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We return to the description of the damped harmonic oscillator with an assessment of previous works, 
in particular the Bateman–Caldirola–Kanai model and a new model proposed by one of the authors. We 
argue the latter has better high energy behavior and is connected to existing open-systems approaches.
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1. Introduction

The problem of constructing a quantum theory for the damped 
harmonic oscillator as well as for similar dissipative systems, e.g. 
radiating point-like charge, has attracted attention for already 
more than 50 years. In spite of the success of interaction-with-
reservoir approaches, we feel there is still room for some formal 
developments in the direction of a closed theory approach. In this 
Letter we analyze a novel Lagrangian model for the damped har-
monic oscillator, which was recently proposed in [1] as a particular 
case of a general procedure for finding action functionals for non-
Lagrangian equations of motion. Even though we find it is locally 
equivalent to the renowned Bateman–Caldirola–Kanai (BCK) model 
[2–4] (see Section 2 for a revision), a complete global equivalence 
is absent, and we believe it has some formal advantages over its 
predecessor, regarding the high energy behavior of solutions to the 
Schrödinger equation. Notwithstanding these formal discrepancies 
between the two models, we show that they share a very close 
physical interpretation with regard to their asymptotic behavior in 
time and to their physical functions.

Ever since the proposition of the BCK model, there have been 
divided opinions as to whether it really describes the damped har-
monic oscillator or dissipation. There are those who dispute it as a 
possible dissipative model [5–7], and those, in addition to the orig-
inal authors, who maintain it accounts for some form of dissipation 
[8,9]. As we explain further on, the BCK theory is not defined glob-
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ally in time, and many of the pathologies usually appointed to the 
quantum theory can be seen as an artifact of its infinite time indef-
inition. Nonetheless, regardless of these disputes, there has been 
fruitful applications of the BCK theory as a model of dissipation, 
at least in the case of the canonical description of the Fabry–Pérot 
cavity [10].

The underlying understanding of dissipative systems is that 
they are physically part of a larger system, and dissipation is a 
result of a non-elastic interaction between the reservoir and the 
subsystem. Thus, quantization can conceivably follow two different 
approaches: the first one takes the classical equations of motion of 
the system and applies to them formal quantization methods, try-
ing to overcome the difficulties related to the “non-Lagrangian” na-
ture of the system. Without attempting to exhaust all the literature 
on this matter, we cite, for instance, the use of canonical quanti-
zation of classical actions [11,12], Fermi quantization [13], path-
integral quantization [14], doubling of the degrees of freedom [2, 
15,16] (in this connection, we ought to mention the interesting re-
sult obtained in [17], where it is shown that a (2 + 1)-dimensional
gauge theory with a Chern–Simons term can be interpreted in the 
infrared limit as the Bateman dual-system for the damped har-
monic oscillator – see also [18] for a related approach), group 
theory methods [19], complex classical coordinates [20], propaga-
tor methods [21], non-linear Schrödinger equation [22], and finally 
a constrained dynamics approach [1]. The second approach aims 
at constructing a quantum theory of the subsystem by averaging 
over the reservoir, see e.g. [5,23–29]. A more mathematically rig-
orous approach using the system-plus-reservoir idea is to replace 
the usual dynamical group for closed systems by a completely pos-
itive semigroup, which was proposed in [30,31] (for an extensive 
study, see [32]). The Markovian semigroup approach of the previ-
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ous references is directly related to the appearance of resonances,
as discussed in [33] using the framework of Gelfand triples and
rigged Hilbert spaces (see also [34]).

It is immediately clear that two different outcomes must fol-
low from these approaches. Indeed, in the first case, we consider
the system as being closed, and thus naturally only pure states
can result, and they represent physical states without any further
restrictions. In the second case, the subsystem’s states will be nec-
essarily described by a statistical operator, such that only mixed
states are physically sensible. In spite of the general understanding
that the second approach seems to be more physical and probably
should produce a more adequate quantum theory for dissipative
systems, in this Letter we wish once again to analyze the first, for-
mal, approach. Its comparison to the second one will be given in
a future work. Our analysis will be particular to the damped har-
monic oscillator as an example of a dissipative system, and it will
be devoted to the comparison of two different canonical quantiza-
tions.

In Section 2 we revise the BCK theory, emphasizing problems
which were not considered before. In Section 3 we present the
first-order theory, define some useful physical quantities, and we
also construct the coherent and squeezed states of the first-order
theory in order to obtain the classical limit. In Section 4, we prove
the local equivalence of the theories presented in Sections 2 and 3,
and discuss possible divergences related to their global behavior.
In Section 5 we present some final remarks and discuss our results
as well as open problems.

