
tfried-Müllerstr. 10, 72076 Tübingen, Germany. E-mail:

arald.langer@med.uni-tuebingen.de; currently affiliated with
ational Institute of Health/National Cancer Institute, Build-

ng 10, Room 5B17, Bethesda, Maryland 20852. E-mail:
angerh@mail.nih.gov.

EFERENCES

1. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to
vulnerable patient: a call for new definitions and risk assessment
strategies: part II. Circulation 2003;108:1772–8.

2. Nissen SE, Yock P. Intravascular ultrasound: novel pathophysiological
insights and current clinical applications. Circulation 2001;103:

B

D

adiolabeled Annexin

) Single-photon emission computed tomography images of a patient with a
ns strongly in a macrophage-rich area. In contrast, a minimal annexin A5 signal
before imaging. (D) Annexin A5 immunoreactivity is at a background level in the
elaer and Dr. Leonard Hofstra, University Hospital of Maastricht, the Nether-
ing R

ues. (A
e stai
onths
Kiets
604 –16.



1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

11JACC Vol. 52, No. 1, 2008 Langer et al.
July 1, 2008:1–12 Radionuclide Imaging in Atherosclerosis
3. Schroeder S, Kopp AF, Baumbach A, et al. Noninvasive detection and
evaluation of atherosclerotic coronary plaques with multislice com-
puted tomography. J Am Coll Cardiol 2001;37:1430–5.

4. Schmermund A, Erbel R. Unstable coronary plaque and its relation to
coronary calcium. Circulation 2001;104:1682–7.

5. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med
1999;340:115–26.

6. Libby P. Inflammation in atherosclerosis. Nature 2002;420:868–74.
7. Ginsberg HN, Goldsmith SJ, Vallabhajosula S. Noninvasive imaging

of 99mtechnetium-labeled low density lipoprotein uptake by tendon
xanthomas in hypercholesterolemic patients. Arteriosclerosis 1990;10:
256–62.

8. Mettinger KL, Larsson S, Ericson K, Casseborn S. Detection of
atherosclerotic plaques in carotid arteries by the use of 123I-
fibrinogen. Lancet 1978;1:242–4.

9. Ohtsuki K, Hayase M, Akashi K, Kopiwoda S, Strauss HW. Detec-
tion of monocyte chemoattractant protein-1 receptor expression in
experimental atherosclerotic lesions: an autoradiographic study. Cir-
culation 2001;104:203–8.

0. Schäfers M, Riemann B, Kopka K, et al. Scintigraphic imaging of
matrix metalloproteinase activity in the arterial wall in vivo. Circula-
tion 2004;109:2554–9.

1. Gawaz M, Konrad I, Hauser AI, et al. Non-invasive imaging of
glycoprotein VI binding to injured arterial lesions. Thromb Haemost
2005;93:910–3.

2. Davis HH, Heaton WA, Siegel BA, et al. Scintigraphic detection of
atherosclerotic lesions and venous thrombi in man by indium-111-
labelled autologous platelets. Lancet 1978;1:1185–7.

3. Caussin C, Ohanessian A, Ghostine S, et al. Characterization of
vulnerable nonstenotic plaque with 16-slice computed tomography
compared with intravascular ultrasound. Am J Cardiol 2004;94:99–
104.

4. Nieman K, van der Lugt A, Pattynama PM, de Feyter PJ. Noninvasive
visualization of atherosclerotic plaque with electron beam and multi-
slice spiral computed tomography. J Interv Cardiol 2003;16:123–8.

5. Toussaint JF, Southern JF, Fuster V, Kantor HL. T2-weighted
contrast for NMR characterization of human atherosclerosis. Arterio-
scler Thromb Vasc Biol 1995;15:1533–42.

6. Kooi ME, Cappendijk VC, Cleutjens KB, et al. Accumulation of
ultrasmall superparamagnetic particles of iron oxide in human athero-
sclerotic plaques can be detected by in vivo magnetic resonance
imaging. Circulation 2003;107:2453–8.

7. Virgolini I, Muller C, Fitscha P, Chiba P, Sinzinger H. Radiolabelling
autologous monocytes with 111-indium-oxine for reinjection in pa-
tients with atherosclerosis. Prog Clin Biol Res 1990;355:271–80.

