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Sampling theorems for bandlimited functions or distributions are obtained by
Ž .exploiting the topological isomorphism between the space EE 9 R of distributions of

compact support on R and the Paley]Wiener space PW of entire functions
< Ž . < Ž < <.N B < Im z <satisfying an estimate of the form f z F A 1 q z e for some constants

A, B, N G 0. We obtain sampling theorems for f in PW by expanding its Fourier
Ž .transform T in a series converging in the topology of EE 9 R and whose coefficients

are samples taken from f. By Fourier duality, we obtain a sampling theorem for f
in the space PW. These sampling expansions converge, in fact, uniformly on
compact sets of C, since convergence in the topology of PW implies uniform
convergence on compact sets of C. This procedure allows us to recover previous
sampling theorems in a unified way. We also present further expansions of
Paley]Wiener functions obtained by expanding their Fourier transform as a series
involving Legendre or Hermite polynomials. Q 1998 Academic Press
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1. INTRODUCTION

The Whittaker]Shannon]Kotel’nikov sampling theorem, hereafter the
2Ž . w xWSK theorem, states that any function f g L R , bandlimited to yp , p ,

w xi.e., such that the support of its Fourier transform is contained in yp , p ,
� Ž .4may be reconstructed from its samples f n on the integers asng Z

`

f z s f n sinc z y n , 1Ž . Ž . Ž . Ž .Ý
nsy`

Ž . Ž w x.where sinc denotes the cardinal sine sinc z s sin p zrp z see 15 . The
w xchoice of the interval yp , p is arbitrary. The same result applies to any

w x � 4compact interval yps , ps taking the samples in nrs and replacing p
with prs in the cardinal sines.

This theorem and its numerous offsprings have been proved in many
different ways, e.g., using Fourier expansions, the Poisson summation

Ž w x w x.formula, contour integrals, etc. see, for instance, 15 and 6 . But the
w xmost elegant proof is probably the one due to Hardy 5 , using that the

2w xFourier transform FF is an isometry between L yp , p and the
2 ˆ� Ž . Ž . w x4Paley]Wiener space PW s f g L R l CC R , supp f : yp , p , wherep

ˆ Ž .f denotes the Fourier transform FF f of f. For any f g PW one hasp

p1
iv zˆf z s f v e dv ,Ž . Ž .H2p yp

2 ˆŽ . w xso any value f t of f is the inner product in L yp , p and f and then
complex exponential eyi tn v. Furthermore, the classical Paley]Wiener the-
orem shows that PW coincides with the space of entire functions ofp

exponential type at most p whose restriction to the real axis is square
integrable, i.e.,

< < p < z < < 2PW s f g HH C : f z F Ae , f g L R . 2� 4Ž . Ž . Ž . Ž .Rp

The key point in Hardy’s proof is that an expansion converging in
2w x y1L yp , p is transformed by FF into another expansion which converges

in the topology of PW . This implies, in particular, that it convergesp

Žuniformly on compact sets of the complex plane to be precise, it converges
.on horizontal strips of C . Choosing the first expansion in such a way that

Žthe coefficients are samples of f , or of some function related to f its
.derivatives, its Hilbert transform, etc. provides different sampling theo-

rems for functions in PW . This Fourier duality technique can also bep

applied to the multidimensional case, or to the so-called multiband case of
functions whose Fourier transform has support on the union of a finite

Ž w xnumber of disjoint sets of finite Lebesgue measure see 6 for more
.details .
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The set of bandlimited functions can be enlarged tremendously if,
instead of taking the usual Fourier transform, we consider the Fourier
transform in the sense of Schwartz distributions and look for functions
whose Fourier transform is a distribution with compact support. This
enables us, for instance, to consider complex exponentials multiplied by

pŽ .polynomials, or functions in L R for p ) 2. In this case, the functions of
the enlarged space, hereafter denoted by PW, are characterized by the
Paley]Wiener]Schwartz theorem, which asserts that the distributional
Fourier transform

FF : PW ª EE 9 R ,Ž .
3Ž .

f ¬ T s FF f ,Ž .