2. BCK theory

One of the peculiarities of dissipative systems, which hindered
early quantization attempts, was the non-Lagrangian nature of the
classical equations of motion. In the particular case of the damped
harmonic oscillator of constant frequency ω and friction coefficient
α > 0, the second-order equation of motion

q̈ + 2αq̇ + ω2q = 0 (1)

cannot be directly obtained as the Euler–Lagrange (EL) equation
of any Lagrangian, since it fails to satisfy the Helmholtz conditions
[35]. Nevertheless, there is an equivalent second-order equation for
which a variational principle can be found, namely,

e2αt(q̈ + 2αq̇ + ω2q
) = 0. (2)

The exponential factor is known as the integrating multiplier, and
it is enough to make the above equation satisfy the Helmholtz con-
ditions [36]. The fact that a Lagrangian can always be found for the
one-dimensional problem such that its EL equation is equivalent to
a given second-order equation was established by Darboux [37].

As was already mentioned, Eq. (1) is traditionally considered
to be non-Lagrangian, albeit the existence of a questionable ac-
tion functional [6,7] which reproduces the equivalent equations of
motion (2). In this respect, we have to mention that an action prin-
ciple for the equation of motion (2) was first proposed by Bateman
[2] in terms of the Lagrangian

LB = 1

2

(
q̇2 − ω2q2)e2αt . (3)

If Bateman had constructed the corresponding Hamiltonian formu-
lation, he would have discovered that the corresponding Hamilto-
nian theory is canonical without constraints and with Hamiltonian

HBCK(q, p) = 1

2

[
e−2αt p2 + ω2e2αtq2]. (4)

This Hamiltonian was proposed independently by Caldirola and
Kanai [3,4] to describe the damped harmonic oscillator in the
framework of quantum mechanics. Consequently, we write the
subscript BCK (Bateman–Caldirola–Kanai) to label the Hamiltonian.

Formal canonical quantization of the Lagrangian action (3) is
straightforward,

[q̂, p̂] = i, [q̂, q̂] = [p̂, p̂] = 0, ĤBCK = HBCK(q̂, p̂), (5)

and coincides with Caldirola and Kanai’s quantum theory. Solu-
tions to the Schrödinger equation with Hamiltonian ĤBCK have
been found in the form

ψBCK
n (q, t) = (

2nn!)−1/2
(

ω̃

π

)1/4

exp

(
−iEnt + αt

2

− (ω̃ + iα)
q2

2
e2αt

)
Hn

(√
ω̃qeαt), (6)

where En = ω̃(n + 1/2), ω̃ = √
ω2 − α2 and Hn are Hermite poly-

nomials. These are the familiar pseudostationary states [38,39,11]
or loss-energy states [8] which are also eigenstates of the Hamilto-
nian ĤBCK + α

2 (q̂ p̂ + p̂q̂) with eigenvalues En . Even though |ψBCK
n |2

depends on time, the total probability
∫

dq |ψBCK
n |2 = 1 is time-

independent, as can be seen by the transformation of variables
q �→ q′ = qeαt . Moreover, the mean value of the BCK Hamiltonian
in the pseudostationary states is constant,

〈
ψBCK

n

∣∣ĤBCK
∣∣ψC K

n

〉

= 〈
ψBCK

n

∣∣En − α

2
(q̂ p̂ + p̂q̂)

∣∣ψBCK
n

〉 = ω2

ω̃

(
n + 1

2

)
, (7)

which is a reflection of the fact that in the classical theory de-
fined by (3) the average of the Hamiltonian over the period of one
oscillation is constant. On the other hand, mean values of the me-
chanical energy E = 1

2 (q̇2 + ω2q2) decay exponentially with time,
〈E〉n = e−2αt〈HBCK〉n [38,11]. Coherent states for the BCK theory
are given in [9], for which the uncertainty relations are

�q�p = ω

2ω̃
� 1

2
. (8)

Now we draw attention to the high-energy behavior of pseu-
dostationary states. In Appendix A we consider asymptotic (in n)
pseudostationary functions, and for these one has the limiting
eigenvalue equation

ĤBCKψBCK
n =

[
En − α

2
(q̂ p̂ + p̂q̂)

]
ψBCK

n

=
(

En + iα

2

)
ψBCK

n + O
(
n−1/4). (9)

The appearance of imaginary eigenvalues is actually explained by
taking into account the domain of the operator q̂ p̂ + p̂q̂, which,
as is shown in Appendix A, does not include the asymptotic part
of ψBCK

n . In this connection, it should be noted that the above is
in contrast to [8,9], where it is claimed that the pseudostationary
states are eigenstates of ĤBCK with eigenvalues (ω̃ + iα)(n + 1/2).