8. Lederman RJ, Raylman RR, Fisher SJ, et al. Detection of atheroscle-
rosis using a novel positron-sensitive probe and 18-fluorodeoxyglucose
(FDG). Nucl Med Commun 2001;22:747–53.

9. Ben Haim S, Kupzov E, Tamir A, Israel O. Evaluation of 18F-FDG
uptake and arterial wall calcifications using 18F-FDG PET/CT.
J Nucl Med 2004;45:1816–21.

0. Rudd JH, Warburton EA, Fryer TD, et al. Imaging atherosclerotic
plaque inflammation with [18F]-fluorodeoxyglucose positron emission
tomography. Circulation 2002;105:2708–11.

1. Haeffner EW. Studies on choline permeation through the plasma
membrane and its incorporation into phosphatidyl choline of
Ehrlich-Lettre-ascites tumor cells in vitro. Eur J Biochem 1975;
51:219 –28.

2. Boggs KP, Rock CO, Jackowski S. Lysophosphatidylcholine and
1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine inhibit
the CDP-choline pathway of phosphatidylcholine synthesis at the
CTP:phosphocholine cytidylyltransferase step. J Biol Chem 1995;
270:7757– 64.

3. Ramirez de Molina A, Gutierrez R, Ramos MA, et al. Increased
choline kinase activity in human breast carcinomas: clinical evidence
for a potential novel antitumor strategy. Oncogene 2002;21:4317–22.

4. Matter CM, Wyss MT, Meier P, et al. 18F-choline images murine
atherosclerotic plaques ex vivo. Arterioscler Thromb Vasc Biol 2006;
26:584–9.

5. Wyss MT, Weber B, Honer M, et al. 18F-choline in experimental soft
tissue infection assessed with autoradiography and high-resolution

PET. Eur J Nucl Med Mol Imaging 2004;31:312–6.

4

6. Henriksen G, Herz M, Hauser A, Schwaiger M, Wester HJ. Synthesis
and preclinical evaluation of the choline transport tracer deshydroxy-
[18F]fluorocholine ([18F]dOC). Nucl Med Biol 2004;31:851–8.

7. Gawaz M, Neumann FJ, Dickfeld T, et al. Activated platelets induce
monocyte chemotactic protein-1 secretion and surface expression of
intercellular adhesion molecule-1 on endothelial cells. Circulation
1998;98:1164–71.

8. Charo IF, Taubman MB. Chemokines in the pathogenesis of vascular
disease. Circ Res 2004;95:858–66.

9. Bidzhekov K, Zernecke A, Weber C. MCP-1 induces a novel
transcription factor with proapoptotic activity. Circ Res 2006;98:
1107–9.

0. Nahrendorf M, Jaffer FA, Kelly KA, et al. Noninvasive vascular cell
adhesion molecule-1 imaging identifies inflammatory activation of
cells in atherosclerosis. Circulation 2006;114:1504–11.

1. Kelly KA, Allport JR, Tsourkas A, Shinde-Patil VR, Josephson L,
Weissleder R. Detection of vascular adhesion molecule-1 expression
using a novel multimodal nanoparticle. Circ Res 2005;96:327–36.

2. Moreno PR, Purushothaman KR, Fuster V, et al. Plaque neovascu-
larization is increased in ruptured atherosclerotic lesions of human
aorta: implications for plaque vulnerability. Circulation 2004;110:
2032–8.

3. Lee KH, Jung KH, Song SH, et al. Radiolabeled RGD uptake and
alphaV integrin expression is enhanced in ischemic murine hindlimbs.
J Nucl Med 2005;46:472–8.

4. Hynes RO. A reevaluation of integrins as regulators of angiogenesis.
Nat Med 2002;8:918–21.

5. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell
2002;110:673–87.

6. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD,
Li KC. Detection of tumor angiogenesis in vivo by alphaVbeta3-
targeted magnetic resonance imaging. Nat Med 1998;4:623–6.

7. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin
alpha v beta 3 for angiogenesis. Science 1994;264:569–71.

8. Haubner R. Alphavbeta3-integrin imaging: a new approach to char-
acterise angiogenesis? Eur J Nucl Med Mol Imaging 2006;33 Suppl
1:54–63.

9. Aumailley M, Gurrath M, Muller G, Calvete J, Timpl R, Kessler H.
Arg-Gly-Asp constrained within cyclic pentapeptides. Strong and
selective inhibitors of cell adhesion to vitronectin and laminin frag-
ment P1. FEBS Lett 1991;291:50–4.

