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INTRODUCTION 

Although Gauss’s theorem on quadratic reciprocity and its relation to 
Gauss sums is well known, there is a generalization due to Hecke that is less 
well known. Hecke’s theorem holds for general number fields and has at its 
core the evaluation of certain trigonometric sums that we will call Hecke 
sums. Hecke’s original proof involved modular forms (theta constants) and 
the transformation theory of these forms. There is a combinatorial proof of 
Hecke’s result due to Milgram in [6]. Milgram’s result had a strong 
antecedent in the work of Braun [3]. 

We now know many ways of evaluating Gauss sums and a fairly complete 
discussion of this problem is given in [ 11. It was Schur [7] who first 
observed that one can use the fact that Gauss sums are the trace of certain 
finite Fourier transforms to evaluate Gauss sums. In this paper, we will show 
that Hecke sums are also the trace of certain finite Fourier transforms and 
use this fact to derive the usual results about Hecke sums. 

Weil’s work in [8] centered on the problem of understanding Hecke’s 
results on quadratic reciprocity. In Weil’s work the unitary representations of 
certain locally compact nilpotent groups play an essential role. From this 
work of Weil, Brezin derived the Weil-Brezin mapping as discussed in [2]. 
Now the Weil-Brezin mapping and the Cooley-Tukey algorithm [4] for 
evaluating the finite Fourier transform are intimately related. Thus it is 
reasonable to try to use finite Fourier transforms to study Hecke sums. 

In our approach to evaluating Hecke sums, the central role is played by 
the induced representation theory of certain finite nilpotent groups, called 
finite Heisenberg groups, that are intimately related to the finite Fourier 
transforms. This will enable us to determine matrices similar to the finite 
Fourier transforms for which it is easier to evaluate the trace. This 
construction is based on induced representations, and certain intertwining 
operators. 

The Cooley-Tukey algorithm or the FFT (fast Fourier transform), as we 
have mentioned, is analogous to the Weil-Brezin mapping. This suggests that 

122 
OOOl-8708/82/020122-51%05.00/O 
Copyright 0 1982 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



HECKE’S THEOREM 123 

the Cooley-Tukey algorithm should be related to our finite nilpotent group 
constructions. This is indeed the case. But in order to see this relation one 
has to determine a multidimensional version of the FFT. We do this in 
Section V of this paper. In Section VI we relate it to nilpotent group theory. 
We have presented the results in the FFT in such a way as to provide a 
purely combinatorial proof of the results on Hecke trigonometric sums, 
logically independent of the finite nilpotent group theory. 

The results of this paper give another example of the importance of 
communication between pure and applied mathematics-in our case, number 
theory and digital signal processing. For, because of this exchange of ideas, 
we have enriched our understanding of Hecke’s work, while stimulating the 
need for obtaining a truly multidimensional Cooley-Tukey algorithm that 
may have important practical applications, and gained deeper insight into the 
structure of the finite Fourier transform. 

I. THE FINITE FOURIER TRANSFORM 

Let A be a finite abelian group of order m. The group law of A will be 
written additively. In this section, the Fourier transform of A will be defined 
and its basic properties will be examined. We will begin with an exposition 
of some fundamental results about finite abelian group theory. 

Let U,,, be the set consisting of all mth roots of unity in C. Then, U,,, 
becomes under multiplication, a cyclic group of order m, generated by any 
element of the form ezn’(‘lm), where j and m are relatively prime. We will 
denote by A*, the set of all homomorphisms Q * of A into U,,, and call this 
set, the dual of A. The dual, A*, becomes an abelian group relative to the 
group law: 

(a* + b*)(u) = u*(a) b*(a), u*,b* EA*, uEA. 

A basic result states that A and A* are isomorphic. Indeed, if A = B @ C, 
the direct sum of the groups B and C, then A* = B* @ C*. The fundamental 
structure theorem for finite abelian groups implies that we may write A as 
the direct sum of cyclic groups, 

Thus, A* = (Z/m,)* @ ..- @ (Z/m,)* and an isomorphism between A and 
A* will be established once we specify an isomorphism between Z/m, and 
(Z/m,)*, i = l,..., r. However, for any integer n > 0, there can be found an 
a* E (Z/n)* with the property that a*( 1) = ezni(i”‘). The mapping 
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is a well defined isomorphism of Z/n onto (Z/n)*. Observe that the resulting 
isomorphism between A and A* depends upon the initial decomposition into 
cyclic subgroups as well as the choice of an isomorphism between 
corresponding factors. 

Consider the pairing 

AxA*-+U,,, 

given by (a,a*)=a*(a), aEA, a*EA *. We call this a bilinear pairing 
between A and its dual, since it satisfies (a + b, a*) = (a, a*)@, a*) and 
(u,u*+b*)=(u,u*)(u,b*), for allu,bEA andu*,b*EA*. LetA** be 
the dual of A*. The bilinear pairing determines a canonical isomorphism 
between A and A* *; namely, for a E A we define x0 E A * * by the formula 
x&z*) = (a, u*), a* E A *. The mapping, u +x, : A + A**, is the canonical 
isomorphism. 

The set, C= ((~,a*): uE A, a* EA*}, is a subgroup of U,,,. In fact, in 
terms of the decomposition A = Z/m, @ ... @Z/m,. we have that C is the 
group generated by e2ni(d’m’, where d is the greatest common divisor of 
m/ml ,..., m/m,. 

Let L’(A) be the Hilbert space of complex valued functions on A, with 
respect to the inner product 

CL s> = c f(a) C(a), f, g E L’(A). 
(IEA 

L2(A) is an m dimensional complex vector space. The set of functions (e, : 
u E A}, where 

e,(b) = 1, b = a, 

= 0, b # a, 

is an orthonormal basis of L’(A). Consider L2(A*) as a Hilbert space in 
exactly the same way. The character orthogonality condition 

C (u,u*)=m, a = 0, 
a*EA* 

= 0, Q # 0, 

immediately implies that the set of functions {(l/G) x,: u E A}, defined 
above, is an orthonormal basis of L’(A*). 

The Fourier transform, .7 = YA, is the unique linear operator satisfying 
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Clearly, since Y takes an orthonormal basis onto an orthonormal basis, it 
must be an isometry. Moreover, the general formula describing X is given 
by 

*F(f)@*) = I/\/;;; 1 (a, a*> f(u), a* EA*, fEL2(A). 
OEA 

To see this, simply observe that the mapping f +s’(f) is linear and 
compute Sr(e,), D E A. 

In the following sections, we will study finite abelian group A which arise 
as quotients of finitely generated, torsion free abelian groups. Along with the 
group A, there will be given an isomorphism D: A --t A* which satisfies the 
condition 

(6 D(b)) = @9 D(u))9 U,bEA. 

We will call such an isomorphism D, a symmetric isomorphism. 
Let D be a symmetric isomorphism of A and A *. Let D”: L*(A *) 2 L*(A) 

be the linear isometry given by D”df*) = f * - D, f * E L*(A *). We will 
study the unitary operator Dn a ;rA of L*(A). For a, b E A, 

= l/d&, D(b)). 
Since D is symmetric and D(a) = CCpA D(u)(c)e, we have 

Thus, 

Dx . .&(e,) = I/v/;;; c D(u)(c)e, I 
CEA 

When D: A + A *, the symmetric isomorphism is given, we will refer to the 
unitary operations D’ . F” of L*(A) as the Fourier transform of A. It 
depends obviously on D. The above expression for D” . Sr,(e,), a E A, 
determines D# - X” on the basis {e D : a E A}. The corresponding matrix is 
given by 

l/d%WW) = l/fi((c, D(4)>,.,,, 

and its trace is given by 

l/u/;;; c (a, D(a))- (IEA 
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Consider the following example. Take A = h/m, the additive group of 
integers mod m. For 1 E Z, let ~(1) be the character of Z defined by ~(l)(r) = 
e2ni(‘r’m). Clearly, x(I) acts trivially on m . H and hence induces a character 
D(I) on A = Z/m. Also, the mapping D: Z + A* satisfies the short exact 
sequence 

Thus, D induces an isomorphism, which we also denote by D, from A onto 
A*. Clearly, D is a symmetric isomorphism. By the discussion above 

D” . XA(e,) = l/G x e2ni(ac’m’ec 
CEA 

and the trace of Dx - -PA is 

l/h C e2ni(az’m’. 
CEA 

Such sums were studied by Gauss and play an important role in quadratic 
reciprocity over Q In the next section, we will study generalizations of these 
sums to general number fields and show how they enter into the quadratic 
reciprocity of such number fields. 

II. THE TRIGONOMETRIC SUMS OF HECKE 

Let R be a number field of degree h over Q Consider k as a Q-vector 
space. Let end(R) be the U&algebra of endomorphisms of R; and 
R’ = Hom(R, G) be the dual Q-vector space. We will now see how the field 
structures of R determine a T ER’ and an isomorphism d: R + 1’. 

To each a E R, let r(a) E end(l) be defined by r(a)@) = a/?, ,8 E R. The 
mapping r: k + end(l) is a Q-algebra isomorphism. We call r, the regular 
representation of 4 over Q. Let tr(f) denote the trace of XE end(l). The 
mapping T: A -+ Q given by T(a) = tr(r(a)), a E 1, is in A’. It is called the 
trace mapping of R over Q. It is well known that the bilinear form t: 

A x R-+ Q defined by t(a, /3) = T(a/?), a, p E R, is a non-degenerative, 
symmetric Q-bilinear form. Thus, the corresponding mapping d: ,4+ R’ given 
by d(a)@) = t(a, /3), a, /I E 1, is a G-linear isomorphism. In this way, the 
field structures of ,4, determine an identification of R with R’. 

The action of a group character, as considered in Section I, occurs here as 
well. Let U be the multiplicative group of complex numbers of absolute 
value 1. Consider ig as a group with respect to its addition and put .&* = 
Hom(4 U). We call R*, the dual group of ig. To each a’ E R’, let a* E A* be 
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given by a*(a) = e2nia’(u), a E 4. The mapping a’ + a* is a monomorphism 
from the additive group of R’ into R*. 

Let M be a full module in A. Then, a basis a,,..., ah of R over Q can be 
found such that M = @Cf=, Za,. We will call this basis an integral basic 
relative to M. The dual of M with respect to T is the set M’ defined by 

M’= {aE :T(aM)cZ}. 

For the remainder of this section, M will denote a full module in R. We 
will now establish certain basic properties of M’. 

Let {ai) be any basis of R over Q The isomorphism d: R--P R’ implies the 
existence and uniqueness of a basis {aj} of R over Q, called the dual of (a,}, 
satisfying 

T{aia;} = 1, i = j, 

= 0, i#j. 

It follows that, if {ai} is an integral basis for M then M’ is a full module in R 
having {a;} as an integral basis. We can immediately infer that MN = M. 

Now, take a E A” and form (aM)‘. If jI E (c&f)’ then 
T@(aM)) = T((Ja)M) c Z and /Ia E M’. Hence, /I E (l/a)M’ and 
(aM)’ c (l/a)M’. The reverse inclusion (l/a)M’ c (aM)’ is established by 
reversing the argument. Thus, we may conclude that (aM)’ = (l/a)M’. 

Let M2 be the group generated by all products mn, m, n E M. Now, M* is 
a full lattice in R since it is finitely generated and contains the full submodule 
mM, where m is any fixed non-zero element in M. Take 0 # a E (M’)’ and 
form (c&f)‘. Since /I E M implies 

T@(aM)) c T(aM*) c Z 

it follows that M c (aM)‘. Thus, we can construct the abelian group 

A = A(M, a) = (aM)‘/M. 

Observe, that M and (aM)’ are full module in A and hence A is a finite 
abelian group. 