One overlooked aspect of the BCK theory is that EL equation (2)
obtained from the Lagrangian (3) is only equivalent to the equation
of motion of the damped harmonic oscillator (1) for finite times.
Eq. (2) is indicative that the theory described by (3) is not globally
defined, i.e., it is not defined for infinite times. In effect, the man-
ifold difficulties which appear in connection to the t → ∞ limit,
such as the violation of the Heisenberg uncertainty principle and
the vanishing of the ground state energy for infinite times, can be
seen as consequence of inadvertently assuming Eqs. (1) and (2) are
equivalent for all values of the time parameter.
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3. First-order action

3.1. Action, Hamiltonization, and quantization

Next we consider the canonical quantization of the damped
harmonic oscillator based on the alternative action proposed in [1].
The idea was to reduce the second-order equations (1) to the first-
order system

ẋ = y, ẏ = −ω2x − 2αy, (10)

for which, according to the general theory [40,41], the action func-
tional has the form

S = 1

2

∫
dt

[
yẋ − xẏ − (

y2 + 2αxy + ω2x2)]e2αt . (11)

The EL equations of motion derived from (11) are locally equivalent
to (10),

δS

δx
= (

ẏ + 2αy + ω2x
)
e2αt,

δS

δy
= (ẋ − y)e2αt .

Note that, as in the case of the BCK theory, the theory fails to
describe the damped harmonic oscillator as the time approaches
infinity, and thus one should expect problems in the quantum the-
ory such as violation of the uncertainty principle for infinite times,
for instance.

This action describes a singular system with second-class con-
straints, and furthermore, these constraints are time-dependent
(we follow the terminology of the book [42]). Even though the
constraints are explicitly time-dependent, it is still possible to
write the Hamiltonian formalism with the help of Dirac brackets
and perform the canonical quantization, as is explained in [42].

In order to do this, one must extend the initial phase space of
canonical variables η = (x, y, px, p y) by the inclusion of the time t
and its associated momentum ε. As a result, the Poisson brackets
between functions defined on the extended phase space is

{F , G} =
(

∂ F

∂x

∂G

∂ px
+ ∂ F

∂ y

∂G

∂ p y
+ ∂ F

∂t

∂G

∂ε

)
− F ↔ G.

With the above definition, the first-order equations of motion (10)
are equivalently written in terms of Dirac brackets,

η̇ = {
η, H(x, y, t) + ε

}
D(φ)

, φx = φy = 0, (12)

where the Hamiltonian H(x, y, t) and the constraints φ are

H(x, y, t) = 1

2

(
y2 + 2αxy + ω2x2)e2αt,

φx = px − 1

2
ye2αt, φy = p y + 1

2
xe2αt . (13)

The nonzero commutation relations between the independent vari-
ables are

{x, y}D(φ) = e−2αt . (14)

Quantization of this system follows the general method described
in [42] for theories with time-dependent constraints. One intro-
duces time-dependent operators η̂(t) which satisfy the differential
equations dη̂/dt = i{η,ε}D(φ)|η=η̂ with initial conditions subject to
an analog of the Dirac quantization,
[
η̂(0), η̂(0)

] = i{η,η}D(φ0)

∣∣
η=η̂(0)

,

p̂x(0) − 1

2
ŷ(0) = p̂ y(0) + 1

2
x̂(0) = 0.

The above operatorial constraints allows us to work only in terms
of the independent operators x̂ and ŷ. Let us define x̂(0) ≡ q̂ and
ŷ(0) ≡ p̂, so that the above quantum brackets have the familiar
form

[q̂, p̂] = i, [q̂, q̂] = [p̂, p̂] = 0,

x̂(0) ≡ q̂, ŷ(0) ≡ p̂. (15)

The differential equations for x̂ and ŷ can be easily integrated to

x̂(t) = e−αt q̂, x̂(0) ≡ q̂,

ŷ(t) = e−αt p̂, ŷ(0) ≡ p̂. (16)

The quantum Hamiltonian is obtained from the classical Hamilto-
nian (13) as a function of the operators x̂(t) and ŷ(t) (16): it does
not depend on time at all,

Ĥ = H
(
x̂(t), ŷ(t), t

) = 1

2

[
p̂2 + α(q̂ p̂ + p̂q̂) + ω2q̂2], (17)

where we have used Weyl (symmetric) ordering for the mixed
product 2αxy. The Hamiltonian Ĥ governs the time-evolution of
the state vector in the Schrödinger picture, and it has appeared
in a number of different contexts: in [43,10] with regard to the
electromagnetic field in a resonant cavity; in the quantization of
the complex symplectic theory [44]; and in [45] in connection to
the Lindblad theory of open quantum systems for the damped har-
monic oscillator.