0. Haubner R, Wester HJ, Reuning U, et al. Radiolabeled alpha(v)beta3
integrin antagonists: a new class of tracers for tumor targeting. J Nucl
Med 1999;40:1061–71.

1. Haubner R, Wester HJ, Weber WA, et al. Noninvasive imaging of
alpha(v)beta3 integrin expression using 18F-labeled RGD-containing
glycopeptide and positron emission tomography. Cancer Res 2001;61:
1781–5.

2. Haubner R, Wester HJ, Burkhart F, et al. Glycosylated RGD-
containing peptides: tracer for tumor targeting and angiogenesis
imaging with improved biokinetics. J Nucl Med 2001;42:326–36.

3. Haubner R, Weber WA, Beer AJ, et al. Noninvasive visualization
of the activated alphavbeta3 integrin in cancer patients by positron
emission tomography and [18F]Galacto-RGD. PLoS Med 2005;
2:e70.

4. Beer AJ, Haubner R, Goebel M, et al. Biodistribution and pharma-
cokinetics of the alphavbeta3-selective tracer 18F-galacto-RGD in
cancer patients. J Nucl Med 2005;46:1333–41.

5. Winter PM, Morawski AM, Caruthers SD, et al. Molecular imaging
of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-
integrin-targeted nanoparticles. Circulation 2003;108:2270–4.

6. Leong-Poi H, Christiansen J, Heppner P, et al. Assessment of
endogenous and therapeutic arteriogenesis by contrast ultrasound
molecular imaging of integrin expression. Circulation 2005;111:
3248 –54.

7. Hua J, Dobrucki LW, Sadeghi MM, et al. Noninvasive imaging of
angiogenesis with a 99mTc-labeled peptide targeted at alphavbeta3
integrin after murine hindlimb ischemia. Circulation 2005;111:
3255– 60.

8. Lees AM, Lees RS, Schoen FJ, et al. Imaging human atherosclerosis
with 99mTc-labeled low density lipoproteins. Arteriosclerosis 1988;8:
461–70.
9. Tsimikas S, Palinski W, Halpern SE, Yeung DW, Curtiss LK,
Witztum JL. Radiolabeled MDA2, an oxidation-specific, monoclonal



5

5

5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

6

6

6

7

7

7

7

7

7

7

7

7

7

8

8

8

8

8

8

8

8

8

8

9

9

K

12 Langer et al. JACC Vol. 52, No. 1, 2008
Radionuclide Imaging in Atherosclerosis July 1, 2008:1–12
antibody, identifies native atherosclerotic lesions in vivo. J Nucl
Cardiol 1999;6:41–53.

0. Shaw PX, Horkko S, Tsimikas S, et al. Human-derived anti-oxidized
LDL autoantibody blocks uptake of oxidized LDL by macrophages
and localizes to atherosclerotic lesions in vivo. Arterioscler Thromb
Vasc Biol 2001;21:1333–9.

1. Hardoff R, Braegelmann F, Zanzonico P, et al. External imaging of
atherosclerosis in rabbits using a 123I-labeled synthetic peptide frag-
ment. J Clin Pharmacol 1993;33:1039–47.

2. Lu P, Zanzonico P, Lister-James J, et al. Biodistribution and autora-
diographic localization of I-125-labeled synthetic peptide in aortic
atherosclerosis in cholesterol-fed rabbits. Am J Ther 1996;3:673–80.

3. Virgolini I, Rauscha F, Lupattelli G, et al. Autologous low-density
lipoprotein labelling allows characterization of human atherosclerotic
lesions in vivo as to presence of foam cells and endothelial coverage.
Eur J Nucl Med 1991;18:948–51.

4. Virgolini I, Angelberger P, O’Grady J, Sinzinger H. Low density
lipoprotein labelling characterizes experimentally induced atheroscle-
rotic lesions in rabbits in vivo as to presence of foam cells and
endothelial coverage. Eur J Nucl Med 1991;18:944–7.

5. Tsimikas S, Shortal BP, Witztum JL, Palinski W. In vivo uptake of
radiolabeled MDA2, an oxidation-specific monoclonal antibody, pro-
vides an accurate measure of atherosclerotic lesions rich in oxidized
LDL and is highly sensitive to their regression. Arterioscler Thromb
Vasc Biol 2000;20:689–97.