Ž . Ž .² iv z:such that f z s 1r2p T , e , z g C, is a linear isomorphism between
Ž .the space EE 9 R of distributions with compact support and the functional

space PW whose elements are entire functions satisfying an estimate of
< Ž . < Ž < <.N B < Im z < Žthe form f z F A 1 q z e for some constants A, B, N G 0 see

w x.1, Theorem 1.4.15 .
Ž .Many different authors among them Campbell, Pfaffelhuber, and Lee

have obtained in this more general setting sampling expansions converging
Ž w xeither in a functional or in a distributional sense see 15 for a detailed

.account of the results and convergences . However, bear in mind that not
Ž .all functions in PW admit a Shannon expansion 1 converging in a

functional sense: the derivative d X of the Dirac delta in a point a ga
Ž . Ž . yi a zyp , p , for instance, has an inverse Fourier transform f z s ize ,

Ž . Ž < <. < <whose samples f n are O n as n ª `. Thus, the corresponding expan-
Ž .sion 1 diverges.

The aim of the present paper is to describe the most general framework
in which Fourier duality allows us to recover, in a unified way, some of the
aforementioned sampling theorems on PW. Given a function f g PW, we

Ž .expand its Fourier transform in EE 9 R in such a way that the coefficients
are either samples of f or other quantities related to f. Applying the
inverse Fourier transform on that expansion leads to another expansion
converging to f in PW. The key point is that, according to the Paley]
Wiener]Schwartz]Ehrenpreis theorem, one can endow PW with an ap-

Ž .propriate topology so that the isomorphism 3 becomes topological. Thus,
although we do not have an isometry as in Hardy’s setting, we can still
transfer convergence back and forth from one space to the other through
FF or FF y1. Furthermore, we do not need to check for uniform convergence
on compact sets, since, as we will see, this is a direct consequence of
convergence in the topology of PW. This suggests that this methodology
may be useful in further developing sampling theory for entire functions
whose Fourier transform is a distribution with compact support.
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The paper is organized as follows: Section 2 is devoted to reviewing
some basic facts concerning the inductive limit topology on PW associated
with certain subspaces PW . In particular, we show that convergence inn
this topology implies uniform convergence on compact sets of C. In
Section 3 we make use of Fourier duality to prove four well-known
sampling theorems, three in the functional case and one in the distribu-
tional one. Finally, we present in Section 4 some further expansions in
Paley]Wiener space using inverse Fourier transforms of classical orthogo-
nal polynomials.

2. PRELIMINARIES

As stated in the Introduction, we deal with the space

� 4PW s f g HH C : 'A , B G 0, N g N j 0 ,Ž .�
N B < Im z << < < <f z F A 1 q z e ;z g C ,Ž . Ž . 4

which, according to the Paley]Wiener]Schwartz theorem, is the image of
Ž . y1EE 9 R by the distributional inverse Fourier transform FF . We describe

the topology on PW which makes FF a topological isomorphism. For this,
� 4we first consider, for each n g N j 0 , the space PW of entire functionsn

such that

ynyn <Im z <5 5 < < < <f s sup f z e 1 q z - `.Ž . Ž .Ž .n
zgC

5 5Each PW is a Banach space, endowed with the norm ? . Furthermore,nn
we have PW ; PW for each n with continuous inclusion and PW sn nq1
D` PW . The inductï e limit topology on PW is defined as the finestns0 n ?

locally convex topology under which all the inclusions i : PW ª PW aren n
Ž w x w x.continuous see 10, Chap. V , 7 . Considering this topology in PW, the

Paley]Wiener]Schwartz]Ehrenpreis theorem asserts that the Fourier
Ž .transform is a topological isomorphism between PW and EE 9 R equipped

Ž Ž . Ž ..with the strong topology b EE 9 R , EE R , i.e., the topology of uniform
Ž . `Ž . Ž wconvergence on weakly bounded sets of EE R s C R see 1, Theo-

x.rem 1.4.16 .
One can easily see that convergence in a particular PW implies uniformn

convergence on compact sets of C. This implies the continuity of every
inclusion i : PW ª PW, where PW is equipped with the topology ofn n
uniform convergence on compact sets. Now, since the inductive limit
topology is by definition the finest one making the i continuous, wen
obtain the following result.