We want to define a symmetric isomorphism D: A + A*. For p E (aM)‘, 
let x(J): (aM)’ + U be the mapping defined by x@)(y) = e2”‘T(a4y’, 
y E (aM)‘. Clearly, x(J) is a homomorphism and acts trivially on M. Thus, 
x(/I) induces a character D@) of (aM)‘/M = A. The mapping D: (aM)’ + A * 
is a homomorphism which satisfies the short exact sequence 
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This can be seen as follows. Clearly, D is a homomorphism and A4 c ker D. 
Take /I E ker D which implies D@)(c) = 1 for all c EA. Thus, x@)(y) = 
e2ziT(nBy) = 1 for all y E (aM)’ and ~(pa(aM)‘) c Z. Since (a&f)’ = l/&f’, 
we have /3 E M” = M and ker D c M. We have established that M = ker D. 
Since A and A * have equal finite order the rest follows. 

The short exact sequence implies that D induces an isomorphism, which 
we also denote by D, from A to A *. This isomorphismD: A -+ A * is clearly 
symmetric. 

The selection of a full module M in 1 and a 0 # a E (M*)’ determines a 
finite abelian group A = (aM)‘/M and a symmetric isomorphism D: A + A *. 
We are in the situation considered in Section I. Before we apply the results of 
Section I, observe that, if b = p + M, c = y + M are in A, where p, y are in 
(aM)‘, we may unambiguously define e2niT(abc) = e2niT(u4y) . Then 
(c, D(b)) = e2*iT(nbc). 

Let 3 =.FA : L’(A) + L2(A *) be the Fourier transform of A and consider 
the unitary operator D” . .9 of L ‘(A). By Section I, 

D#. .T(eb) = l/h c (b, D(c))e, = l/h c e2nir(abc)ecV bEA. 
CEA CEA 

The trace of the unitary operator Dx . St is given by 

G(M, a) = l/G c (b, D(b)) = l/h y1 e2niT(ab2). 
bcA bL;IA 

Hecke considered trigonometric sums of this type (see [5]) and used them 
in the proof of the quadratic reciprocity law for the number field R. The 
crucial step is a formula which evaluates certain sums of this type. For more 
recent derivations of closely related formulas, see Mlnor and Husemoller [6, 
especially Appendix 41. There, a formula of Milgram, is discussed as well as 
the application of this formula to quadratic reciprocity laws. In the next 
section, we will assume a variant of the Milgram formula (see Theorem A 
below) and derive the quadratic reciprocity law for the number field 4. 

Let A be our number field of degree h over Q As is well known, there are 
exactly h homomorphisms 0 of A into C over Q Let these isomorphisms be 
~l,...,~s; Us+], u‘s+l,...,u,+l, us+19 h = s + 2t, where (ui : 1 < i < s} consists 
of all those isomorphisms u satisfying u(A) c R and ssstj is the complex 
conjugate of us+,, l&j<t. ForpEPand l<i<s,let 

SiYiCO) = 1, ui(B) > O3 
=- 1, ui@) < O, 

and 

S(J) = C Sign@). 
i=l 
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Let iU be our full module in R and 0 # a E (M’)‘. Then 4a E (M2)’ and we 
consider G(M, 4a). 

THEOREM A. G(M, 4a) = zh e2nfS(u)/*. 

In Section IV, we will prove this result and see how it arises out of an 
understanding of the finite Fourier transform as an object related to the 
representation theory of finite nilpotent groups, especially the notion of an 
intertwining operator. In Section V, we will explicitly describe these 
intertwining operators and see how they can be derived from the multidimen- 
sional Cooley-Tukey algorithm [4] for computing the finite Fourier 
transform. 

III. QUADRATIC RECIPROCITY 

Let R be a number field of degree h over Cl!. The ring d of algebraic 
integers in R is a full module in R and e2 = 8. For each non-zero a E 8” 
consider the finite abelian group 

A(a) = A (8, a) = (a@)‘/0 

and the symmetries isomorphism 

D(a): A(a) --) A(a)* 

determined by the equation (b, o(a)(c)) = e2n’T(ube), b, c E A(a), where T is 
the trace mapping of R over Q!. Let O(a)‘: L2(A *(a)) + L’@(a)) be the 
linear isometry given by D(a)#“)*) = f * . o(a), f * E L’@*(a)) and 
consider this unitary operator 

W) = WV . SrAta) : L2(A(a)) + L2(A(a)), 

where Y&) is the Fourier transform of A(a). Denote by 

u(a) = t@(a)). 

By the remarks of Section II, 
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where m(a) = o@(a)) and T: 4 + Q is the trace mapping. Although, we do 
not have an explicit formula for G(a), by Theorem A, which we will assume 
throughout this section, 

G(4a) = 2h e*nis(n)/8. 

Let 8’ be the dual of 0 with respect to T. To begin with, we will assume 
that 

This condition will be removed eventually. 
Let a E P’, a # 0, be fixed. We will now introduce a group of unitary 

operators of L*@(a)). Firstly, take /3/S E P relatively prime to a/6 in P. 
Thus, 0 = (a/6)0 + (/I/6)@. Since (a@)’ is an b-module, the mapping, 

7 + W4y9 7 E WV, is easily seen to be an isomorphism of (a@‘)’ into 
itself. Moreover, it maps B into itself and hence, induces a homomorphism, 
denoted by c,(@, of A(a). We will show that it is an automorphism. Since 
A(a) has finite order, it suffces to show that, if y E (aP)’ and @/S)y E F 
then y E P. Choose u, u E c” such that (a/6)u + @?/S)u = 1. Then 

(l-(a/6)u)y=v~/G)yEu.Cd3, 

y E uctp + (a/6) uy c vc”p + u(a/G)(aF)’ = VP + ti = c”. 

Thus, c,(J) is an automorphism of A(a). 

LEMMA 3.1. Let (O/(a/@@)X denote the multiplicative group of units in 
the ring F/(a/s)@ and U(L’(A(a))) denote the group of unitary operators of 
L*(A(a)). Then there exists a faithful representation, C,“: (cty/(a/G)p)” + 
U(L*(A(a))) satisfying the condition 

where 

and 

cmf =f . LW~ 

f E L*(A(a)), b E (~/@/WY, 

b = P/S + (a/6)8 

in any coset representation. 

Proof. For b E @/(a/6)@, we have b E (@/(a/8)@)x if and only if 
whenever we represent b = /?/S + a/6@, it follows that /3/S is relatively prime 
to a/6 in P. Also, observe that &J/j) = [,(/3 + au), for all u E P. Thus, if 
b E (~l(alW) pe may, without ambiguity, define C,(b) = Z;,@?), where 
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b = /3/s + .(a/d)@ is any representation. The resulting mapping, <,: 
(@/(a/6)8)x + aut(A(a)) is clearly an isomorphism. 

Now, let c: (@/(a/s)@ + U(L2(A(a))) be defined by c(b)f = f - 6(b), 
f E L’@(a)) and b E (@/(a/S)@)x. The lemma follows. 

Remarks. Let b E (@/(a/@@)” and c E A(a). Put bc = {,(b)(c). Then, 
C(b) .I-(4 = f(W 

We will now study the relationship between the unitary operator F(a) of 
L,@(a)) and the group representation c: (@/(a/S)@)” + U(L2(A(a))). 

LEMMA 3.2. Let b E (e/(a/@@)*. Then 

F(a) C,(b) = C,(b)-’ F(a). 

Proof: Choose b-l E (P/(a/Q@)“. Then, for c E A(a), 

C,(b-‘1 F(a)@,) = - & ,,g,, e2niT(acd’) eb-Id’. 

The mapping d’ -+ C,(b)-‘d’ = b-Id’ is an automorphism of A(a). Thus, we 
can replace b-Id’ by d and sum over d E A(a) in the last sum. The result is 

which is easily seen to be F(a) &Jb)(e,) and the lemma has been verified. 

COROLLARY 3.2.1. Let b E (@/(a/S)@)X be a perfect square, i.e., b = x2, 
for some x E (P/(a/@@)“. Then 

F(a) C,(b) = C,(x)-’ W) L(x). 

ProoJ: Simply observe, using the lemma, that 

F(a) 4,(b) = F(a) C,(x’) = F(a) C,(x)” = L(x)-’ %4 L&4. 

COROLLARY 3.2.2. Let b E (@/(a/J)@)“. Then 

W(a) L(b)) = & ce& e2n’T(abc2)e 

ProoJ The proof of Lemma 3.2 implies this result. 

607/43/2-3 
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The trigonometric sum in this corollary is called a generalized Hecke sum. 
We will write 

G(a, b) = W(a) C,(b)). 

Corollary 3.2.1 easily implies the next corollary. 

COROLLARY 3.2.3. Ifb E (Fpl(a/d)Fp)x is a perfect square, then 

G(a, b) = G(a). 

The same argument shows the following generalization. 

COROLLARY 3.2.4. Let c, b E (P/(a/G)FP)“, b a perfect square. Then 

G(a, bc) = G(a, c). 

We will now piece together the various operators F(a), a E P’. The basic 
tool in the process is the tensor product. 

Let a/6 and /I/S be relatively prime elements in P. Then, 

WQ)’ = NWW)’ and 0’ c ((ap/G)r”p)’ and if follows that 
A (a) c A (a/?/6) and A(p) c A (a/3/6). 

LEMMA 3.3. A(a@/d) = A(a) @ A@?). 

Proof: If s&ices to show that A(a) n,4@) = (0) or equivalently 
(a,)’ n (p)’ = P, since @(a/3/6)) = o@(a)) o(A@)). Let y E (aP)’ n 
QP)’ and write y = (6/a)u = (S/p) V, u, v E P. Find r, s E (cp such that 
(a/6) r + (‘/I/Q = 1. Then, 

s-u=s-f-v= l-zr u. P 
6 6 ( ) 6 

If follows that y = (d/a)u = us + ur E P, which is what we intended to 
prove. 

For f E L*@(a)) and gE L’(ACj?)), consider ~(f, g) E L’(A(a/?/G)) 
defined by rrdf, g)(a + b) = f(a) g(b), a E A (a), b E A Q?). The mapping 

71: L*@(a)) X L’(A(p)) + L*(A(a/?/@) 

is C-bilinear and hence defines, by definition, a C-linear homomorphism 

7P: L*@(a))@ L*(A@?)) -+L*(A(apIG)) 

uniquely determined by the condition x”(f 0 g) = n(f, g). 
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LEMMA 3.4. There is a C-linear isomorphism 

?P: L2(A(a)) @ L2(A@3)) -+L2(A(as/6)) 

uniquely determined by the condition nr(f@ g) = adf, g). 

Proof. It remains to show that rr” is an isomorphism. Let 

e, EL*@(a)), a E A(a) and 

Then, n#(e, @ eb)(x + u) = e,(x) e,(y). Hence, the basis {e, 0 eb} of 
,5*(,4(a)) @ L*(A(@) is taken by R# Onto the basis {ea+b} of L*(A(c$/6)). 

By abuse of language, we will write f@ g = rrv @ g). 
Let V and W be arbitrary vector spaces over a field F and V@ W their 

tensor product. Then 

End(V) @ End( IV) z End( V @ W), 

where, by abuse of language, we put X @ YE End( V@ IV) defined by 
X@ Y(u @ w) =X(u) @X(w). 

LEMMA 3.5. Let a/6 and /3/6/s be relatively prime elements in 8. Then 

= F(a) L(b) 0 WO C,(a), 

where 

x 
and 

Proof. Let a’ E A(a) and b’ eA@?). Then e,#+b! = e,, @ eb’ and 

F f (e&+b’)= 
( ) 

Jm:d,a) e,,E~b,d, e2niT((u4/b)(a’+b’)c~~ e,,,. 