Since the Hamiltonian is time-independent, the evolution op-
erator is given simply by U (t) = e−i Ĥt , with Ĥ given by (17). The
Heisenberg operators x̌ and y̌ corresponding to the classical vari-
ables x and y are

x̌ = U−1x̂(t)U = e−αt
(

cos ω̃t + α

ω̃
sin ω̃t

)
q̂ + 1

ω̃
e−αt sin(ω̃t)p̂,

y̌ = U−1 ŷ(t)U = e−αt
(

cos ω̃t − α

ω̃
sin ω̃t

)
p̂ − ω2

ω̃
e−αt sin(ω̃t)q̂,

x̌(0) ≡ q̂, y̌(0) ≡ p̂, [q̂, p̂] = i, [q̂, q̂] = [p̂, p̂] = 0.

From the above expressions, one also finds

dx̌

dt
= y̌,

dy̌

dt
= −ω2 x̌ − 2α y̌,

which coincide in form with the classical equations,

dx̌

dt
= {x, H + ε}D(φ)

∣∣
η=η̌

,
dy̌

dt
= {y, H + ε}D(φ)

∣∣
η=η̌

. (18)

Thus, Heisenberg equations (18) reproduce the classical equations
of motion, and therefore mean values of x and y follow classical
trajectories.

Moreover, the only nonzero commutator becomes

[x̌, y̌] = ie−2αt,

which matches the classical Dirac bracket (14). Thus, the resulting
quantum theory at least obeys the correspondence principle.

One can easily find solutions of the Schrödinger equation by
making a (time-independent) unitary transformation Ĥω̃ = Ŝ−1 Ĥ Ŝ ,

Ŝ = exp

(
− iα

2
q̂2

)
, Ŝ−1 p̂ Ŝ = p̂ − αq̂, (19)

one obtains

Ĥω̃ = 1

2

(
p̂2 + ω̃2q̂2), ω̃ =

√
ω2 − α2. (20)

The Hamiltonian (20) has the familiar stationary states
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ψω̃
n (t,q) = exp(−it En)ψ

ω̃
n (q),

ψω̃
n (q) = (

2nn!)−1/2
(

ω̃

π

)1/4

exp

(
− ω̃

2
q2

)
Hn(

√
ω̃q),

Ĥω̃ψω̃
n = Enψ

ω̃
n , En = ω̃

(
n + 1

2

)
.

Therefore, the wave functions

ψn(q) = Ŝψω̃
n (q)

= (
2nn!)−1/2

(
ω̃

π

)1/4

exp

(
−(ω̃ + iα)

q2

2

)
Hn(

√
ω̃q) (21)

are eigenfunctions of the Hamiltonian Ĥ , and the solutions to the
corresponding Schrödinger equation are

ψn(t,q) = Ŝψω̃
n (t,q) = exp(−it En)ψn(q),

Ĥψn(q) = Enψ(q).

One can also check directly that (21) are eigenfunctions of Ĥ with
eigenvalue En by using properties of Hermite functions.

We now define some useful quantities to be used in Sec-
tion 4.2 for the purpose of establishing the physical equivalence
between the approaches presented here. Let us write the classical
Lagrangian energy as

EL ≡ ∂L

∂ ẋ
ẋ + ∂L

∂ ẏ
ẏ − L = 1

2

(
y2 + 2αxy + ω2x2)e2αt .

The corresponding Weyl-ordered Schrödinger operator for the La-
grangian energy is

ÊL = EL(η)
∣∣
η=η̂

= 1

2

[
p̂2 + α(q̂ p̂ + p̂q̂) + ω2q̂2] = Ĥ, (22)

which coincides with the Hamiltonian and thus with its Heisen-
berg representation, and is therefore conserved. Likewise, we de-
fine the following conserved “energy” in the BCK approach,

E = 1

2

(
q̇2 + 2αqq̇ + ω2q2)e2αt = HBCK + αqp,

d

dt
E = (q̇ + αq)e2αt δS

δq
,

which is constant on-shell. Its image as a Weyl-ordered Schrödin-
ger operator is

Ê = ĤBCK + α

2
(q̂ p̂ + p̂q̂), Ê ψBCK

n = Enψ
BCK
n . (23)

Now consider the mechanical energy in the theory with La-
grangian (11) at α = 0:

EM = 1

2

(
y2 + ω2x2).

The corresponding operator is equal to

ÊM = 1

2

(
p̂2 + ω2q̂2)e−2αt = e−2αt Ĥ − e−2αt α

2
(q̂ p̂ + p̂q̂). (24)

The mean value of ÊM in the energy eigenstates is

〈ψn|ÊM |ψn〉 = e−2αt ω
2

ω̃

(
n + 1

2

)
.

