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An effective quantum field theory (QFT) with a manifest UV/IR connection, so as to be valid for arbitrarily
large volumes, can successfully be applied to the cosmological dark energy problem as well as the
cosmological constant (CC) problem. Motivated by recent approaches to the hierarchy problem, we
develop such a framework with a large number of particle species. When applying to systems on the
brink of experiencing a sudden collapse to a black hole, we find that the entropy, unlike the total energy,
now becomes an increasing function of the number of field species. An internal consistency of the theory
is then used to infer the upper bound on the number of particle species, showing consistency with the
holographic Bekenstein–Hawking bound. This may thus serve to fill in a large gap in entropy of any non-
black hole configuration of matter and the black holes. In addition, when the bound is saturated the
entanglement entropy matches the black hole entropy, thus solving the multiplicity of species problem.
In a cosmological setting, the maximum allowable number of species becomes a function of cosmological
time, reaching its minimal value in a low-entropy post-reheating epoch.

© 2009 Elsevier B.V. All rights reserved.
For an effective quantum field theory (QFT) in a box of size
L (providing an IR cutoff) and with the UV cutoff Λ, the entropy
scales extensively, SQFT ∼ L3Λ3, and therefore there is always a
sufficiently large volume for which SQFT would exceed the absolute
Bekenstein–Hawking bound SBH ∼ L2M2

Pl. Thus, considerations for
the maximum possible entropy suggest that ordinary QFT may not
be valid for arbitrarily large volumes, unless the UV and the IR cut-
offs obey a constraint, LΛ3 � M2

Pl [1]. However, at saturation, this
bound means that an effective QFT should also be capable to de-
scribe systems containing black holes, since it necessarily includes
many states with Schwarzschild radius much larger than the box
size. There are however arguments for why an effective QFT ap-
pears unlikely to provide an adequate description of any system
containing black holes [2,3]. So, ordinary QFT may not be valid for
much smaller volumes, but would apply provided a more stringent
constraint, L3/2Λ3 � M3/2

Pl , is obeyed [1].
The above field-theoretical setup with the encoded holographic

information has recently triggered a novel variable CC approach,
generically dubbed that of ‘holographic dark energy’ (HDE) [4–6].
For the saturated case, Λ ∼ L−1/2, Λ gets depleted in an expand-
ing universe so that at present times the effective cosmological
constant (CC) generated by vacuum fluctuation (always dominated
by UV modes) becomes so low that the need for fine-tuning in the
‘old’ CC problem gets eliminated. Moreover, with L of order of the
present Hubble radius, the CC energy density ∼ L−2M2

Pl becomes
of the same order as the observed dark energy of the universe [7].
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An approach to the hierarchy problem put forward a decade
ago [8] demonstrates that the true UV cutoff can be made many
orders of magnitude smaller than the Planck mass MPl, provided
proliferation of a large number of quantum fields does occur in
the theory. Besides the higher-dimensional scenario of [8], host-
ing additional particles of the Kaluza–Klein type, a similar scenario
has appeared recently [9–11] in four dimensions, where the stabil-
ity of the weak scale was explained by postulating the existence
of N ∼ 1032 gravitationally interacting species beyond the standard
model. In a different context, looking at the renormalization-group
running effects of MPl, the same conclusion was reached in [12].
Another, more natural explanation for the weakness of gravity in
particle physics requires a switch of statistic from Bose/Fermi to
infinite one at high energies and no introduction of artificially
large numbers [13]. On nonperturbative grounds, a cutoff MPl/

√
N

makes quantum entanglement universal [11], offering thus a reso-
lution of the species problem in the physics of black holes.

In the present Letter, we examine a large-N formulation of
the effective QFT with UV/IR mixing underlying the saturated HDE
models, i.e. obeying L3/2Λ3 � M3/2

Pl . Note that the present size of
the universe is large enough to reduce the UV cutoff down even to
the dark-energy scale of 10−3 eV. Hence there is no need to intro-
duce a large number N of particle species to reduce Λ any further,
the motivation here being different than in models motivated by a
stabilization of the weak scale. Next we list a few obvious benefits
of the large-N formulation of an effective QFT with the proposed
relationship between the UV and the IR cutoffs: (i) For systems on
the verge of gravitational collapse we find their entropy to scale
as N1/4L3/2M3/2

Pl , realizing thus a possibility to complete a large
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gap in entropy between those systems, L3/2M3/2
Pl [2] and that of

black holes, L2M2
Pl; (ii) An internal consistency of the theory yields

a bound, Nmax � L2M2
Pl, and for the particular model we can trace

L to the earliest moments in the history of the universe to obtain
a minimum value for Nmax; (iii) For systems with N = Nmax, when
the access to the inside region of the system becomes impossible
for the outside observer, we find that the entanglement entropy
(scaling up with N) matches the black hole entropy (a universal
quantity independent of the black-hole past history that should
not depend on N). We note that a large-N scenario with the UV/IR
connection in higher-dimensional settings was also recently dis-
cussed [14].