F(a) C,(b) 0 WI &da)(G @ eb’) = F(a) ‘i,(b)kv) @F(B) &da)tebf) 

= & cEsa, e2riT(aa’bc’ e, @ & r,ztlib e2x’T(bb’aS!) e,, 
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As can be checked, 

T(aa’bc + Db’uc’) = T((cfa’b + Pb’a)(c + c’)) = T((ab + /?u)(a’ + b’)(c + c’)) 

= T((a/3/G)(a’ + b’)(c + c’)). 

Thus, since e, @ e,, = ec+c, and m(c@/6) = m(a) m(P), we can write 

e 

2niT((aOIS)(o'tb')(ctc'))e 
CfC” 

Letting c” = c + c’, by Lemma 3.3, the lemma follows. 

COROLLARY 3.5.1. If a/6 and p/als are relatively prime in P, then 

G $ = G(a,b) - G@,u), 
( 1 

where 

x 
and b=b/6+a/@E 

The above results, especially Corollary 3.5.1, will now be applied to the 
problem of evaluating G(a), for general a E P’. We will still assume the 
formula for G(4a), given by Theorem A. Also, we will use the notation 
G(a; /I), where /3 E P is relatively prime to a/6, to mean G(a; b), where b = 
p + a/P E (P/a/S@)‘. 

An element y E P will be called odd, if y and 2 are relatively prime in Cr. 
If y E P is odd then y and 4 are relatively prime as well. We may see this as 
follows. Suppose y is odd and find U, v E F such that yu + 2v = 1. Then, 

y(yu2 + 4uv) + 4v* = 1, yu* + 4UV E P, v2 E P. 

LEMMA 3.6. Let a/6 be odd. Then 

G(4a) = G(a; 4) G(46, a/6) = G(a) G(46, a/6). 

ProoJ Apply Corollary 3.5.1, with j3 = 46 and Corollary 3.2.3. 
Theorem A implies G(4a) # 0; thus neither factor on the right vanishes. 

This gives us an expression for G(a); namely, 

Wa) 
G(a) = G(46, a/6) * 
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Since, by Theorem A, G(4a) is known, we know G(a) once we evaluate 
G(46, a/S). In general, 

G(4S, a/6) = 2-h c eZniT(4ac*) = 2 -h 
c * 

enfT(uc*)lZ 

ee(1/4v/u CCdf46 

COROLLARY 3.6.1. Let a/6 be odd and a perfect square mod 4@. Then 
G(46, a/S) = G(46). Moreover, 

W4 
GW=m=e 

nu4(Skr)-S(m) 
3 

where S(a) = Cf= 1 sgn,(a). 

Let P be a prime ideal in b. p/P = F is a finite field and the 
multiplicative subgroup Fx of non-zero elements of F is cyclic. For a E F;“, 
define 

(a/P) = 1 ifa=x2forsomexEFX 

=- 1 otherwise. 

We call (a/P), the Legendre symbol of a with respect to P. It is easy to see 
that the mapping 

a+ (a/P): F’-, {+l, -1) 

is a character of F”. We may extend this notation as follows. Let a E B and 
a@ P. Then a =a + PE F” and we put (a/P)= (a/P) and observe that 
(a/P) is well defined. 

In particular, we shall apply these definitions to an odd prime element a/6 
in P. Then, we have the following relationship between the Legendre symbol 
with respect to P = a/J@ and Hecke sums. Let a = a/6 be an odd prime in 
P in what follows and write (b/a) = (b/a@), b C$ a . b. 

LEMMA 3.7. Let b & a - ~9~ Then 

G(a; b) 
=G(a)* 

ProoJ Let b, be a generator of (@/a@)” and suppose its order is m. 
Then 
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On the other hand, by Corollary 3.2.4, G(a; d,) = G(cr), j is even, and 
G(cr; g) = G(a; b,), j is odd. Thus, to prove the lemma is sufficient to show 
G(a; b,) = -G(a). Now, 

m-1 
\/ma, G(~) = r e2niT’oc*) = 1 y e2niT”S/a)b~), 

CL&’ ,% 

m-l 
a qa; b,) = r 

Li 
e2niT(ablc2) = 1 + y e2niT((blo)b:jt’) 

9 
CEA’CI) ,Yo 

&&&G(a) + G(a; b,)) = 2 + 2 C e2nir”bl“)b’ 
be’P/a@)x 

=2. x e2niT((Sla)b) = 0 

bc@laF 

since the, mapping, b + e2niT”6’a’b’, is a non-trivial character of P/aP. 

THEOREM 3.1. Assume e’ = 60. Let a, b be non-associative odd primes 
in (0. Then 

= eni/4T(6(ab-a-b)) G(4; a> G(4; b) 
G(4; ab) ’ 

Moreover, if a is a square mod 4e, then 

a b ( )( i b a=e 

ni~~=,(‘S8nc’a)-1)/2)“S8ni(b)-1)/*) 

Proof. By Lemma 3.7, 

G(b -6; a) G(a - 6; b) 

G(b. S) G(a . 6) - 

Applying Corollary 3.5.1, to the numerator, 

G(ab -6) 

= G(bS) G(a8) ’ 

Corollary 3.6.1 implies 

G(ab6) = 
G(4ab8) 

G(46; ab) ’ 

G(4bS) 
G(bd) = G(4,3; b) ’ 

G(4aS) 
G(aS) = - 

G(46; a) 
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from which it follows, 

G(4abd) G(46; a) G(46; b) 
G(46; ab) G(4b6) G(4a6) ’ 

G(4ab6) 
= G(4b6) G(a6) 

G(46; b) G(46; a) 
G(4S; ab) ’ 

By Theorem A, 

Thus, 

= 2-henf/4S(abb-b&-o&) G(4k b, G(4d; a) 

G(46; ab) ’ 

proving the first assertion. Suppose a is a perfect square mod 48. Then 

G(46; ab) = G(4S; b), 

G(46; a) = G(46). 

The formula now becomes 

Now, sgn,(rs) = sgn,(r) sgn,(s), from which it follows, 

sgn,(abd) - sgni(bd) - sgn,(aS) + sgn,(b) = sgn,(S)((sgn,(a) - 

1 hM4 - 1)). 
Thus, 

zf ,sgn,(b)((sm~(a)-l)/2)((~8n~(b)--1)/2) = 

and since (sgr&z) - 1)/2 and (sgn,(b) - 1)/2 are integers. The theorem 
follows. 

The condition b’ = 68 was convenient to assume, in that, it provided a 
framework in which to carry out the required computations. We will now 
remove this condition, but will have to introduce certain auxiliary ideals to 
assist in ensuring sufIicient structures for those computations which must 
now be treated. Also, the ideal theory of 8 will have to be examined more 
closely. In particular, the structure theory of the set of non-trivial fractional 
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ideals will play a central role. For the most part, we will assume that the 
elementary contents of the theory are known. Especially that, this set is a 
group under ideal multiplication and is freely generated by the prime ideals 
in P. To the depth required, this theory can be found in [5, pp. 41-501. Let a 
and b be relatively prime elements in 4. Since 8’ is a fractional ideal, we 
can find an integral ideal C satisfying the following two conditions: 

(i) C + (ab)c” = P”, 

(ii) C@’ = w  for some 6 E Fa’. 

Let C be specified satisfying these conditions. F’ as an @-module can be 
generated by two elements, one of which can be chosen in C. Thus, 

P’=uF+p-, WE@‘, [EC. 

Consider the mapping 

y-tflly:Fp+P. 

Clearly, the mapping is an P-module homomorphism taking C into CP” and 
hence, induces an P-module homomorphism 

Let y’ E P’ and write y’ = oy + CC, y, C E 6’. Then y’ = oy mod CP’, since 
[E C, implying that this latter P-module homomorphism is surjective. Let 

K= {yEP:wyECP’}* 

K is an ideal of P containing C. Also, 

and since CP’ c KP’ as well, we have CP’ = KP’ = 6. P. Thus, the 
mapping, y + oy, induces an isomorphism of P/K onto c”‘/KP’, where K is 
an integral ideal satisfying conditions (i) and (ii). We organize this 
discussion in the following lemma. 

LEMMA 3.8. Let a and b be relatively prime elements in 6’. Then there 
exist an integral ideal K and a decomposition 4’ = ~6 f [P, where [ f K, 
satisfying the following conditions: 

(i) KF’ = 6 - @for some 6 E P’, 

(ii) K + (ab)e = P’, 

(iii) the mapping, y-+ oy: P + P, induces an isomorphism of e/K 
onto P/K@‘. 
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The application of the lemma, in subsequent work, will be to permit the 
writing of a trigonometric sum indexed over P/K6 as a trigonometric sum 
indexed over B/K. 

For the remainder of this work, we will assume that the relatively prime 
elements f~ and b on @, the integral ideal K and decomposition 4’ = 
~8 + <@, where c E K, have been chosen, once and for all, satisfying the 
conditions of the lemma. Let a = a6 and /3 = bs. Consider the group A(a) = 
(a@)‘/@. Since (a@)’ is an e-module, we can consider the mapping 

y + b, y: (a@)’ + (cq’, 

where b, E 8. This mapping is an e-module homomorphism taking 8’ into 
itself. Thus, it induces a homomorphism 

MO 44 --G-4. 

Assume now that b, is chosen relatively prime to both a and K, or 
equivalently, relatively prime to uK. We will show in this case &Jb,) is an 
automorphism of A(a). Since A(a) has finite order it &ices to carry out the 
proof injectively. This will follow if we can show that y E (a&‘)’ and b, y E 4 
implies y E 8. Write 

1 =b,x+ak, xE4, kEK. 

Then y = b, yx + ayk E 6’ + a( l/a) k8’ c 4 + (l/6) K@’ = 8 as we needed 
to prove. 

For x E 8, denote the image of x in @/UK by x. Then, x is relatively 
prime to UK if and only if x E (O/aK>x. Suppose x = y and hence 
x = y + uk, k E K. For y E (a@)‘, 

yx=yy+yukryymodB 

since yak E (l/a)ak@’ = (l/S) KP = @. Thus r,(x) = r,(y) and we can, 
unambiguously, define 

C,(x) = L(x), x E (@/UK)“. 

Consider, now, the mapping x + r,(x). Let x, y E (@/uK)~ and y E (aa)‘. 
Clearly, x( yy) = (xy) y and it follows that 

C,(x) L(Y) = UXY). 

We summarize this discussion in the next lemma. 
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LEMMA 3.9. The mapping 

x + c,(x): (@/aK)X --f aut(A(a)) 

is a hombmorphism. 

For x E (@/aK)‘, let c(x) denote the unitary operator of L’@(a)) defined 
by 

63x) = f - cc43 flaw). 

The following corollary is now obvious. 

COROLLARY 3.9.1. The mapping 

x --) z(x): (fl/aK)X --t aut(L’(A(a))) 

is a unitary representation of the group (P/aIQX on L’@(a)). 

As before, we will study the relationship between the unitary represen- 
tation c and the unitary operator F(a). The following results, Lemma 3.10 
and its corollaries, can be proved in exactly the same way as the analogous 
results considered in the beginning of this section. We will state them without 
proof. 

Consider F(a) c(x), with x E (P/aK)“, and define 

G(a; x) = tr(F(a) c:(x)). 

LEMMA 3.10. For x E (@‘aK)X, 

F(a) t%> = 4%~)~’ F(a). 

COROLLARY 3.10.1. For c E A(a), 

F(a) Q(x)(e,) = m(a)-“* c e2niT(axcc’)eC,. 
C’EA(cz) 

COROLLARY 3.10.2. G(a; x) = m(a)-“* c e2niT(axc*). 
CxAfo) 

COROLLARY 3.10.3. If x is a perfect square on (@/aK)X then 

G(a; xy) = G(a; Y) 

for all y E (P/aK)“. 