Finally, we consider the observable defined by the mechanical en-
ergy in the BCK description,

E = 1

2

(
q̇2 + ω2q2) = 1

2

(
e−2αt p2 + ω2e2αtq2)e−2αt

= HBCKe−2αt . (25)
Thus, by (7),

〈
ψBCK

n

∣∣Ê
∣∣ψBCK

n

〉 = e−2αt ω
2

ω̃

(
n + 1

2

)
= 〈ψn|ÊM |ψn〉.

3.2. Semiclassical description

3.2.1. Coherent states
Finally, we obtain semiclassical states for the damped harmonic

oscillator from the coherent states of the simple harmonic oscil-
lator using the unitary transformation Ŝ (19). To this end, we
introduce first creation and annihilation operators â+ and â and
the corresponding coherent states |z〉,

â = 1√
2ω̃

(ω̃q̂ + i p̂), â+ = 1√
2ω̃

(ω̃q̂ − i p̂),
[
â, â+] = 1,

|z〉 = D(z)|0〉, D(z) = exp
(
zâ+ − z̄â

)
, â|z〉 = z|z〉. (26)

In terms of these creation and annihilation operators, the Hamilto-
nian (20) is

Ĥω̃ = ω̃

(
â+â + 1

2

)
.

Thus, the coherent states for the Hamiltonian Ĥ are Ŝ|z〉 and the
mean values of x̌ and y̌ in these coherent states are

〈x〉 ≡ 〈z| Ŝ−1x̌ Ŝ|z〉 = 1√
2ω̃

e−αt(ze−iω̃t + z̄eiω̃t),

〈y〉 = i

√
ω̃

2
e−αt(z̄eiω̃t − ze−iω̃t) − α〈x〉.

One can now easily verify that the mean values of the coordinates
x and y follow the classical trajectories,

d

dt
〈x〉 = 〈y〉, d

dt
〈y〉 = −ω2〈x〉 − 2α〈y〉.

The pathological behavior of the first-order theory with regard to
the limit t → ∞ can be seen here in the computation of the un-
certainty relation

�x�y = 1

2
e−2αt ω

ω̃
. (27)

The unphysical result of the above violation of the uncertainty
principle is an indication that the first-order theory is not defined
for all values of the time parameter, as was pointed out in connec-
tion to the classical equations of motion and to the commutation
relation between x̂ and ŷ. Another indication of the failure of the
theory at infinite times is in the observation that the radius of the
trajectory of the mean values vanishes:

ρ
(
z = reiθ ) =

√
〈x〉2 + 〈y〉2

=
√

2

ω̃
e−αtr

√
1 + α2 cos(ω̃t − θ) + α sin 2(ω̃t − θ).

3.2.2. Squeezed-state
One can also consider the family of conserved creation and an-

nihilation operators

b̂(t) = cosh ξeiω̃t â + sinh ξe−iω̃t â+,

b̂+(t) = cosh ξe−iω̃t â+ + sinh ξeiω̃t â,

[
b̂(t), b̂+(t)

] = 1,
d

dt
b̂ = d

dt
b̂+ = 0,

and construct squeezed coherent states |z, ξ〉 = exp(zb̂+ − z̄b̂)|0〉
[46]. For ξ = 0 one arrives at the previous coherent states,
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〈z,0|x̂|z,0〉 = 〈z| Ŝ−1x̌ Ŝ|z〉, 〈z,0| ŷ|z,0〉 = 〈z| Ŝ−1 y̌ Ŝ|z〉.
For arbitrary values of ξ and with x̂ and ŷ given by (16), one has
for the mean values of coordinates

〈z, ξ |x̂|z, ξ〉 = e−αt

√
2ω̃

[(
e−iω̃t z + eiω̃t z̄

)
cosh ξ

− (
eiω̃t z + e−iω̃t z̄

)
sinh ξ

]
,

〈z, ξ | ŷ|z, ξ〉 = i

√
ω̃

2
e−αt[(eiω̃t z̄ − e−iω̃t z

)
cosh ξ

− (
eiω̃t z − e−iω̃t z̄

)
sinh ξ

] − α〈z, ξ |x̂|z, ξ〉.
The main interest in squeezed states is that they allow one to
change the uncertainty in either direction x or y by adjusting the
parameter ξ . For example, the uncertainty in x can be written for
arbitrary values of ξ as

(�x)2 = 1

2ω̃
e−2αt[(cosh ξ + sinh ξ)2

− 4 cosh ξ sinh ξ cos2 ω̃t
]
� 0,

and it reduces to the preceding coherent states calculations for
ξ = 0.