We begin our considerations by recapitulating the scenario of
Cohen, Kaplan and Nelson in a different manner, such as to allow
us to lay down an extra feature not exposed in [1], which turns
out to be crucial for our arguments: a lower bound on the QFT
energy density ρΛ (or equivalently on Λ).1 For that purpose also
the Bekenstein bound S B [15] needs to be invoked. For a macro-
scopic system in which self-gravitation effects can be disregarded,
the Bekenstein bound is given by a product of the energy and the
linear size of the system, E L. In the context of the effective QFT
it therefore becomes proportional to ρ4

ΛL4. It is convenient to use
this entropic bound to derive a lower bound on the energy density
ρΛ since S B is more extensive than SQFT. The obvious hierarchy
between SQFT ∼ L3Λ3 and the entropic bounds, S B ∼ ρΛL4 and
SBH ∼ L2M2

Pl,

SQFT � S B � SBH, (1)

yields ρΛ which is constrained from both above and below2:

Λ3L−1 � ρΛ � L−2MPl. (2)

From (1) and (2) one sees that the concept of HDE emerges
whenever S B � SBH; i.e., for a weakly gravitating system. This re-
quirement automatically prevents formations of black holes, as the
Bekenstein bound, in spite of its original connection with black
hole physics, does not involve the Newton constant. The most com-
monly used saturated models do obey S B � SBH; this requirement
brings a system on the verge of gravitational collapse since then
L � L S , with L S ∼ M−2

Pl ρΛL3 being the Schwarzschild radius. The
only remaining bound is then the lower bound on ρΛ , which for
ρΛ ∼ Λ4 simply becomes Λ � L−1. Below we are going to con-
sider this bound as a consistency condition which will allow us to
set the upper bound on N .

Now we are going to implement the new N degrees of freedom
into the setup described by (1) and (2). The main observation is
that while both SQFT and S B scale up with the number N of the
species, SBH stays a universal quantity that does not depend on N .
The setup underlying the saturated HDE models with N � 1 thus
becomes

N SQFT � N S B � SBH. (3)

From (3) one readily sees that the lower bound Λ � L−1 remains
unchanged. What we would like to find out is the upper bound on
the entropy in QFT, NΛ3L3. From N S B � SBH, i.e.,

NΛ4L4 � L2M2
Pl, (4)

1 Obviously, ρΛ is the energy density corresponding to a zero-point energy and
the cutoff Λ, being proportional to Λ4 (Λ � m) or mΛ3 (Λ � m), where m is the
mass of the QFT field. Throughout the Letter we shall explore the consequences of
the former choice which turn out to be more interesting, and mention the latter
case only at the end of the Letter.

2 We note that the entropic bound of type (1) prevents to assign the CC a zero
value.
one finds that the upper bound on N SQFT becomes N-dependent,3

NΛ3L3 � N1/4L3/2M3/2
Pl . (5)

Extracting Λ/L−1 from (5) and setting Λ/L−1 � 1,

Λ

L−1
� N−1/4L1/2M1/2

Pl � 1, (6)

one obtains the upper bound for N in the form

N � L2M2
Pl, (7)

being of order of the Bekenstein–Hawking entropy itself. From (5)
we see that the gap between systems on the verge of gravitational
collapse having S ∼ L3/2M3/2

Pl [2] and black holes begins to pop-
ulate when N is increasing.4 When the bound on N (7) begins
to saturate, a (normal) system begins to sustain a black hole en-
tropy. Note that (7) corresponds to a loose bound in the late-time
universe, N � 10122. Also, at saturation, L � Λ−1, Eq. (7) does re-
produce the gravity cutoff MPl/

√
N obtained in the scenario [9–11].

We note the ratio Λ/L−1 in (6) as the increasing function of
the IR cutoff L, which means that in an expanding universe the
upper bound on N can be strengthened considerably, provided we
have some knowledge on the behavior of L in the past. For that
purpose we have to resort to a particular model. This makes the
upper bound on N model-dependent. For the sake of illustration,
we consider the popular Li’s model [5]. This model belongs to a
class of noninteracting and saturated HDE models, with a choice
for L in the form of the future event horizon,

dE = a

∞∫
a

da

a2 H
, (8)

with a being a scale factor. Furthermore, we assume that our vac-
uum energy ρΛ is not responsible for the early-time inflation, and
that all particle species came into being when early vacuum en-
ergy density decays into matter, in the process of reheating (see
e.g., [17]). Ignoring subtle details of reheating, we assume an in-
stantaneous process, occurring at Treh. This amounts to knowing
the behavior of ρΛ � L−2M2

Pl during the radiation-dominated era,
in which ρΛ occupies only a tiny fraction of the total energy den-
sity. In a two-component universe ρΛ evolution is governed by
[5,18]

Ω ′
Λ = Ω2

Λ(1 − ΩΛ)