The tensor product formula expressed by Lemma 3.5 and its corollaries 
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does not exactly generalize. Although, A(a) and A@?) are both subgroups of 
44-W) and 

AtNW) =A@) +W), 

the sum is not a direct sum. Indeed, 

A(a)nA@)=A(6). 

However, we do have the following result. 

LEMMA 3.11. A(a) = (l/u)@/@ @A(6). 

Proof Observe that both A(6) and (l/a)@/8 are subgroups of A(a). 
Since o@(a)) = o@(6)) o((l/a)@/@), the lemma will be proved once we 
show A(6) f7 (l/a)@/@ = (0). It is equivalent to showing 
(I/u)P n (U)’ = 4. Take y E (l/u)0 n (68)‘. Since a8 + K = 8, we can 
write 1 =ux+k, xE@, kEK. Thus 

y=uyx+ ykcu A+ 
U 

Let A,(u) = (l/u)@/@. We will now consider 5(u), the Fourier 
transform of A,(u). Consider the mapping, D,(u): A,(u) + Al(u)*, given by 
the formula 

(c, Dl(u)c’) = e2niT(aer’), c, c’ EA,(u). 

It is easy to verify that Di(u) is well defined and that it is a symmetric 
isomorphism, in the sense of Section I. Set 

F,(u) = 07 . &(a). 

By the comments in Section I, 

F,(u)e, = IN(u)l-“* % e2n’T(acc’)ec,, 
C’EA 1(a) 

where e, E L-*(,4 ,(a)). The context should make clear where e, lies. As in 
Section II, it is easy to see that 

L*(A(a)) 2i P(A,(u)) cjl P(A(6)). 

The identification given by e,,,, z e, @ e,, . 
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The arguments used in the beginning of this section, for example, those 
leading up to Lemma 3.1, may be carried over to show that the formula 

C(x) f(c) = f(xc) x = x + a@ E (e/ae)x, cE~,(&fE~*(A&)), 

defines a unitary representation of (P/UP)” on L2(,4,(a)). 

LEMMA 3.12. F(a) c(b) = F,(U) c(b) @ F(6) [r(ab). 

ProoJ Let c E A(a) be written c= c, + c2, where c, E A,(a) and 
c,EA(6). Thene,=e,,@e,2. Applying I”(a) c:@(b) to e, gives 

,(,)-l/2 c e2ziT(abcc’)ec,* 

C’EA(cx) 

Applying F,(a) C(b) 0 F(6) C&b) to e,, 0 ec, gives 

Observe, T(ab(c, + c2)(c; + cs)) = T(ab(c, cl + c2c;)) since T(ab(c, c; + 
c; q)) E Z. The lemma follows. Let 

Cr(cf; b) = IN(u”’ tr(F,(u) c,(b)) = IN(u)I 1 e2niT(abC2), 
c~A,(a) 

COROLLARY 3.12.1. G(a; b) = C,(a; b) G(6; ub). 

The unitary operators F,(u) can be handled exactly as the unitary 
operators F(a) were handled in Lemma 3.2 and its corollaries. We will state 
the results in the next lemma and its corollaries, without proof. 

LEMMA 3.13. Let x E (P/uP)~. Then 

F,(a) Lx(x) = 6%) - ’ F, (a>. 

COROLLARY 3.13.1. If x is a perfect square in (F/up)” then 

C,(a; v) = C,(a; y), y E (F/UP)“. 

Also, the tensor product yields for the “Fourier transforms” E’r(u), results 
analogous to those of Lemmas 3.3, 3.4 and 3.5. Again, we will state the 
results without proof. 
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LEMMA 3.14. F,(ab) = F,(a) r,(b) @F,(b) &,(a). 

COROLLARY 3.14.1. C,(ab) = C,(a; b) C,(b; a). 

We will now use these results to investigate the Fourier transform F(a). 

LEMMA 3.15. F(a) c(b) @ F@) g(u) = F(ap/6) @ F(6) [f(d). 

Proof. Follows immediately from Lemmas 3.12 and 3.14. 

COROLLARY 3.151. G(/3; a) G(a; b) = G(aplG) . G(6; ub). 

In [5], Hecke introduced the following trigonometric sums. Let <E k. 
Then, there exist integral ideals R and S such that R + S = 4 and 

S -‘RB’ = r@. 

We will assign to r the trigonometric sum C(t) defined by the formula 

Also, if x E (@‘p/S)‘, the trigonometric sum C(xr) is given by 

We will now see how the trigonometric sums that we have been concerned 
with are related to these Hecke sums. 

LEMMA 3.16. C,(u; b) = IZV(U)~-‘/~ C(b(a/u)). 

Proof. Observe (l/a)K@’ = (S/u)@. 

LEMMA 3.17. G(6;x)= m(6)-1’2 C(x(w2/6)), x E (c~/K)~. 

Proof. Recall @’ = w@ + &Y, c E K, and that the mapping, y + WY, 
induces an isomorphism of d/K onto A(6). Thus, 

G@; x) = m(@ - 10 c e2n~t((w*~6)xc’)~ 
CE4JK 

Consider (w2/a2)K2. Observe (w2/a2)K2 c (K~9’/6)~ = 8. Thus, it is an 
integral ideal. Suppose we knew K + (w2/S2)K2 = b. Then, since, 
(w~/~~)K’K-‘~’ = (w2/6)8, the lemma would follow. It remains to show 
K + (w2/S2)K2 = 6. Since 8’ = w@ + (3, (l/&K@ = d = (w/d)K + 
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(/J6)K. We must show K + (w2/J2)K2 2 (w/6)K + ({/s)K. Since 
c/S E K/6 c 8, ([/6)K c K, and so we are done once we show (w/6)K c 
K + (w2/a2)K. From 6fl= K@’ = WK + 1;K, we can write 6 = wk + ck’, k, 
k’ E K. It follows that w/6 = (w2/a2)k + ([/a)(~/@, k’ E (w~/~~)K’ + 8 
and (w/6)K c (w~/~~)K + K. The lemma is now proved. 

We will now relate these trigonometric sums to the Legendre symbol. Let 
B be an odd ideal and write B = n:=, Pi, its factorization into prime ideals 
Pi. For each x E 8, relatively prime to B, we put 

From the previous discussion on the Legendre symbol (x/Pi), it follows that 
the mapping x -+ (x/B) induces a character of (F/B)x. 

For convenience, we shall borrom the following result from Hecke [5, 
p. 2231. 

LEMMA 3.18. Let R and S be relatively prime ideals, with S odd. 
Suppose S-‘RF” = I$?. Then, for x E (F’/S)x, 

cc4 = (x/S) w. 

There is no loss in generality in assuming that K is odd. 

COROLLARY 3.18.1. Suppose a is odd. Then 

G(a; b) = (b/UK) G(a). 

Proof. By Corollary 3.12.1, G(a; b) = Ci(a; b) G(6; ab). Lemmas 3.16 
and 3.17 imply G(a; b) = m(a)-“* C(b(G/a)) G(ab(w2/G)). By Lemma 3.18, 
G(a; b) = m(a)-“‘(b/a)(b/K) G(a). 

We will now consider the quadratic reciprocity law for k. Let a and b be 
odd elements in b. Then, 

by Corollary 3.18.1. Applying Lemma 3.15, especially its corollary, we have 

= GW4 GV) 
G(a) WI * 
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Now, since a is odd, it is relatively prime to 4, and hence we can again apply 
Corollary 3.15.1 to assert 

G(a) = 
G(4a) G(6; a) 

G(46; a) 

with similar expressions for G(J) and G(a#G). Hence 

G(4@43/6)) G(4& a) G(4& b), 

G(4a) G(4P) G(46; ab) ’ 

since G(6) G(6; ab) = G(S; a) G(6; b). We may now argue exactly as in 
Theorem 3.1 to prove the following theorem. 

THEOREM 3.2. Let a, b be odd relatively prime elements in 4. Then, 

zj ](Lwll(“)- I)/Z)((sgnl(b)-1)/2) = G(46; a) G(46; b) 
G(46; ab) ’ 

Moreover, v a is a perfect square mod 4, then 

Ej = ,((smj4”) - 1)/2)(@m,4b) - 1)/2) 

This is the generalized quadratic reciprocity law of Hecke. 

IV. MILGRAM’S FORMULA AND INDUCED REPRESENTATIONS 

Milgram’s formula is the ultimate result needed in the quadratic 
reciprocity law of Hecke. However, the methods of’ Section III involve, 
primarily, results on the Fourier transform of several finite abelian groups. It 
is natural to speculate about the relationship between the Milgram formula 
and the theory of these Fourier transforms. In this section we will give a 
group theoretic setting for the conjoining of these ideas. Indeed, the notion of 
induced representation will provide the key. In order to make this work self- 
contained, we will begin by presenting a brief review of this theory as applied 
to finite dimensional representations of finite groups. 

Let G be a subgroup of a finite group N. Let n, be a representation of G 
on the finite dimensional space V. We want to define a representation n of N, 
whose restrictions to G, will reflect the representation II,. We will define x 
below and call it the representation of N induced from II,. 

Let R(N, I’) be the space of functions f: N + V. N acts on X(N, v) by 
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right and left translations. Denote by W, the space of all f E R(N, V) 
satisfying 

n1(g>(f(n)) = f(g * n>, g E G, n E N. 

Since right translations commute with left translations, W is invariant under 
right translations from N. Thus, we can define the representation ?r of N on 
W by 

(Wf)h) = f (m - 4, m,nEN, f E W. 

X(N, V) may be viewed as the direct sum of o(N) copies of V. We shall now 
see that W is the direct sum of o(N/G) copies of V. Let n,, n, ,..., n,.-, be a 
complete system of representations for the space of cosets N/G. Then, N is 
the disjoint union of GE,, Gn, ,..., Gn,- ,. We will take n, = 1. A function 
f E W is uniquely determined by its values f (n,), f(n,),..., f(n,- ,) since for 
every n E N, there is a unique g E G such that n = gn,, 0 < i < r, and 

Conversely, given a function f: {n,,..., n,._, } + V we can extend f to a 
function of N into V by this formula: this extension being on W. Thus, under 
this identification 

W=j3T({no, n, ,..., n,-,}, v) = 0 C W(i), 
O<i<r 

where 

W(i) =T({q}, V) - V. 

We will now study rcG, the representation IZ restricted to G. Also, we 
denote by 7cG 1 U, the restriction of the space of the representation x6 to the 
Ic,-invariant subspace U of W. We will assume, once and for all, G is a 
normal subgroup of N. Thus, if IZ E N, the mapping, g + ngn-‘, is an 
automorphism of G, which we denote by ad,(n). 

LEMMA 4.1. no 1 W(i) = II, 0 ad&n,), 0 < i < r. 

ProoJ: For g E G and f E W, 

In particular, each subspace W(i) is n,-invariant and rrG 1 W(i) = n,(ni gn,: ‘). 

COROLLARY 4.1.1. 7rG 1 W(0) = 7~~. 
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We will also need to determine z(q), 1 Q i < r. Write n,n, = g,,rnj,i, 
where gj,f E G and n,,* E {n,, n ,,..., n,-,}. Then, if f E K (of) = 
f(v+) =f(gj,lnj,i) = ~,(gj,i)f(nj,,)* Thus, oh) permutes the facms WA 
and then acts by some q(g). 

Let A be a finite abelian group of order m. Denote its dual by A* and let 
(,>=(,),,: A xA* -+ U,,, be the bilinear pairing of A with A*. Consider 
the subgroup of U,,,, C = CA = { ( a,~*): aEA, a*EA*} and the set 
N(A) = A x A* x C. We make N(A) into a group by the following 
composition law: 

(a, 9 a:, c&a,, a 2*, cd = (a, + $9 a: + a:, c,c*(q, a:)), 

where a,, a, E A, a:, a$ E A *, and c,, c, E C. In fact, N(A) is easily seen to 
be a two-step nilpotent group with center 2 = Z, given by 

Z=[N(A),N(A)]=(O)x(O)xC 

and 

N(A)/Z=A@A*. 