4. Comparison of the BCK system and the first-order system

4.1. BCK model as a transformation of the first-order system

Here we show how one can obtain the classical and quantum
description of the BCK damped harmonic oscillator as a canoni-
cal transformation of the first-order approach (Section 3). At the
classical level, both systems are transformed one into the other by
means of the following time-dependent canonical transformation1

q = 1

2

(
x − 2e−2αt p y

)
, p = px + 1

2
e2αt y,

Ω1 = 1

2
y − pxe−2αt, Ω2 = p y + 1

2
xe2αt,

where (q, p) and (Ω1,Ω2) are new pairs of canonical variables. In
these new variables, the equation of motion become Hamiltonian:

q̇ = {q, HBCK}, ṗ = {p, HBCK}, Ω = 0,

HBCK = 1

2

[
e−2αt p2 + ω2e2αtq2],

where the Hamiltonian HBCK(q, p, t) is the canonically transformed
Hamiltonian H(x, y, t) (13) on the equivalent constraint surface
Ω = 0.

It is useful to write the following relation between old coordi-
nates x and y and the new variables q and p:

x = q + O (Ω),

y = e−2αt p + O (Ω). (28)

This relation shows that x is physically equivalent to q, while y is
physically equivalent to e−2αt p, since they coincide on the con-
straint surface Ω = 0.

1 The generating function for these canonical transformations depending on the
new and old momenta is

F (px, p y, p,Ω2, t) = −2e−2αt(Ω2 − p y)px − 2e−2αt pp y + e−2αt pΩ2.
The quantum theory can be readily obtained by a quantum
time-dependent canonical transformation2

D̂ = exp

[
iαt

2
(q̂ p̂ + p̂q̂)

]
, (29)

which is suggested from the classical generating function and the
relationship between old and new variables. The effect of D̂ on the
canonical variables is to make the dilation

D̂−1q̂D̂ = e−αt q̂, D̂−1 p̂ D̂ = eαt p̂.

The dilation operator D̂ has been discussed in a more general
setting in [49] in relation to conformal invariance of quantum sys-
tems, in [50] in relation to time-reversal, and in [51] in connection
with the description of open systems by time-dependent Hamil-
tonians. In the latter, as is the case here, the dilation operator
simplifies the calculation of the evolution operator.

The dilation operator transforms the BCK Hamiltonian into the
first-order Hamiltonian Ĥ ,

Ĥ = D̂−1 ĤBCK D̂ − i D̂−1 ∂ D̂

∂t
= 1

2

[
p̂2 + α(q̂ p̂ + p̂q̂) + ω2q̂2].

Since ψn(q, t) satisfy the Schrödinger equation with Ĥ , it fol-
lows that D̂ψn(q, t) satisfy the Schrödinger equation with ĤBCK .
The wave functions D̂ψn(q, t) are indeed the pseudostationary
states, as can be seen by direct application of D̂ . Thus, we
write ψBCK

n (q, t) ≡ D̂ψn(q, t). Similarly, it also follows that U =
D̂ exp(−it Ĥ) satisfies the Schrödinger equation with Hamiltonian
ĤBCK ,

U (t) = D̂ exp(−i Ĥt), i
∂U

∂t
= ĤBCK U , U (0) = I.

One should not be to eager to jump to the conclusion that the
two theories here presented, the BCK theory and the first-order
theory, are physically equivalent solely on the grounds of the time-
dependent canonical transformation D̂ . The existence of this trans-
formation per se is insufficient to prove physical equivalence, since
in principle, and at least locally, one can always construct a time-
dependent canonical transformation between any two given theo-
ries, classical or quantum. For instance, given two quantum theo-
ries T1 and T2, and corresponding evolution operators U1 and U2,
one can always write a general solution ψ2(t) of the Schrödinger
equation of T2 in terms of the general solution ψ1(t) of T1 by
means of the transformation ψ2(t) = U2U−1

1 ψ1(t). Besides the nec-
essary ingredient of the unitary transformation relating the two
theories, it is imperative to show that the physical observables per-
taining both theories are also unitarily equivalent in order to prove
physical equivalence. A proof which we postpone to the next sec-
tion.

4.2. Physical equivalence

In this section we show that the two approaches presented in
this Letter are physically equivalent. In order to sum up the pre-
vious results in a coherent whole, let us present both quantum
theories anew.