DISTRIBUTIONAL FOURIER DUALITY 47

LEMMA 1. Any sequence in PW con¨erging in the inductï e limit topology
is also uniformly con¨ergent on compact subsets of C.

Ž .As a consequence, any expansion converging in EE 9 R is automatically
transformed by FF y1 in an expansion converging uniformly on compact
sets.

Ž . `Ž .We conclude with a remark on convergence in EE 9 R . Since C R is a
w xMontel space 12, Sect. 34.4 , every weakly converging sequence in its

Ž .strong dual space EE 9 R is also strongly converging. Hence, we have that
Ž . ² : ² : Ž . ŽT ª T in EE 9 R if and only if T , w ª T , w for every w g EE R seen n

w x.12, Corollary 2 in Section 34.4 .

3. SAMPLING THEOREMS

We begin this section by recovering classical sampling theorems in the
2w xfunctional case. For this, we use the fact that convergence in L yp , p

Ž . 2w x Ž .implies convergence in EE 9 R , since if f ª 0 in L yp , p and w g EE R ,n
one can use the Cauchy]Schwarz inequality to bound

p
5 5 5 5f w F f wx , 4Ž .H 2 2n n wyp , p x

yp

Žwhich goes to zero as n ª ` x denotes the characteristic functionwyp , p x
w x.of the interval yp , p .

We now apply the duality argument to prove the WSK theorem and its
Ž .nonuniform version, the Paley]Wiener]Levinson hereafter PWL theo-

rem.

Ž .THEOREM 3.1 WSK theorem . Let f g PW , thenp

` sin p z y nŽ .
f z s f n ,Ž . Ž .Ý

p z y nŽ .nsy`

where the con¨ergence is uniform on compact sets of C.

ˆProof. We expand the Fourier transform f of f as
`

yi nvf̂ v s f n eŽ . Ž .Ý
nsy`

� yi nv4 2w xin the orthonormal basis e of L yp , p . This series convergesng Z

Ž . 2w xin EE 9 R , since it converges in L yp , p . Taking inverse Fourier trans-
forms, we obtain

`
y1 y1 yinvˆf z s FF f z s f n FF e zŽ . Ž . Ž . Ž . Ž .Ž . Ý

nsy`

in PW.
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Instead of an orthonormal basis, we may use a Riesz basis of complex
� yi tn v4 � 4exponentials e , where t ; R. A sufficient condition for thisng Z n ng Z

to be a Riesz basis is the so-called Kadec condition

1< <sup t y n - 5Ž .n 4
ngZ

Ž w x. � Ž .4see 14 . Now, if we denote by g v the biorthogonal basis ofn ng Z

� yi tn v4e , it is a well-known fact that the inverse Fourier transform of gng Z n
is given by

G zŽ .y1FF g z s , 6Ž . Ž . Ž .n z y t G9 tŽ . Ž .n n

Ž .where G z denotes the infinite product

` z z
z y t 1 y 1 y 7Ž . Ž .Ł0 ž / ž /t tns1 n yn

Ž w x w x w xsee 9 and 8 ; see also 4 for an alternative proof, using results from
w x.11 . Now we prove the PWL theorem.