We will show that the Fourier transform jT =FA manifests itself in the 
representation theory of N(A); namely, as an intertwining operator between 
two irreducible representations of N(A). 

Let c = CA be the representation of N(A) on L2(A) defined by 

r (&I 3 a:, NW) = c&v al*)f(u + a,), 

where a, u1 E A, a: E A*, cl E C. Observe, that c may be viewed as an 
induced representation as follows. Let A4 = (0) x A* x C and let x,, : 
M+ U,,, be the character defined by x0(0, a*, c) = c. Clearly, M is a 
maximal abelian subgroup of N(A). Inducing x,, to N(A) gives c. 

We will now describe &N(A)) and see how Sr enters into the theory. For 
this purpose, we will make the following definitions. Let r denote the regular 
representation of A on L’(A), namely, 

Wlfh) = f@l + a), a,~, EA,fEL2(A). 

Denote by r, again, the regular representation of A* on L2(A*). Consider 
x0 E L’(A*) defined by ~,(a*) = (a, a*), a E A, a* E A*. It is easy to see 
that 

r(a*)x, = (a, a*)Xa, uEA, u*EA. 

We have previously considered the set { l/fix0 : a E A}, m = o(A), and 
showed that it was an orthonormal basis of L’(A*). 

607/43/2-4 
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Let s denote the representation of A * on L*(A) defined by 

Ma*>.m) = (a9 a*)f(ah aEA,u” EA*,fEL2(A). 

Consider e, E L*(A) defined by 

e,(a,) = 1, a, #a, 

= 0, 
u,u, EA. 

u,+a, 

The set {e,: a E A} is an orthonormal basis of L*(A). Clearly, 

s(u*)e, = (a, u*)e,, uEA,u* EA*. 

In Section I. we showed 

LEMMA 4.2. s(u*)=F-lr(u*)Sr, a* EA*, 

s(-a*) =9-‘s(u*)9; U*EA*. 

Proof: For a E A and (I* E A *, 

(42 *WkJ = ’ 1 
-r(u”)& = - 
6 d-’ 

a, a*)xa = C~4~*)>(e,). 
rn 

Thus, the first assertion follows. The second is proved in exactly the same 
way. 

LEMMA 4.3. ForuEA,u*EA*undcEC, 

(-(a, u *, c) = cs(u *) r(u), 

Qb, b*, (a, a*)) = r(u) s(u”). 

Proof. For f E L*(A), 

cMa*) +W)(d = ~(a,, ~*Ma)f)(~J = ~(a,, a*).th + a) 

which is ([(a, a*, c)f)(ui) by definition, This proves the first assertion. The 
second follows in a similar way. 

COROLLARY 4.3.1. [(N(A)) is the group of unitary operators of 
L *(N(A)) generated by r(A) and s(A *) = F-‘f(A *)YT 
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In the presence of a fixed symmetric~ isomorphism D = DA : A + A*, we 
will identify A and A* as in the preceding discussion. The notation remains 
the same, except for replacing X by the unitary operator, F = FA , given by 
F(f) =s’df) - D, f E L*(A). We will assume, as will occur in practice, that 
D has been specified and the identifications made in the next discussion. 

Consider the mapping, J = JA , of N(A) given by 

J(a, b, c) = (-b, a, ~(a, b) - ‘), a,bEA,, cE C. 

A direct verification shows J is an automorphism of N(A) acting by the 
identity on the center Z. The general representation theory of two-step 
nilpotent groups implies. 4 and c . J are unitarily equivalent. Indeed, we have 
the next important result. 

LEMMA 4.4. F-‘@ = c. J. Thus, F is an intertwining operator between c 
and [a J. 

Proof: Since s(u) = F-‘r(u)F and r(-a) = F-‘s(u)F, we have 

F-‘[(a, b, c)F = cF-‘s(b) r(u)F = cr(-b) s(u). 

By Lemma 4.3, 

4 . J(u, 6, c) = c(-b, a, c(u, b)-‘) = w(4) s(u) 

and the, lemma follows. 
We want to study F, in particular, in this section, its trace. The crucial 

observation is the following. Suppose K is another representation of N(A), 
‘unitarily equivalent to c. Let 

Then, L-‘n. JL=c. Jand 

F-‘L-‘nLI;=I;-‘@‘= (. JCL-‘n . JL. 

Hence, 3’ = LFL- ’ is an intertwining operator between II and II . J since 

Y--‘nY-=A- J. 

It follows that F is the conjugate of some intertwining operator Y ,between K 
and K - J, whenever x is unitarily equivalent to <. The importance of this 
comment is that if II is suitably chosen, the structure of Y will be simpler 
than the structure of F. The essential property of n, that will accomplish this, 
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will be the specification of n as an induced representation form a represen- 
tation of a subgroup C of N(A) satisfying 

J(C) = c. 

Notice, c was induced from the subgroup M, but J(M) # M. 
Let a E k. A full module M in R satisfying a E (M*)’ will be called an a- 

integral module. Let M be an a-integral module. Set A = A (M, a), N = N(A), 
[= CA, F = FA and J= JA. Then, F-‘I;F = [. J and F is an intertwining 
operator between [ and [ . J. In this action, we want to study G = tr(F) = 
G(W a). 

Suppose M, is an a-integral module containing M. Then, 

M c M, c (a&f,)’ c (CM)‘. 

Let Ai=A(Mi,a), N,=N(A,), &=cA,, F,=FA, and J1=JA,. Then, 
F;‘& F, = cl . J and we may consider G, = tr(F,) = G(M,, a). We will 
compare G and G, by using [, to induce a representation rr of A which is 
unitarily equivalent to c. 

Let Z = (0) x (0) x C and Z, = (0) x (0) x C, be the centers of N and 
N,, respectively. Then, C, c C. Let N, be the group defined as the set 
A, x A, x C where the composition law is given by (a, b, ~)(a’, b’, c’) = 
(a + a’, b + b’, c . ~‘(a, b’)), where u, b E A, and c, c’ E C. Then, N(A,) c 
N(A,)# as a subgroup and N(A,)#/N(A,) z C/C,. Extend cl to a represen- 
tation c of fl be requiring c(O, 0, c) = c, c E C. 

Let K and C be the subsets of N defined by 

K=M,/MXM,/MX (l), 

C = (aM,)‘/M X (aM,)‘/M X C. 

LEMMA 4.5. K is un ubeliun subgroup of N and C is its centralizer on N. 
Moreover, J(K) = K and J(C) = C. 

Proof. Let a, b’ E M,. Then T(aub’) c Z by definition. Thus, if (a, b, 1) 
and (a’, b’, 1) are in K, then 

(a, b, l)(u’, b’, 1) = (a + a’, b + b’, (a, b’)) E K 

since (a, b’) = e2niT(oab’) = 1. 
Now, let (u’, b’, c’) E N be in the centralizer of K. Then, for all 

(a, b, 1) E K 

(a, b, l)(u’, b’, c’) = (u’, b’, ~‘)(a, b, 1) 
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which implies (a, b’) = (a’, b) for all a, b EM,. Thus, e2n’?u(?“-a”‘)) = 1, 
for all a, b E M, and it follows that b’ E (uM,)’ and a’ E (aM,)‘. 
Conversely, the same argument shows that C is contained in the centralizer 
of K and hence must be the centralizer of K. 

The final assertion is obvious and the lemma is proved. 
Consider the natural mapping (aM,)‘/M + (aM,)‘/~, . Denote, again, by 

p the mapping 

p: c-r N(A,)” 

given by P@, b, 4 = (P(U), p(b), c), a, b E (aM,)< c E c. 
The next result is obvious. 

LEMMA 4.6. The mapping p: C + N(A,)” is a homomorphism satisfying 
the short exact sequence 

1-1#+ Cp’N(A,)“+ 1. 

Consider the representation of C on L*(A ,) given by 

Clearly, since J(C) =-C, K, - J is. also a representation of C. Since, 
F,;‘c, F, = cl - J, it follows that F;‘n,F = 11, -, J, and F, is an intertwining 
operator between rrr and II, - J. 

Let rr be the representation of N defined by inducing x1 to N. We will 
study K. By the general induced representation theory the representation 
space W of K is given as follows. Observe that N(A)/C z (aM,)‘/(aM)’ @ 
(aNI)‘/(a Let n, = 0, n, ,..., n,-, be a complete system of representations 
for (aMI)‘/(a Then, we can write 

W = @ W(i, j), 
I<l,i<r 

where W(i, j) = X( ( n,, nj, I}, L*(A,))EL*(A,). Let zc be the restiction of 
z to C. Then, 

q I W, j) = nl . @An,, nj, 1). 

LEMMA 4.7. Using the notation above, for (a, b, c) E C, 

%(G b, c) I W(i, j) = (n,, b)(u, n,)-’ a,(~, b, c). 
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Proof: Let (a, b, c) E C. Then, 

ad,(n, nj, l)(~, b, C) = (u, b, c * (ni, b)(o, nj)-‘). 

It follows that for f E W(i, j) E L*(A,) and a’ E A 1, 

(71C(u9 b, c)f)(u’) = Kl(u3 b3 c(niY b)(u9 nj)-l)(f(u'>) 

=Cf(U, b,C(ni, b)(U, Rj)-')(f(U')) 

=C(ni,b)(U, nj)-'(U',b)f(U'+ U) 

= (ni, b)(U, nj)-' x1(& by C)df(u'))* 

COROLLARY 4.7.1. II, 1 W(i, j) is irreducible. 

COROLLARY 4.7.2. xc 1 W(0, 0) = 7t,. 

COROLLARY 4.7.3. II&, b, 1) 1 W(i, j) = (ni, b)(u, nj)-‘, (a, b, 1) E K. 

The last corollary implies that each of the spaces W(i, j) is a character 
space for n(K) with character 

(a, b, 1) + (n,, b)(a, nj)-’ = e2niT(n(nib-nja)). 

Since, @4,/M @ M,/M)* = (aM,)‘/(aM)’ @ (oM,)*/(aM)‘, it follows that 
each W(i, j) corresponds to a distinct character space and all characters are 
realized. From, the general theory of induced representations, we get the 
following results. 

COROLLARY 4.7.4. zc 1 W(i, j) N n, I W(k, I) if and only if i = k and j = 1. 

COROLLARY 4.7.5. z is irreducible. 

COROLLARY 4..6. z is uniturily equivalent to [. 

Clearly, n and rr a J are unitarily equivalent. Let 3 be an intertwining 
operator between 3 and rr . J with T-‘rrZ = rr - J. 5+’ is determined only up 
to constant multiple 1 where (AI = 1. We will eventually want to choose a 
particular 3. 

LEMMA 4.8. 3’(W(i, j)) = W(j, -i). 

Proof. Let f E W(i, j) and (a, b, 1) E K. Then, 

(n * J)(u, b, l)f= x(-b, u, l)f = (ni, u>(n,, b)f: 
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Since.?‘-‘zY=n.J,wehave 

((3-‘d)(a b, l))f= (n,, a>(+ b)f. 

By multiplying on the left by 3, we have 

Ma, b, 1)) T(f) = h M,, b) W-J, 

which by Corollary 4.7.3 implies Zu) E W(j, -i). 

COROLLARY 4.8.1. T(W(O,O))= W(O,O). 

Let .s’(i, j) = ,1 1 W(i, j): W(i, j) + W(j, -i). Now, since 3-l . x -3 = 
A . J and J(C) = C, we have 

By Corollary 4.7.2, xc 1 W(0, 0) = xi and it follows that if 3 1 W(0, 0) = 
.s’(O, 01, 

qo, 0)-l - n, -Z”(O,O)=n, -J,. 