Starting with the BCK theory, it is defined by the Hamiltonian
ĤBCK (5) written in terms of the canonically conjugated operators q̂
and p̂ (5) with the usual realization in terms of multiplication and
derivation operators in the Hilbert space HBCK of square-integrable
states ψBCK(q) with measure

2 The operator q̂ p̂ + p̂q̂ is well known in the literature in connection with the
Riemann hypothesis [47,48], where proof of its self-adjointness is given in the case
q ∈ R

+ . We therefore provide a simple proof for our particular case q ∈ R in Ap-
pendix A.
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〈ψBCK |ψBCK〉HBCK =
+∞∫

−∞
dq ψ̄BCK(q)ψBCK(q).

The first-order theory is defined by the Hamiltonian Ĥ (17) and
canonically conjugated operators q̂ and p̂ (15) realized as the usual
multiplication and derivation operators in the Hilbert space H of
square-integrable states ψ(q) with measure

〈ψ |ψ〉H =
+∞∫

−∞
dq ψ̄(q)ψ(q).

We have seen that the time-dependent unitary transforma-
tion D̂ (29) maps the two Hilbert spaces,

D̂ : H → HBCK, ψ �→ ψBCK = D̂ψ,

and is a canonical transformation,

ĤBCK = D̂ Ĥ D̂−1 + i
∂ D̂

∂t
D̂−1.

Therefore, for every ψ(t) solution of the Schrödinger equation of
the first-order theory, D̂ψ(t) is a solution of the BCK Schrödinger
equation. Furthermore, one has 〈ψBCK |ψBCK〉HBCK = 〈ψ |ψ〉H , as can
be seen by noting that D̂ψ(q) = eαt/2ψ(qeαt) and

〈ψBCK |ψBCK〉HBCK

=
+∞∫

−∞
dq eαtψ̄

(
qeαt)ψ(

qeαt) =
+∞∫

−∞
dq ψ̄(q)ψ(q) = 〈ψ |ψ〉H.

Finally, to complete the proof of the physical equivalence, it re-
mains to show that any two physical observables ÔBCK and Ô are
D-equivalent, that is, ÔBCK = D̂ Ô D̂−1. One can check that this is
indeed the case for the physical observables previously considered,
such as the mechanical energies (24), (25)

Ê = D̂ ÊM D̂−1,

and the conserved energies (22), (23),

Ê = D̂ ÊL D̂−1.

As a result of the equivalence, one can easily obtain the BCK
coherent states presented in [9] by merely transforming the coher-
ent states (26) given in the context of the first-order theory. Taking
into account the relation y = e−2αt p + {Ω} between the physi-
cal variables of the two theories (28), one can see why the un-
certainty relations we obtain decay exponentially with time (27),
while those (8) calculated in [9] are constant. This has a simple
explanation in terms of the physical equivalence of y and e−2αt p:
y is physically equivalent to the physical momentum of the BCK
oscillator, and it is in terms of the physical momentum that the
Heisenberg uncertainty relations are violated (see Dekker [44] for
a comprehensive review).

5. Conclusion

In this Letter we have proved that the classical and quantum
description of the damped harmonic oscillator by the BCK time-
dependent Hamiltonian [2–4] is locally equivalent to the first order
approach given in terms of a constrained system [1]. This equiva-
lence allowed us to easily obtain the evolution operator for the
BCK oscillator and many other results in a simpler manner, due
to the time-independence of the quantum first-order Hamiltonian.
As has been pointed out (see Dekker [44] for a comprehensive
review), the BCK oscillator has a pathological behavior for infi-
nite times, since the (mechanical) energy mean values and the
Heisenberg uncertainty relation – between the coordinate and the
physical momentum – go to zero as time approaches infinity, so
that even the ground state’s energy eventually vanishes. Despite
these shortcomings, the quantum theory has a well-defined clas-
sical limit, and for time values less than 1

2α ln ω
ω̃

the Heisenberg
uncertainty principle is not violated. It is our understanding that
this unphysical behavior is a result of extending the proposed the-
ories beyond their validity. The fact that both theories are not
globally defined in time has its roots already at the classical level,
as a consequence of the non-Lagrangian nature of the equations of
motion of the damped harmonic oscillator.

Finally, we recall the intriguing behavior of the asymptotic
pseudostationary states, which so far has escaped notice from all
works dedicated to the BCK oscillator. At first glance Eq. (9) implies
that the BCK Hamiltonian loses self-adjointness as n approaches
infinity. Fortunately, these asymptotic states are not in the domain
of the BCK Hamiltonian and thus pose no threat whatsoever. On
the other hand, there is no such constraint on the domain of the
first-order Hamiltonian Ĥ , where there is no upper bound to the
energy eigenstates. This inconsistency can spoil the physical equiv-
alence of the two theories at high energies, but it is not altogether
unexpected. As the energy grows, that is to say, as n grows, the
wave functions spread farther out in space and become highly
non-local. Any canonical transformation, on the contrary, is only
locally valid, and thus our time-dependent dilation transformation
D̂ (29) cannot guarantee there are no global issues in establishing
the physical equivalence of the two theories (or any two theories,
for that matter). This is not unexpected, since in general the non-
local properties of the wave functions can spoil any equivalence
that the two theories might have on the level of the Heisenberg
equations.