Ž . � 4 Ž .THEOREM 3.2 PWL theorem . Let f g PW , let t ; R satisfy 5 ,p n ng Z

Ž . Ž .and let G z be gï en by 7 . Then

` G zŽ .
f z s f tŽ . Ž .Ý n z y t G9 tŽ . Ž .n nnsy`

uniformly on compact sets of the complex plane.

Ž̂ .Proof. We expand the Fourier transform f v of f with respect to
� Ž .4 � yi tn v4g v , the biorthogonal basis of e . The coefficients of this expan-n

ˆ yi tn v 2² : Ž .sion are the inner products f , e , i.e., the samples f t . Now,L wyp , p x n
since

`

f̂ v s f t g vŽ . Ž . Ž .Ý n n
nsy`

2w x Ž Ž ..in L yp , p and, hence, also in EE 9 R , taking inverse Fourier trans-
forms we obtain

`
y1f z s f t FF g zŽ . Ž . Ž . Ž .Ý n n

nsy`

Ž .in PW. Thus, the result follows from 6 .
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We may also use Fourier duality to obtain the following sampling
w x ptheorem 6, Sect. 6.4 for the Paley]Wiener spaces PW of functionsp

pw x Žwhose Fourier transform is in L yp , p for 1 - p - 2 the case p G 2 is
pw x 2w x.covered by the WSK theorem, since in that case L yp , p : L yp , p .

ˆTHEOREM 3.3. Let f g PW be such that its Fourier transform f is in
pw xL yp , p for 1 - p - 2. Then

` sin p z y nŽ .
f z s f nŽ . Ž .Ý

p z y nŽ .nsy`

uniformly on compact sets of the complex plane.

ˆ pw xProof. We may expand f in L yp , p as

ˆ yi nvf v s c e x ,Ž . Ý n wyp , p x
ngZ

� yi nv4 pw x Ž w x.since e is a Schauder basis of L yp , p for 1 - p - ` see 14 .
pw xNow, recall that convergence in L yp , p implies convergence in

Ž . Ž Ž .EE 9 R the argument is the same used to obtain 4 with Holder’s inequal-¨
.ity replacing Cauchy]Schwarz’s . Thus, making use of standard distribu-

� 4tional calculus one readily identifies the coefficients c in the expansionn
ˆof f , since

1 1
im v yinv im vˆ² : ² :f m s f , e s c e x , eŽ . Ý n wyp , p x2p 2p ngZ

1
s c 2pd s c ,Ý n nm m2p ngZ

² :where ? , ? stands for the integral from yp to p . In this way, we arrive
at

ˆ yi nvf v s f n e xŽ . Ž .Ý wyp , p x
ngZ

y1Ž .in EE 9 R . Applying FF leads to the result.

Note that a function f in the conditions of Theorem 3.3 is also in the
Bernstein space B q of entire functions of exponential type at most pp

qŽ . Ž . Ž .whose restriction to the real axis belongs to L R for 1rp q 1rq s 1
Ž w x .see 6 for more details .

In the remainder of this section we focus on sampling theorems for
functions of PW which are the inverse Fourier transform of some distribu-

Ž .tion with compact support on the real line. Let T g EE 9 R be a distribution
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Ž .with support supp T contained, say, in the open interval yp , p and
consider its 2p-periodic extension

T s T )D ,per 2p

where D s Ý` d is the Dirac comb with period 2p . Then it is2p nsy` 2 np

w x Ž .well known 13 that T is in SS 9 R , the space of tempered distributions,per
and that it admits a Fourier expansion

`
yi nvT s c eÝper n

nsy`

Ž .converging in the topology of SS 9 R . Furthermore, the coefficients above
Ž .² inv: Ž . y1Ž . Ž < < p.are c s 1r2p T , e s f n for f s FF T , and c s O n forn n

some p g Z. To apply our duality argument, however, we need conver-
Ž .gence to T in the space EE 9 R . To do this we introduce a convergence

factor, i.e., a smooth function which is identically 1 on a neighborhood of
Žsupp T note that we may always choose this function to be even, so that

.its Fourier transform is a real function . Making use of this device, one can
prove

Ž .LEMMA 2. Let T g EE 9 R with support contained in the open inter̈ al
y1 ˆ ˆŽ . Ž . Ž . Ž .yp , p , f s FF T g PW, and u g DD R with supp u ; yp , p and

Ž̂ .u x ' 1 on an open set containing supp T. Then

`
yi nvˆT s f n e uŽ .Ý

nsy`

Ž .with con¨ergence in EE 9 R .