Thus, T(O, 0) is an intertwining operator between II, and II, . J,. But, F, is 
also, so F, = D’(O, 0) for some [Al= 1. Replace 3 by U as our specified 
intertwining operator above. Thus, we will assume 3 has been chosen so 
that 

F, = f(0, 0). 

Clearly, 3 is uniquely determined by this condition. For the remainder of 
this section 9 will be fixed. 

Consider V(0, 0) = L - ‘rrL = p. Thus, L is an intertwining operator for x 
and p. As we have seen LFL - ’ is a intertwining operator for II and IL . J. 
Hence, LFL-’ =U, IrZl = 1. We will now show 1= 1. 

Consider V(0, 0) = L - ‘( W(0, 0)). V(0, 0) is a character one space for px . 
Hence, if fE V(O,O), and (a, b, 1) EK we have p(u, b, l)f(u’) = 
(a’, b)f(u’ + u)=f(u’), w  h erever a’ E A. This implies f(u’ + a) = f(u’) 
and (a’, b) f(d) = f(u’) for all a, b E M,/M and u’ E A. It follows that we 
may view f as a function on (c&f)‘/M, by the first condition and that f 
vanishes off of (c&f,)’ by the second condition. Thus, f E L2(A,). In this 
way, we may identify V(O,O) with L’(A,) and we shall do so in the 
following discussion. Clearly, pc I V(0, 0) = n, 1 W(0, 0) which implies 
L - ’ I W(0, 0) is a scalar multiple of the identiy. Now, F I V(0, 0) = F, ; thus 
from 3 = F, on W(0, 0) it follows that L . F . L -’ = 3’ on W(0, 0). 
Clearly, i = 1. We organize this discussion in a lemma. 
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LEMMA 4.9. Let 3’ be the intertwining operator between 7c and x. J, 
uniquely determined by the condition 3 1 W(0, 0) = F,. Let L be an 
intertwining operator between x and p with L-‘XL =p. Then, F = L -‘.YL. 

We will now consider the implications of this lemma for computing 
G = tr(F). Clearly, we need only compute tr(3’). By Lemma 4.8, and our 
normalizing assumption on 3, we have 

tr(3) = tr(F,) + c tr(J(i, i)). 
0#2n,~(aM,)’ 

LEMMA 4.10. Let o(M,/M) be odd. Then 

G = tr(3’) = G,. 

ProoJ Since o((aM)‘/(aM,)‘) = o(M,/M) we have that no element in 
(aM)‘/(aM,)’ has order 2. Thus, the right-hand sum is vacuous. 

We shall consider the general case. Let Y(i) = f(i, i), 2n, E (aMI)‘. Since 
7~~ 1 W(i, i) and II~. J 1 W(i, i) are irreducible and 3’(i) intertwines them, any 
intertwining operator between them will be a constant multiple of 5’(i). We 
shall construct a convenient one. 

LEMMA 4.11. F, - s(2n,) is an intertwining operator between xc 1 W(i, i) 
and zc . J 1 W(i, i). 

Proof. We will restrict our attention our attention solely to W(i, i). Now, 

&, b, C> = (ni, b)(a, ni)-’ q(a, b, c), (a, b, c) E C. 

nc * J(a, b, c) = (b, ni)(ni, a) x1 - J(a, b, c), (a, b, c) E C. 

From F;’ . z, . F, = n, . J, it follows that 

xc . J,(a, b, C) = (b, ni)(a, n&F;’ - Ir,(a, b, c) . F, = (2n,, a)F;’ . 

We defined s(b,)f(a,) = (a,, b,)f(a,), a,, b, E A ,, from which it follows 
that we can write 

s(2ni)-’ - n,(a, b, c) s(2ni) = (2ni, a) z,(a, b, c). 

Placing this result in the preceding, gives 

S(2ni) * F, - nc * J(a, b, C) - F;’ - s(2n,)-’ = Ir,(a, b, c) 

which proves the lemma. 
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COROLLARY 4.11.1. s’(i) = A,r(2n,) . I;, for some [Al= 1. 

We will now compute tr(s(2nJ . F,). Take a, b E A,. Then, m, = o(A,), 

(SW - WN9 = -&= (2~ b) c (G 4 e,(b) 
C 

= k Pi, b)(a, b) = l/fi(Zn, + a, b) 

=$= c (2n, +a,c)e,@) 
ml cEA, 

from which we may deduce 

tr(s(2nJ . F) = + c (2n,+a,a). m 
I ~EAI 

LEMMA 4.12. If a/4 E (Mf)’ then 

tr(s(2nJ * F) = 0, i # 0. 

Proof: Since M, c fM, c (aM,)’ we may write a E (aM,)‘/M, as 
u=a’ +a”, where a” runs over a complete set of representations in 
(aM,)‘/fM, and a’ E @4,/M,. Then, 

tr(s(2nj) . F) = 
+= 

e2nlT(a(a’*+2.‘cr”+a”2+2nlo’+2n,a”)) 

m,  d,d~ 

But T(aa’ ‘) c Z and T(aa’u “) c Z. Thus, simplifying, 

tr(s(2nJ . F) = 

Since 2n, 6$ (c&f,)‘, the mapping 

a’ ~ e2niT(2an,o’) 

is a non-trivial character on fM,/M, and the inner sum is 0. 

COROLLARY 4.12.1. Suppose M c M, sutisfv a/4 E (M:)‘. Then 

G=G,; 

Recall, G = G(M, a) and G, = G(M, , a). 
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COROLLARY 4.12.2. Suppose M c M, are a-integral modules. Then 

G(M, 4a) = G(M, ,4a). 

Let M,, M be two a-integral modules. Then M, n M is an a-integral 
module. Thus, M, n M, c M, implies 

G(M, n M, ,4a) = G(M, ,4a) 

and M, n M, c M, implies 

G(M, n M,, 4a). 

Thus, G(M, ,4a) = G(M, ,4a) and G(M, 4a) is independent of the a-integral 
module M in k. Hence, unambiguously, we can write G(4a). We will now 
compute G(4a) assuming the one dimensional case; namely, for I E Zx, 

G(40 = & ,,z4,,, e2nik2’4n = 
i 

1 + i, I> 0, 
1 _ i, I < 0. 

The evaluation of the classical Gauss sum G(41) can be found in many 
places. (See [l] or [5].) 

Before we begin the proof of Theorem A, we will make some additional 
comments on the Q-bilinear form of R. 

(u, 0) -, T(auu), u, v E k. 

Denote this form by T,. In particular, we will show that the signature of this 
form is 

S(a) = i sgn,(a). 
i=l 

The geometric embedding of 1 

u: k-+ IRS @ cc’ E Rh, h = s + 2t, 

(see Section II), is defined by 

o(p) = (f-J,Ga)Y., o,Ga); us+ ,m-, ~,,fCO))~ #8E k. 

As is well known, u(A) is a rational vector space and 

Rk = u(4) @Q R. 

Component-wise addition and multiplication makes Re @ C’ into a ring and 
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the mapping u: k + IRS @ Cr is a ring injection homomorphism. Define the 
R-linear form T’: IRS x C’-+ R by setting 

Then, T’(c@)) = T(8) whenever p E R. Consider the R-bilinear form on 
IRS x C I, viewing IRS x C I as the R-vector space R ‘, 

(u, v) + T’(a - u . u), u, ?J E IRS x C’. 

This is clearly the R-linear extension of the Q-bilinear form T, to W X C’ 
and hence the signature of the two forms are identical. By identifying 
W x C’ with lRh and choosing the standard basis for Rh, the matrix of, 
(u, v) + T’(auv), is given by 

r 
o,(a) 

T 

. . .o,(a) 
a s+1 -$+I 

, 
4, I -Qs+I 

. . Q s+t -k+* 

c -b,+t -Qs+t 

where a,,, = 2 real part of u,+,(a) and b,+, = 2 imaginary part of u,+,(a). 
The signature is clearly S(a). 

THEOREM A. G(4a) = 2”’ eZx’S(a)‘*. 

Pro01 The Q-bilinear form of R 

da, 7 82) --* %A&)~ A,P* EL, 

diagonalizes. Thus, there exists a basis Us,..., v,, of R over Q! such that 

i = j, 

if j, 
i Q i, j Q h, 

where I E ZX and sgn,(a) = sgn(l,), j = l,..., s. Let M be the full module 
spanned by u1 ,..., uI. The dual M’ is then spanned by av,/l, ,..., av&. A 
typical point y E (4aM)‘/M can be written 

where Ogm,<4(1,1. 
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Thus, 

G(4a) = l/fi c e2niT(4aY2) = 116 C C e2ni(&411), 

YE (4&f) ‘lM j=l O<~j<411jl 

G(4a) = fi G(41j) 
j=l 

and the theorem is proved. 

V. GENERALIZED COOLEY-TUKEY ALGORITHM AND 
HECKE TRIGONOMETRIC SUMS 

This section is totally self-contained and draws no material form 
Section IV. Indeed, we will re-prove all the results of Section IV in a slightly 
more general setting. Our work in this section has been modelled on the 
approach of Cooley and Tukey [4]. 

Let us begin by recalling the Cooley-Tukey algorithm. In order to get the 
flavour of their thinking, we will quote from their original paper [4]. 

Consider the problem of calculating the complex Fourier series 

(1) 
N--l 

X(j) = 1 A(k) Wjk j = 0, l,..., N - 1 
k=O 

where the given Fourier coeffkients A(k) are complex and W is the principal Nth 
root of unity 

(2) w = pi/N. 

. . . Suppose N is a composite, i.e., N = rr rz. Then let the indices in (1) be 
expressed 

(3) 
j=j,r, +.A j, = 0, l,..., r, - 1 j, = 0, l,..., r2 - 1 

k = k, r2 + k, k, = 0, l,..., rl - 1 k, = 0, I,..., r, - 1 

Then, one can write 

(4) 

Since 

X(j, , j,) = s x A(k,, /co) Wjk’ r2 WikO 
ko k1 

(5) Wiklrz = ppklkz 

the inner sum, over k,, depends only on j,, and k, and can be defined as a new 
array, 

(6) A,(j,,k,)=~A(k,,k,) Wjoklr2 
ka 
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The result can then be written 

(7) X(j,, jo) = c A,& k,) W(“r’+‘o)ko 

There are N elements in the array A I, ‘each requiring r, operations, giving a total of 
Nr, operations to obtain A,. Similarly, it takes Nr, operations to calculate X from 
A. Therefore, this two step algorithm, given by (6) and (7), requires a total T= 
N(r, + rz) operations. 

We see that Cooley and Tukey looked at their algorithm as a “divide and 
conquer” algorithm and they arrived at their algorithm combinatorially. 

We will now see how the Cooley-Tukey algorithm can be structured in a 
different way. (For further discussion of this type of restructuring see [9].) 
Let F(n) denote the Fourier transform matrix on n points and let A(i), 
i = O,..., n - 1, be the inputs that we think of as a column vector A. Our 
problem then becomes to evaluate @)A =X. Using the above notation, let 
(k,, k,) be ordered anti-lexicographically and let PO be the permutation 
matrix that takes O,..., n - 1 into (k,, k,) in this ordering operating on 
columns. Then 

F(N) P; P,A = X 

and 

P&N) P; P,A = P,,X. 

Let F&V) = P,F(N)P~, A,, = P,A, and X,, = P,X. Our’ task becomes to 
compute F,(N)A, = X0. 

Equation (6) in this notation can be rewritten as 

where 
A, =L,A,, 

where I+,) is the Fourier transform matrix on rl points and L, is an 
r, r, x r, r2 matrix. 

We next separate (7) into two steps. 