6. Tsimikas S, Palinski W, Witztum JL. Circulating autoantibodies to
oxidized LDL correlate with arterial accumulation and depletion of
oxidized LDL in LDL receptor-deficient mice. Arterioscler Thromb
Vasc Biol 2001;21:95–100.

7. Iuliano L, Signore A, Vallabajosula S, et al. Preparation and biodis-
tribution of 99m technetium labelled oxidized LDL in man. Athero-
sclerosis 1996;126:131–41.

8. Shashkin P, Dragulev B, Ley K. Macrophage differentiation to foam
cells. Curr Pharm Des 2005;11:3061–72.

9. Daub K, Langer H, Seizer P, et al. Platelets induce differentiation of
human CD34� progenitor cells into foam cells and endothelial cells.
FASEB J 2006;20:2559–61.

0. Henn V, Slupsky JR, Grafe M, et al. CD40 ligand on activated
platelets triggers an inflammatory reaction of endothelial cells. Nature
1998;391:591–4.

1. May AE, Kalsch T, Massberg S, Herouy Y, Schmidt R, Gawaz M.
Engagement of glycoprotein IIb/IIIa (alpha(IIb)beta3) on platelets
upregulates CD40L and triggers CD40L-dependent matrix degrada-
tion by endothelial cells. Circulation 2002;106:2111–7.

2. Chen J, Tung CH, Allport JR, Chen S, Weissleder R, Huang PL.
Near-infrared fluorescent imaging of matrix metalloproteinase activity
after myocardial infarction. Circulation 2005;111:1800–5.

3. Choudhary S, Higgins CL, Chen IY, et al. Quantitation and local-
ization of matrix metalloproteinases and their inhibitors in human
carotid endarterectomy tissues. Arterioscler Thromb Vasc Biol 2006;
26:2351–8.

4. Johnson C, Galis ZS. Matrix metalloproteinase-2 and -9 differentially
regulate smooth muscle cell migration and cell-mediated collagen
organization. Arterioscler Thromb Vasc Biol 2004;24:54–60.

5. Chen J, Tung CH, Mahmood U, et al. In vivo imaging of proteolytic
activity in atherosclerosis. Circulation 2002;105:2766–71.

6. Jaffer FA, Kim DE, Quinti L, et al. Optical visualization of cathepsin
K activity in atherosclerosis with a novel, protease-activatable fluores-
cence sensor. Circulation 2007;115:2292–8.

7. Geng YJ, Libby P. Evidence for apoptosis in advanced human
atheroma. Colocalization with interleukin-1 beta-converting enzyme.
Am J Pathol 1995;147:251–66.

8. Thomas WA, Scott RF, Florentin RA, Reiner JM, Lee KT. Popula-
tion dynamics of arterial cells during atherogenesis. XI. Slowdown in
multiplication and death rates of lesion smooth muscle cells in swine
during the period 105–165 days after balloon endothelial cell denuda-
tion followed by a hyperlipidemic diet. Exp Mol Pathol 1981;
35:153–62.

9. Thomas WA, Kim DN, Lee KT, Reiner JM, Schmee J. Population
dynamics of arterial cells during atherogenesis. XIII. Mitogenic and

cytotoxic effects of a hyperlipidemic (HL) diet on cells in advanced v
lesions in the abdominal aortas of swine fed an HL diet for 270–345
days. Exp Mol Pathol 1983;39:257–70.

0. Kietselaer BL, Reutelingsperger CP, Heidendal GA, et al. Noninva-
sive detection of plaque instability with use of radiolabeled annexin A5
in patients with carotid-artery atherosclerosis. N Engl J Med 2004;
350:1472–3.

1. Johnson LL, Schofield L, Donahay T, Narula N, Narula J. 99mTc-
annexin V imaging for in vivo detection of atherosclerotic lesions in
porcine coronary arteries. J Nucl Med 2005;46:1186–93.

2. Kolodgie FD, Petrov A, Virmani R, et al. Targeting of apoptotic
macrophages and experimental atheroma with radiolabeled annexin V:
a technique with potential for noninvasive imaging of vulnerable
plaque. Circulation 2003;108:3134–9.

3. Narula J, Acio ER, Narula N, et al. Annexin-V imaging for
noninvasive detection of cardiac allograft rejection. Nat Med
2001;7:1347–52.