Ž̂ .Proof. First, since u x ' 1 on an open set containing supp T , one has
ˆ ˆ Ž .u T s T. Multiplication by u is a continuous operation in SS 9 R , soper

`
yi nvˆT s c e uÝ n

nsy`

Ž . Ž .in SS 9 R . Furthermore, the convergence is also in EE 9 R , since for any
ˆ ˆŽ . ² : ² : ² :w g EE R we have T , w s u T , w s T , uw . This impliesper

N N
yi nv yinvˆ ˆ² :T , w s lim c e , wu s lim c e u , w ,Ý Ýn n¦ ; ¦ ;Nª` Nª`yN yN

which concludes the proof.
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w xWe are now in the position of proving Campbell’s theorem 2 :

ˆŽ . Ž .THEOREM 3.4 Campbell’s theorem . Let f g PW, T s FF f , and u g
Ž .DD R as in the statement of Lemma 2. Then

`

f z s f n u z y n 8Ž . Ž . Ž . Ž .Ý
nsy`

with uniform con¨ergence on compact sets of C.

Proof. Applying the inverse Fourier transform to the equality in Lemma
2 we obtain

` `
y1 yinvˆf z s f n FF e u v z s f n u z y n 9Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ý Ý

nsy` nsy`

in PW.

Ž .We end with two final comments related to expansion 8 . The first
ˆconcerns the convergence factor u introduced in Lemma 2 to obtain

Ž .convergence in EE 9 R . The price we have to pay for this convergence is
Ž .that it forces us to oversample, i.e., to sample f z at frequency 1, which is

Ž . Ž .larger than the Nyquist frequency m supp T r2p , where m ? denotes the
Ž .Lebesgue measure in R. Note, finally, that 8 lacks the appearance of a

cardinal series. However, we may introduce the characteristic function
Ž .x in 9 , obtainingwyp , p x

`
y1 yinv ˆf z s f n FF e x u v zŽ . Ž . Ž . Ž .Ý ž /wyp , p x

nsy`

`
y1 yinvs f n FF e x )u zŽ . Ž .Ž .Ý wyp , p x

nsy`

`

s f n t sinc )u z ,Ž . Ž . Ž .Ý n
nsy`

Ž . Ž . Ž .where t sinc t s sinc t y n . Thus, the sampling functions of 8 aren
given through a convolution involving the inverse Fourier transform of the
convergence factor. This convolution structure in the sampling expansion
is not unusual and, in fact, has previously appeared in the work of

w xFeichtinger and Grochenig 3 .¨
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4. ORTHOGONAL POLYNOMIAL EXPANSIONS

In the previous section we have made use of complex exponential
Ž .expansions in EE 9 R as a starting point to apply Fourier duality. However,

Ž .one may also consider different expansions in EE 9 R , involving, for in-
stance, classical families of orthogonal polynomials. We devote this section
to present a couple of examples of what kind of expansions may be
obtained in this way. It is important to note that these are not sampling
theorems, since the coefficients of the series are no longer samples of the
Paley]Wiener function.