Step 1. Define A, = DA,, where I) is a diagonal matrix with diagonal 
terms e2”uokdN ordered anti-lexicographically in (j,, k,). 

Step 2. Let P, be the permutation matrix that reorders (j,,, k,) from 
anti-lexicographical to lexicographical ordering again operating on columns. 
Then 

PlX, =W’, A,, 
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where 

and F(r,) is the r2 x rZ Fourier transform matrix. Thus 

X0 = P;L, P,DL,Ao 

or 

F,,(N) = (P;LsP,) DL,. 

Thus the Cooley-Tukey algorithm can be considered as a factorization of 
the finite Fourier transform matrix by matrices that are either diagonal or 
built from the finite Fourier transforms F(r,) and F(r,) and permutation 
matrices. 

Now the matrix factorization 

F=L-IYL 

that was so important in our study of Hecke trigonometric sums has the 
property that each of the matrices 3’ and L were built from the Fourier 
transform and diagonal matrices in much the same way as F(N) was 
factored in the Cooley-Tukey algorithm. This suggests that we try to find a 
multidimensional Cooley-Tukey of algorithm that would yield an evaluation 
of G(M, 4a) by combinatorial means. If we could succeed, we would be able 
to able to obtain a combinatorial proof of Hecke’s result, see how to 
formulate a multidimensional Cooley-Tukey algorithm, and, perhaps, help 
build a bridge between “pure” and “applied” mathematics. 

One of the crucial ingredients in the Cooley-Tukey algorithm is a choice 
of coset representatives for quotient group Z/NZ. For n E H +, consider the 
coset representatives 0, l,..., II - 1 of the cosets Z/nZ. We notice that we can 
describe O,..., n - 1 as those elements a E Z such that 0 < a/n < 1. 

Consider V as column k-vectors with rational entries and let 2 c Y be an 
additive subgroup of k-vectors all of whose entries are integers. The non- 
singular k x k matrices with integer integer entries will be denoted by 
GL(k, Z). For A E GL(k, Z), Z I> AZ and 

Z/AZ 

is a finite abelian group. We need to be able to describe coset representatives 
for Z/AZ in much the same way as we did for Z/nE. To do this, let us define 
Ic V as the set of all vectors u all of whose coordinates ui satisfy the 
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condition 0 < a, < 1, i = l,..., k. Now let S, = {a E Z 1 A -‘a E I}. We claim 
that S, is a set of coset representatives for Z/AZ. To verify this, first notice 
thatifaEZand 

A-+2=6+& 6EZ, (EZ, 

then A6 E Z because both Q and At are in Z. Thus S, has sufficiently many 
elements. Next, let a, a’ E S be in the same coset or let 

u=u’+A& <EZ. 

ThenA-‘u=A-‘u’+~.SinceA-‘uandA-‘u’areinZand~EZ,wehave 
r = 0 and a = a’. This completes the proof of our assertion. 

Let V be the row k-vectors and consider V as the dual space to V with 
the pairing given by matrix multiplication. We will let Zf c v’ be the 
additive subgroups of row R-vectors all of whose coordinates are integral. 
Let A E GL(k, Z) and let (Z/AZ)- denote the dual group to Z/AZ. We want 
a good working description of (Z/AZ)-. For u E Z’ and a E Z define 

B(a, a) = e2nfaA-‘a. 

To simplify notation, we will henceforth denote ezx’() by E( ). We claim that 
B induces a pairing 

B*: Z’/Z’A x Z/AZ + Cc. 

To see this, notice that if a E Z 

B(u’, Au) = 1, a’ E Z’. 

Similarly, if a’ E Z’ 

B(u’A, a) = 1, uEZ*. 

Hence B factors through Z’/Z*A x Z/AZ and so we have defined B*. The 
rest of the argument is straightforward. 

With this pairing of Z/AZ with its dual group, we may write the F’ourier 
transform as 

W)(a) = -$;; a; WA-‘4fW, A 
where 8 = order Z/AZ and a’ E Z’/Z’A. We let 

F(A) = (E(u’A - ‘a)), a’ E Z’/Z’A, a E S,. 
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Since Z’/Z’A can be identified with Z/A’Z we may form S,, and view 
a’ E (S,,)‘. We will henceforth do precisely this. 

We may now introduce the analogue of L/r, r2 Z. Let A, B E GL(k, Z) and 
consider Z/ABZ. We will now construct a generalized Cooley-Tukey 
algorithm for evaluating F(AB)X. 

We first choose 

We next choose a set of coset representatives of Z/ABZ that respects the 
above diagram. To do this define 

S(AB)={Ab+aIbES,,aES,}. 

We assert that S(AB) is a set of coset representatives of Z/ABZ. (In general, 
S(AB) # S,,.) This assertion may be verified as follows: First, the elements 
of S(AB) belong to distinct cosets. For if 

Ab+a=Ab’+u’+ABz, ZEZ, a,a’E,, b,b’ES,, 

then b + A-la = b’ + A -‘a’ + Bz. Equating fractional parts, yields a = a’. 
But since b and b’ E S,, b = b’ + Bz, implies that b = b’. 

To see that S(AB) has enough elements, let z E Z. Then A - ‘z = 6 + <, 
TEZ, 6 E I. Because A6E Z, a =A6E S,. Now z-u =A<. But, there 
exists a unique b E S, such that < = b + B<‘, t’ E Z. Hence 

z-u=Ab+AB’r 

or 

z=(Ab+u)+ABij’ 

and so S(AB) has enough elements. 
We have, of course, that (Z/ABZ)- may be identified with Z’/Z’AB which 

may be identified with A/B’A’Z. It is easily verified that 

S(B’A’) = {aB +P I a E (S,,)‘, ,8 E (S,,)‘}. 

We will let 1 Cl = order Z/CZ. Then 

F(AB)(f)(~ + PI 

= IA I&’ as&,,, E((aB +P)B-‘A-‘(Ab + u)f(Au + b)) 



HECKE’S THEOREM 163 

These formulas are exact analogues of formulas (6) and (7) of the 
Cooley-Tukey algorithm and, of course, may also be interpreted as factoring 
the Fourier transform matrix F(D). Again, there exist permutation matrices 
P, and P, such that 

Pf,F(AB)Po = (P;L&) DL,, 

where 

We could now go through a counting argument exactly as Cooley and 
Tukey did in their classical paper. But rather than doing this, we will use a 
modification of the above construction to obtain I;(ABA’) = L -‘TL which 
specializes to the construction of our previous section. 

We begin by looking again at S,, A E GL(k, Z). We want to define a 
group law of composition on S, and analogous to working modulo n. Thus if 
a,, a, E S, , define 

a, + a2 =A((A-‘a +A-‘a,‘) mod Z), 

where mod Z denotes taking the fractional parts of all components. One 
verifies that this operation makes S, into an abelian group isomorphic to 
Z/AZ and that the inverse of a E S, , denoted by -a is given by the formula 

-a=A((l --A-‘a)modZ) 

when 1 = (l,..., 1)‘. 
We will henceforth assume that B = B’; i.e., that B is equal to its 

transpose. This really simplifies the formulas and it is the only case needed 
in Hecke’s work. Hence we want to compute F(ABA’) by twice applying the 
generalized Cooley-Tukey algorithm. Of course if C = AB, we may consider 
ZI CZI> CA’Z and ZZI AZxABZ which combine to yield Zx AZ2 
ABZ 2 ABA’Z. Similarly, by twice applying generalized Cooley-Tukey 
methods for choosing factor sets, we obtain 

S(ABA’)={ABc+Ab+aIcES,,,bES,,aES,}. 

601/43/2-5 
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Since (ABA)’ = ABA’, we can identify the dual group of Z/ABA ‘Z with itself 
or with Z’/Z’ABA’. Let c’ E (S,,)‘, b’ E (S,)‘, a’ E (S,)’ and (C-i)’ = C* 
for any matrix C. The factor set for the dual group to Z/ABA ‘Z is {c/&4’ + 
PA’ + a’}. Further, let 

g(c, b, a) = f(ABc + Ab + a), 

&yc’, b’, a’) = F(ABA’)df)(c’BA’ + b’A f + a’). 

Then by the formula for the Fourier transform, we have 

&c’, b’, a’) = c c 2 E((c’VA’ + b’A’ + u’)A *B-‘A -‘(ABC + Ab + a)) 
a b c 

x g(c, b, a) 

x 1 E((c’BA’ + b’A’ + u’)A*B-‘a) 

b 

x c E((c’BA’ + b’A f + a’) A *c) g(c, b, a) 
c 

= I x II x III. 

Now III reduces to 

c E(u’A *c) g(c, b, a) 
c 

which is the Fourier transform F(A’), because Z/A’Z is dually paired to 
Z/AZ. (Recall, that if c E S,, the coset representations of the dual group 
may be taken as (S,)‘.) We now apply a permutation matrix and write 

c E(u’A *c) g(c, b, a) = &(a’, a, b). 

Next notice that II has a factor E(u’A *B - ‘b) and so we may form 

hl(u’, a, b) = E(u’A*B-‘b) &(a’, a, b). 

Hence we have a linear transformation L such that 

h, = Lg, 

where L = DF,, where D is a diagonal matrix and F, is built from a direct 
sum of F(A’) and a permutation matrix. Thus after some elementary 
operations, we may write 
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&c’, b’, a’) = c E((c’BA’ + b’A’ t a’) A *B - ‘A - ‘a) 
0 

x c B(b’B-‘b) hl(u’, a, b). 
b 

From this it is easy to see that 

F(ABA’) = L, 9;L, 

where S; is built from the Fourier transform F(B) and L, is built from a 
direct sum of F(A)% up to a diagonal and a permutation matrix. Unfor- 
tunately, L, # L - ‘. We need to work harder to obtain 3’ such that 
F(ABA’) = L -‘3’L. 

It will be clearer if we build .Yin stages. Begin by defining 

hz(a’, U, b’) =C E(b’B-‘b) hi(u’, U, b) 
b 

so that h, is obtained from h, by a direct sum of F(B). Next define 

h,(a, u’, b’) = h,(u’, a, b’), 

where a = -a. At this point in our computation 

I(c’, b’, a’) = c E(c’A - ‘a) E(b’B- ‘A -‘a) E(u’A *B-IA - ‘a) h&z, a’, b’). 
a 

Now multiply by 1 =E(u’A*B-‘6’) E(-u’A*B-‘b’) and let 

J’(h,(a’, a, b)) = h,ta, Q’, b’), 

where 

Then 

&c’, b’, a’) = c E(c’A -‘a) E(-u’A *B-lb’) h&t, a’, b’). 
(I 

Let &‘, b’, a’) = L, h,(a, u’, b’). Then L, is built from the permutation 
matrix that takes (a, a’, b’)-t (a, b’, a’) (notice ‘this matrix is its own 
inverse), the diagonal matrix of multiplication by E(-u’A*B-‘b’) which is 
the inverse of E(u’A *B- lb) and finally from C, E(c’A -‘a) h,(a, a’, b’). But 
because a = --a we have this as a sum 

c E(-c’A-‘a) h,(u, a’, b) 
a 
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or the matrix F(A)-‘. This proves that L, = L -’ and we have that 
F(ABA’) = L -‘S’L as ,we wished to prove. 