4. Hofstra L, Liem IH, Dumont EA, et al. Visualisation of cell death in
vivo in patients with acute myocardial infarction. Lancet 2000;356:
209–12.

5. Isobe S, Tsimikas S, Zhou J, et al. Noninvasive imaging of athero-
sclerotic lesions in apolipoprotein E-deficient and low-density-
lipoprotein receptor-deficient mice with annexin A5. J Nucl Med
2006;47:1497–505.

6. Minar E, Ehringer H, Dudczak R, et al. Indium-111-labeled platelet
scintigraphy in carotid atherosclerosis. Stroke 1989;20:27–33.

7. Moriwaki H, Matsumoto M, Handa N, et al. Functional and anatomic
evaluation of carotid atherothrombosis. A combined study of indium
111 platelet scintigraphy and B-mode ultrasonography. Arterioscler
Thromb Vasc Biol 1995;15:2234–40.

8. Mitchel J, Waters D, Lai T, et al. Identification of coronary thrombus
with a IIb/IIIa platelet inhibitor radiopharmaceutical, technetium-
99m DMP-444: a canine model. Circulation 2000;101:1643–6.

9. Cerqueira MD, Stratton JR, Vracko R, Schaible TF, Ritchie JL.
Noninvasive arterial thrombus imaging with 99mTc monoclonal
antifibrin antibody. Circulation 1992;85:298–304.

0. Botnar RM, Perez AS, Witte S, et al. In vivo molecular imaging of
acute and subacute thrombosis using a fibrin-binding magnetic reso-
nance imaging contrast agent. Circulation 2004;109:2023–9.

1. Greco C, Di Loreto M, Ciavolella M, et al. Immunodetection of
human atherosclerotic plaque with 125I-labeled monoclonal antifibrin
antibodies. Atherosclerosis 1993;100:133–9.

2. Matter CM, Schuler PK, Alessi P, et al. Molecular imaging of
atherosclerotic plaques using a human antibody against the extra-
domain B of fibronectin. Circ Res 2004;95:1225–33.

3. Clemetson KJ, Clemetson JM. Platelet collagen receptors. Thromb
Haemost 2001;86:189–97.

4. Nieswandt B, Watson SP. Platelet-collagen interaction: is GPVI the
central receptor? Blood 2003;102:449–61.

5. Massberg S, Gawaz M, Gruner S, et al. A crucial role of glycoprotein
VI for platelet recruitment to the injured arterial wall in vivo. J Exp
Med 2003;197:41–9.

6. Moers A, Nieswandt B, Massberg S, et al. G13 is an essential mediator
of platelet activation in hemostasis and thrombosis. Nat Med 2003;9:
1418–22.

7. Jaffer FA, Libby P, Weissleder R. Molecular and cellular imaging of
atherosclerosis: emerging applications. J Am Coll Cardiol 2006;47:
1328–38.

8. Wang JC, Normand SL, Mauri L, Kuntz RE. Coronary artery spatial
distribution of acute myocardial infarction occlusions. Circulation
2004;110:278–84.

9. Myerburg RJ, Interian A Jr., Mitrani RM, Kessler KM, Castellanos A.
Frequency of sudden cardiac death and profiles of risk. Am J Cardiol
1997;80:10F–9F.

0. Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of
coronary artery disease and the acute coronary syndromes. N Engl
J Med 1992;326:242–50.

1. Farb A, Burke AP, Tang AL, et al. Coronary plaque erosion without
rupture into a lipid core. A frequent cause of coronary thrombosis in
sudden coronary death. Circulation 1996;93:1354–63.

ey Words: plaque imaging y atherosclerosis y radionuclide imaging y

ulnerable plaque y thrombogenicity.


	Radionuclide Imaging
	The “Vulnerable Plaque”
	Nuclear Imaging Versus Other Noninvasive Modalities to Visualize the Atherosclerotic Plaque
	Radionuclide Imaging of Plaque
	Metabolic activity
	Chemotaxis
	Angiogenesis/v3 integrin
	Lipoproteins
	Proteolysis
	Apoptosis
	Thrombogenicity and cell recruitment
	Detection of vulnerable plaques by radiolabeled platelet glycoprotein VI (GPVI)

	Clinical Perspective
	Conclusions
	REFERENCES