Darboux’s method for solving the inverse problem of the cal-
culus of variations for second-order equations of motion of one-
dimensional systems produces theories which, despite being clas-
sically equivalent, do not possess the expected quantum proper-
ties. Thus, whereas every classical one-dimensional system can be
“Lagrangianized”, in quantum mechanics one still encounters one-
dimensional systems which can still be called “non-Lagrangian”.
For such systems, quantum anomalies resulting from limiting pro-
cesses (in our case, the limit t → ∞) can be identified already
at the classical level by an asymptotic inequivalence between the
original second-order equation and the EL equation resulting from
the Lagrangianization process.

We note that the quantum Hamiltonian (17) naturally appears
in the master equation for open quantum systems in the descrip-
tion of the damped harmonic oscillator in the Lindblad theory [45]
and Dekker’s complex symplectic approach [52]. This relation has
yet to be clarified, and it should prove useful in the comparison
of the BCK theory and the first-order theory along the lines of a
subsystem plus reservoir approach.
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Appendix A

Large n limit of ÂψBCK
n

Let us compute the action of Â = q̂ p̂ + p̂q̂ on the functions
ψBCK

n (6),
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(q̂ p̂ + p̂q̂)ψBCK
n = −i

(
2q

∂

∂q
+ 1

)
ψBCK

n

= i
√

(n + 2)(n + 1)ψC K
n+2 − i

√
n(n − 1)ψBCK

n−2

− α

ω̃

[√
(n + 2)(n + 1)ψC K

n+2 + (2n + 1)ψC K
n

+ √
n(n − 1)ψBCK

n−2

]
. (30)

The asymptotic form of the pseudostationary states for large values
of n is [53]

ψBCK
2n (q, t) =

(
ω̃

π

)1/4

exp

(
−iα

q2e2αt

2

)
(−1)n

√
(2n − 1)!!

2n!!
× cos

(√
(4n + 1)ω̃eαtq

) + O
(
n−1/4)

= ψ
asym
2n + O

(
n−1/4),

ψBCK
2n+1(q, t) =

(
ω̃

π

)1/4

exp

(
−iα

q2e2αt

2

)
(−1)n

√
(2n − 1)!!

2n!!
× sin

(√
(4n + 3)ω̃eαtq

) + O
(
n−1/4)

= ψ
asym
2n+1 + O

(
n−1/4). (31)

Taking into account that cos
√

4n + αx − cos
√

4n + 1x = O (n−1/4)

for any real α, and substituting the above in the right-hand side of
(30), one has

(q̂ p̂ + p̂q̂)ψBCK
n = −iψasym

n + O
(
n−1/4).

On the other hand (q̂ p̂ + p̂q̂)ψBCK
n = (q̂ p̂ + p̂q̂)ψ

asym
n + O (n−1/4), so

(q̂ p̂ + p̂q̂)ψ
asym
n = −iψasym

n + O
(
n−1/4),

or to the same approximation,

(q̂ p̂ + p̂q̂)ψBCK
n = −iψBCK

n + O
(
n−1/4).

Proposition. The asymptotic pseudostationary functions ψ
asym
n are not

in the domain of Â = q̂ p̂ + p̂q̂.

We first find the domain of Â for which it is symmetric. Con-
sider, for φ,ψ ∈ D( Â):

〈φ, Âψ〉 − 〈 Âφ,ψ〉

= −2i

∞∫
−∞

dq
d

dq

(
qφ̄(q)ψ(q)

)

= −2i lim
q→∞ q

(
φ̄(q)ψ(q) + φ̄(−q)ψ(−q)

)
.

Therefore, functions such that limx→±∞ qψ(q) = 0 are not in the
domains of Â. On the other hand, we know that for large values
of n the pseudostationary functions have the asymptotic form (31).
Thus, clearly limq→±∞ qψ

asym
n (q) = 0 and ψ

asym
n /∈ D( Â). Note that

the closure of Â is not affected by the exclusion of the asymptotic
functions, since they can’t be the limit of any sequence.

Proposition. Â is self-adjoint.

It suffices to show that the equation Â∗ψ = ±iψ does not have
solutions in D( Â∗) [54]. The solutions are of the form

ψ± = qλ± , λ± = ∓1

2
,

which are not square-integrable in the interval (−∞,∞). There-
fore, the corresponding deficiency indices are (0,0) and Â is es-
sentially self-adjoint.
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