After sorting out indices we have that the trace 3’ is describable as 
follows: Let C= (cES,I-c=c}. Then 

tr(K) = c 2 E((A-‘c + b)’ B-‘(AT’C + b)). 
CEC bESB 

Let D = A -‘C. Then d E D implies that d = 1/2u, where the coordinates of u 
are 0 or 1. Hence 

tr(3’) = c c E((d + b)‘B-‘(d + b)). 
deD bsS, 

Let ej be thejth coordinate vector. Assume thejth column of B is even or, 
equivalently, rj = ej/2 E S, . Let X be a coset of the subgroup generated by 
rj : then S, = XV (tj + X), for fixed d, 

c E((d + b)‘B-‘(d + b)) 
beS, 

= r E((d+b)*B-‘(d+b))+E((d+tj+b)‘B-‘(d+sj+b)) 
b?X 

= T E((d+b)*B-‘(d+b)) 1 +E(e,!(d+b))E . 
bz 

If we assume eid = 4 and the (j, j) term of B, bjj, is divisible by 4, then 1 + 
E(ej(d + b)) E(ei(B/4)ej) = 1 + E(i) = 0. Hence, if for each d E D, d # 0, 
there exists j such that ej/2 E S,, efd = f, bjj/4 E Z (for example, if every 
element of B is even, and bjj is divisible by 4 for every j), we obtain our 
desired result that 

tr(F(ABA*)) = tr(3’) = x E(b*B-‘b). 
beS, 

One verifies that the above conditions are satisfied when we want to apply 
this method to the Hecke results. 

VI. FROM INDUCED REPRESENTATIONS TO COOLEY-TUKEY 
IN A HECKE SETTING 

The results in Sections IV and V suggest that there must exist a deep 
relation between induced representations of finite Heisenberg groups and the 
generalize Cooley-Tukey algorithm. We will close this paper by establishing 
this relation in the setting of full modules of number fields. (The interested 
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reader should not have too much difficulty in carrying this out in a general 
setting.) Doing this will indicate how one could replace the discussion in 
Section IV with that of Section V. 

In this section we will return to the notations of Sections I through IV. Let 
a E A” and let M c M, be a-integral modules in A. Set A = (&)‘/A4 and 
A, = (aM,)‘/M, . Let F and F, denote the Fourier transforms of A and A,, 
respectively, where we have identified A and A, with their dual groups as 
usual. Put I = o(M,/M) = o((aM)‘/(aM,)’ and s = o(A,). Then rs = 
o((aM,)‘/M) and r’s = o(A). Let 0 = n,, n, ,..., n,-, E (a.M)’ be a set of 
coset representations of (aM)‘/(aM,)’ and 0 = y,, y, ,..., ys- r E (CUM,)’ be a 
set of coset representatives of A,. 

Consider the representations t; and rr of N(A) defmed in Section IV. Recall 
that [ is defined by the formula 

m, b, c)f)W) = c(b, a’> f(a’ + a>, 
where (a, b, c) E N(A), a’ E A, f E L’(A). The representation n was given as 
an induced representation; namely, it was induced from the representation K, 
of 

Q = (aM,)‘/M X (aM,)‘/M X C 

on L’(A,). The representation space W of R can be written as 

W= 0 C W(i, j), 
O<l,l<r 

where each W(i, j) N L’(A,) is invariant and irreducible under the represen- 
tation rr(%Y). In particular, 

@, b, c) I Wi, j) = (n,, b)(n,, a)-’ ~,(a, b, c), 

where (a, 6, c) E Q and therefore W(i, j) is the character space for n(K), 
where K = Ml/it4 x MJM x (l), corresponding to the character of K given 
by (a, b, c) -, (q, b)(+ a>-‘. 

Let L: L*(A) + W be an intertwining operator between c and x. Then we 
showed that there exists a unitary operator.3 of W such that 3 was an 
intertwining operator for 1~ and x0 J and F = L - ‘TL. The importance of the 
operator 3’ is that its structure is simplified by the property: 3( W(i, j)) = 
W(j, -i). This is equivalent to F(L - ‘( W(i, j))) = L - ‘( W(j, -i)) and hence 
we shall study F on the subspaces L - ’ ( W(i, j)), 0 Q i, j < r. 

Set V(i, j) = L-‘( W(i, j)), 0 < i, j < r. We will begin by describing the 
subspaces V(i, j) of L*(A). 
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LEMMA 6.1. V(i, j) consists of all functions f E L’(A) which satisfy 

(i) f vanishes outside of (ni + (aM,)‘)/M, 

(ii) f(a’+a)=(nj,a)-‘f(a’), aEM,/M, a’EA. 

ProoJ For any f E V(i, j) 

d(a, b, l))(L(f )) = (ni, b)(nj, a>-‘L(f ), (a, b, 1) E K. 

Thus CC@, h l))f = (ni, b)( nj, a)-‘$ By the definition of [ this implies that 

t*> (b, a’)f(a’ + a) = (ni, b)(nj, a)-‘f(a’), 

where a, b E M,/M and a’ EA. In particular, 

(ni, b)f(a’) = (h a’)f(a’), bEM,/M, a’EA, 

from which is follows that f(a’) = 0, for a’ E A unless (a’ - ni, b) = 1 for 
all b E M,/M. Thus, f vanishes outside of (ni + (aM,)‘)/M. The second 
assertion follows directly from (*) if we put b = 0. 

Let f E L*((aM)‘/M) an d consider F(f). Our method for evaluating F(f) 

is as follows: 

(1) Writef = C0<i,jcrhj9 -6~ E WV.0 

(2) Find F(f;l), 0 < i, j < r. 

(3) From F(f)=CO<i,j<rF(fij)* 

Let f E L*((aM)‘/M) and a E (aM)‘/M. For 0 <j < r, put 

tj(a) = + rez,M f (a + x)(x, nj>. 
I 

It is easy to see that 

&(a + a’) = (a’, nj)-’ &(a), a’ E M,/M, 

and, since 

C (X3 nj) = 4 Xf 0, 

O<j<r 
= r, x = 0, 

a simple computation shows that f = CoGjCr&. Take 

Ay = .fj I (ni + (fl, )‘)/M 

The following result is now easily verified. 
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LEMMA 6.2. L3((uM,)‘/M)=@ Co,.,<, V(0, j). 

We will also require the following result. 

LEMMA 6.3. Lz((aM)‘/MI) = CoGlcr V(i, 0). 

Proof. By Lemma 6.1, if $ E CoCiCr V(i, 0) then f is invariant under 
translation by M, . The remainder of the proof is now obvious. 

Recall that the symmetric isomorphism D: A --t A* was defined by 

(a, b) = (a, Db) = e2nfT(n*b), U,bEA, 

and consider its restriction to (czM,)‘/M. Take b E (aM,)‘/M. Then, 

Db(x) = (x, Db) = (x, b) = e*n’r(oxb) = I 

for all x E M,/M. Thus Db E ((aM)‘/M1)*. It is easy to show that the 
mapping 

b + Db: (aM,)‘/M + ((aM)‘/M,)* 

is an isomorphism. Also, D satisfies the short exact sequence 

0 --t M, --f (aM)’ 4 ((aM,)‘/M)* + 0 

and hence (aM)‘lM, = ((aM,)‘/M)*. W e will fix this identification in all 
that follows and let 

be the corresponding Fourier transform. 
We will also need to consider the Fourier transform of the * group 

(aM)‘/(aM,)‘. The same argument as above shows that 

Let 

be the corresponding Fourier transform. 
We will now consider the behavior of F restricted to each of the subspaces 

V(i, j). By Lemma 4.8, F defines an isometry from V(i, j) to V(j, -i). Thus, 
it defines an isometry @ x5;: V(0, j) --) @ C;zi V(i, 0). As above, we let F, 
be the Fourier transform of (aM,)‘/M, Then the following result is now 
immediate. 
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LEMMA 6.4. F,, = \/;F 1 L*((aM,)‘/M), where we identifr L’((aM,)‘/M) 
with @CsLA V(0, j). 

Since 0 = yO, y, ,..., y,-, is a complete set of coset representatives of 
(aM,)‘/M, = A and 0 = n,, n, ,..., n,-, is a complete set of coset represen- 
tatives of (aM)‘/(aM,)‘, every a E (aM,)‘/M can be written uniquely as 
a’ = nj + yk + x, 0 < j < r, 0 < k < s, x E M,fM. This notation will be main- 
tained for the rest of this section. 

We will now study the action of F on V(i, j). Take f E V(i, j) and 
consider the function 

g(Y) = (nj3 WVj + Y>, Y E (aM,)‘* 

Property (ii) in the definition offE V(i, j) implies that 

dY +x> = i?(Y), XEM,. 

Thus, we may view g E L*((aM,)‘/M,). 

LEMMA 6.5. Let f E V(i, j) and let a = nj + y, + x E (aM)‘/M, 
O<j<r,O<I<s,xEM,/M.ThenFdf)EV(j,-i)and 

W)(Q)= (n~~“)~y~, dY>(Y, or>= (ni,a)F,k)(Ydv 

where g E L*((aM,)‘/M,) is defined by 

g(Y) = (nj7 Y).fCni + Y>, YE @MA’. 

Remark. When we want to explicitly express the dependence of g on ni 
we write g = g,. 

ProoJ Since jvanishes outside of (ni + (aM,)‘)/M, it follows that 

Using 

f(ni + Yk + x’) = (x’v nj)-‘f(ni + Yk) 

we can write the above equation as 

F(f) = (x’, c.2 - nj> x f(ni + yk)cni + Yk, a>* 
O<k<s 
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Because CXtEM,IM (x’, a - n,) = r, it follows that 

The lemma now follows the definition of g. 
Let f E L’(fi/M). Write f = C o<,,,_<r.f& ft, E WA. Then F(f) = 

c O<l.,<rF(f;i) and ifa=n,+y,+xEWM 

W)(a) = 2 F(fu)(4. 
O<f.l<r 

We will now explicitly carry out the steps indicated by the above formula. 
Let g,, E L*((aM,)‘/M,) be defined by 

&j(Y) = (Yt n,>fu(n* + Y), Y E (Ml)‘. 

Form F,(g,,)(y,) and define h E L*((aM,)‘/(aM,)‘) by requiring 

w%) = h, Yf + n,> m3tj)(Y,)~ O<i<r. 

Clearly, h depends upon y, and ni. By Lemma 7.3, 

which by the definition of h becomes 

We organize this discussion in the following lemma 

LEMMA 6.6. For f E L*((aM)‘/M) and a = n, + y, + x E (aM)‘/M, 

F(f)@) = fiF2(Wx)9 

where k E L*((cM)‘/(aM,)‘) is defined by 

k(q) = h nj + ~,)F,(g,,)(y,)~ O<i<r. 

As a special case, considerf E L*((aM,)‘/M) c L*((aM)‘/M). Recall that 
F, = t/; F 1 L*(aaM,)‘/M). 
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COROLLARY 6.7. Let fE L*((aM,)‘/M) and s = nj + y E (aM)‘/M, . 
Then 

FoV)(a) =L y 

fi yc4, 
(Y', U>(nj, Y') 5 x Ez,, f(f + X’)(X’, nj). 

I 

This corollary is the generalized Cooley-Tukey algorithm in a Hecke 
setting. 

We will close this paper with an interesting special example-the classical 
Cooley-Tukey algorithm. 

EXAMPLE. Let a = l/s, s E LX and M=rsZcM,=sZ, rEZX. Then 
(aM,)’ = Z, (aM)’ = (l/r)h and Corollary 6.7 becomes the following result. 
Let f E L2(H/rsH) and a = ni + y E (l/r)Z/sE. Write nj= (l/r)+ 
n,! E Z/rZ. Then 

FoC~)(U)=~ 2 E 
6 

E(n,!y’)i c f(y’+&)E 
Y’EZISZ fi x’eZ/rZ 

where E( ) = e2ni0. 

Note added in proof: R. M. Mersreau and T. C. Speake, in A unified treatment of 
Cooley-Tukey algorithms for evaluation of the multidimensional DFT, IEEE Trans. 
Acoustics, Speech and Signal Processing 29, No. 5 (October 1981), 1011-1017, present a 
multidimensional Cooley-Tukey algorithm that is equivalent to that present in our paper. 
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