Ž .We may take, for instance, the Legendre polynomials P x , leading ton
so-called Bessel]Neumann expansions in

2 ˆ w xPW s f g L R l CC R , supp f : y1, 1 .Ž . Ž .� 41

� Ž .4'It is well known that n q 1r2 P x is an orthonormal basis ofŽ . n
2w xL y1, 1 and that

FF G x s P x x xŽ . Ž . Ž . Ž .n n wy1, 1x

� 4for any n g N j 0 , where

in
y1r2G t s t J t 10Ž . Ž . Ž .n nq1r2'2p

Ž .and J t is the Bessel function of half odd integer order. We first dealnq1r2
with the functional case.

THEOREM 4.1. Let f g PW . Then1

` ni
y1r2f z s a z J z 11Ž . Ž . Ž .Ý n nq1r2'2pns0

uniformly on compact subsets of C, where

1 ˆ 2² :a s n q f , P .Ž . L wy1, 1xn n2

ˆProof. We expand the Fourier transform f of f as

`

f̂ x s a P xŽ . Ž .Ý n n
ns0

2w xin the orthonormalized Legendre basis of L y1, 1 . The result is obtained
applying the inverse Fourier transform.
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As in the previous section, the same kind of result may be extended to
the distributional case. To obtain an analogue of the Bessel]Neumann

Ž .expansion 11 for functions whose Fourier transform is a distribution T of
Ž . Ž .EE 9 R with supp T ; y1, 1 we need to expand T with respect to the

Ž .Legendre polynomials with convergence in EE 9 R . Again, this forces us to
ˆintroduce a convergence factor u as in Section 3.

ˆŽ . Ž . Ž .THEOREM 4.2. Let T g EE 9 R with supp T ; y1, 1 and u g DD R
ˆ ˆŽ . Ž .with supp u ; y1, 1 and u x ' 1 on an open set containing supp T. If

y1Ž .f s FF T , then
`

f z s a G )u z , 12Ž . Ž . Ž . Ž .Ý n n
ns0

² :with uniform con¨ergence on compact sets of C, where a s T , P andn n
Ž . Ž .G t is gï en by 10 .n

w xProof. We may mirror the proof of 13 , Proposition 6.3, to ensure that
`

ˆT s a P x u ,Ý n n wy1, 1x
ns0

Ž . Ž .with convergence in EE 9 R . Again using Fourier duality we obtain 12 .

We may also use Hermite functions instead of exponentials. The Fourier
transform of the normalized Hermite functions

H x eyx 2 r2Ž .n � 4h x s , n g N j 0 ,Ž .n 1r21r4 n r2p 2 n!Ž .
$

n'Ž . Ž . Ž . � 4is h v s yi 2p h v , n g N j 0 , where H denotes the nth Her-n n n
ˆmite orthogonal polynomial. Now, the Fourier transform f of any f g PWp

may be expanded as
`

f̂ v s a h x vŽ . Ž .Ý n n wyp , p x
ns0

2w x Ž Ž ..converging in L yp , p hence, also in EE 9 R , where

ˆ 2² :a s f , h . 13Ž .L wyp , p xn n

Thus, applying the inverse Fourier transform we obtain

THEOREM 4.3. Let f g PW . Thenp

` ni
f z s a h )sinc z ,Ž . Ž . Ž .Ý n n'2pns0

Ž .with uniform con¨ergence on compact subsets of C, where a is gï en by 13 .n
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In the distributional case we need, as usual, to introduce a suitable
ˆ Ž .convergence factor u to achieve convergence in EE 9 R of the Hermite

Ž . Ž w x.series, which is known to converge in SS 9 R see 13, Theorem 6.7 .

Ž . Ž .THEOREM 4.4. Let f g PW, T s FF f with supp T ; yA, A , and
ˆ ˆ ˆŽ . Ž . Ž .u g DD R with supp u ; yA, A and u x ' 1 on an open set containing
supp T. Then

`

ˆT s a h uÝ n n
ns0

Ž . ² :with con¨ergence in EE 9 R , where a s T , h . Furthermore,n n
` na in

f z s h )u z ,Ž . Ž . Ž .Ý n'2pns0

with uniform con¨ergence on compact sets of C.
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