[
1

ΩΛ

+ 2

c
√

ΩΛ

]
, (9)

where the prime denotes the derivative with respect to lna. In (9)
ΩΛ = ρΛ/ρcrit, where ρcrit is the critical density and ρΛ was
parametrized as ρΛ = (3/8π)c2 M2

PlL
−2. With ΩΛ � 1, c � 1 and

ρcrit � ρrad we obtain

ρΛ � ρrad0a−3, (10)

where ρrad0 denotes the radiation energy density at the present
time. This in turn determines L(a) as

L(a) � MPlρ
−1/2
rad0 a3/2. (11)

Equipped with these relationships and T ∼ a−1, we obtain a final
expression for Nmax = L2M2

Pl as

3 In contrast, the upper bound for the total energy NΛ4 L3 stays N-independent.
Also, (4) and (5) still continue to describe systems on the verge of gravitational
collapse since now the Schwarzschild radius scales up with N .

4 Another resolution of this problem involves curved space configurations called
monsters [16].
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Nmax � M4
Plρ

−1
rad0(Treh/T0)

−3, (12)

where T0 is the present temperature of the universe. In super-
gravity theories if the reheating temperature after inflation is too
high one inevitably overproduce gravitinos. Plugging in the rele-
vant numbers with T max

reh � 107 GeV [19] as to avoid troubles with
the overproduction of gravitinos, one gets Nmax � 1068, a consid-
erably stringent requirement than 10122. The bound Nmax � 1032

[9–12], obtained in QFTs without the holographic constraint, by
noting that we have not seen any strong gravity in the particle col-
lisions, is still more stringent. We stress once again that the bound
obtained here is quite model-dependent. In addition, a higher Treh
could reduce Nmax considerably. Also, if ρΛ is to play any role in
early-time inflation, one expects much severe constraints on Nmax.
Still, our bound is much less than the entropy of the CMB photons
or relic neutrinos in the present universe (∼ 1088).

Now we show that when the bound (7) is saturated, the entan-
glement entropy Sent [20] computed in the proposed QFT setup
can be the origin of black hole entropy. When the bound (7)
is not saturated, an observer outside of the box of size L has
(at least theoretically) an unlimited access to the interior of the
box. Consequently, the entanglement entropy, measuring quantum-
mechanical correlations between the box and the space outside of
the box, is zero. However, at saturation of (7) the physical horizon
forms, and consequently an outside observer lacks any informa-
tion about the interior of the box. Thus, both the entanglement
and the black hole entropy then become nonzero.5 A pressing
problem in identification of SBH with Sent is the multiplicity of
species problem [22]. Incidently, Sent should depend on N , while
SBH lacks any information about number of species. We show be-
low that the proposed UV/IR mixing, together with the bound (7),
easily resolves this dilemma. In dealing with an overall pure state,
Sent should behave nonextensively, i.e., should depend only on the
surface A(L) ∼ L2 separating the box from the rest. On the other
hand, quantum correlations between the subsystems in local QFT
are taken care by the UV cutoff. Hence we have

Sent(L) � Λ2 A(L). (13)

By invoking (4) we have

Λ2 � N−1/2L−1MPl. (14)

Noting that Sent should scale up with N one has

Sent(L, N) � N × (
N−1/2L−1MPl

) × A(L) � N1/2MPlL. (15)

With Nmax = L2M2
Pl, one immediately arrives at

Sent(L, Nmax) � M2
PlL

2 � SBH. (16)

Thus, we have seen how the proposed UV/IR mixing, together
with the bound on the number of species, settles the problem of
species.

In considering the second option, ρΛ ∼ mΛ3 (Λ � m), one
should replace the consistency relation Λ � L−1 with m � L−1,

5 A small nonvanishing entanglement entropy emerges even for systems with
L � LS and N � Nmax, as for the systems with artificially created horizons [21].
However, the only possible way to physically prevent the access to a part of the
system is to put a closed surface separating the two subsystems on the event hori-
zon.
which is nothing but a trivial statement about encompassment
of the modes within the box. So, N cannot be restricted before
Λ � L−1 is imposed by hand. This is, of course, a quite plausible
constraint for any QFT. The upper bound for N L3Λ3 then becomes
m−1LM2

Pl, which means that the gap between normal systems and
black holes can never be fully populated. The same is also true for
the entanglement entropy. This makes this case less interesting.

In conclusion, we have developed a promising QFT setup of Co-
hen, Kaplan and Nelson with a large-N new degrees of freedom.
The holographic ingredient implemented via the specific UV/IR
mixing makes the setup valid in an arbitrarily large volume, such
that successful application both to particle physics and cosmol-
ogy becomes possible. By using thermodynamics with large N , we
have shown that it is possible to bridge a gap in entropy between
the systems on the verge of gravitational collapse and the black
holes themselves. Drawing on the internal consistency of the the-
ory and cosmological evolution of the IR cutoff, we have obtained
the upper bound for the number of particle species N . Finally, a
resolution of the species problem comes out naturally due to the
proposed UV/IR relationship.
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