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a b s t r a c t

We consider a system of two coupled partial delay differential equations (PDDEs) describ-
ing the dynamics of two cooperative species. The original system is reduced to a system of
ordinary delay differential equations (DDEs) obtained by applying themethodof lines. Then
we construct a fitted operator finite differencemethod (FOFDM) to solve this resulting sys-
tem. Themodel considered in this paper is very sensitive to small changes in the parameters
associated in with the model. Depending on the values of these parameters, the solution
can be stable, periodic and/or aperiodic. Such behavior of the solution is exploited via the
proposed FOFDM. This FOFDM is analyzed for convergence and it is seen that this method
is unconditionally stable and has the accuracy of O(k+h2), where k and h denote time and
space step-sizes, respectively. Some numerical results confirming theoretical observations
are also presented. These results are comparable with those obtained in the literature.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the following system of two coupled PDDEs describing the dynamics of two cooperative species with
densities u(t, x) and v(t, x):

∂u
∂t
(t, x) = λ1

∂2u
∂x2

(t, x)+ u(t, x)(r1 − a11u(t − τ , x)+ a12v(t − τ , x)) (1.1)

∂v

∂t
(t, x) = λ2

∂2v

∂x2
(t, x)+ v(t, x)(r2 + a21u(t − τ , x)− a22v(t − τ , x)) (1.2)

where 0 < x < π and t > 0, subject to the initial data

u(t, x) = u0(t, x), v(t, x) = v0(t, x), t ∈ [−τ , 0], (1.3)

and Dirichlet boundary conditions

u(t, 0) = u(t, π) = v(t, 0) = v(t, π) = 0, t ≥ 0. (1.4)

The constants λ1 > 0 and λ2 > 0 in the above represent the diffusivity of the two species whereas constants r1 > 0 and
r2 > 0 are the growth rates of these species. The coefficients a11, a12, a21 and a22 are positive constants. Finally, τ (>0) is a
time delay parameter.
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Many biological phenomena can be described by diffusion equations such as the system above. Some examples include
the dynamics of a single species in time and space [1], the spread of an advantageous gene in a population [2], the competition
between the gray and red squirrels in Britain which led to the decline and subsequent disappearance of the red squirrels [3],
the spread of powdery mildew disease caused by the fungus Uncinula necator over the grapes–vines [4], the modified
Lotka–Volterra system with logistic growth of the prey and with both predator and prey dispersing by diffusion [3].

The literature on the use of diffusive delay differential equations for modeling the biological systems is very rich, see,
for example [5–7] and the references therein. When a time delay is involved, it indicates the non-immediate affect of some
factor that inhibits the dynamics of the model. For instance, in a predator–prey model, the density of the prey is affected
by hunting mature prey members that happened some time on the past. Also, in a model that describes the spread of an
epidemic disease, a virus or a bacterium takes some time before it becomes mature and be able to attack some organism. In
a biological system, delay models are more realistic for describing the dynamics of the various parts of the system than the
ordinary differential equations.

Under the assumption that the two species have the same diffusivity (i.e., λ1 = λ2 = λ) and same growth rates (i.e.,
r1 = r2 = r), Li et al. [8] used a transformation of variables to reduce the system (1.1)–(1.2) to the form

∂u
∂t
(t, x) = λ

∂2u
∂x2

(t, x)+ κu(t, x)(1 − u(t − τ , x)+ a12v(t − τ , x)), (1.5)

∂v

∂t
(t, x) = λ

∂2v

∂x2
(t, x)+ κv(t, x)(1 + a21u(t − τ , x)− v(t − τ , x)), (1.6)

with t > 0, 0 < x < π and subject to the initial data (1.3) and the boundary conditions (1.4).
The deficiencies of the standard finite difference methods in solving the problems like above are well-known. While

explicit methods can solve such differential equations with low computational cost, they have the drawback that their
stability regions are very small and hence severe restrictions on the time and space step-sizes will be required in order to
achieve satisfactorily converging results. On the other hand, the implicit schemes do have wider stability regions but the
associated computational complexity is very high and they cannot achieve more than one order as compared to explicit
methods that use the same number of stages [9].

In this paper, we design a new fitted operator finite difference method (FOFDM) which is constructed for a system of
DDEs obtained by applying the method of lines [10,11] to the system of PDDEs. These FOFDMs, which are based on the
philosophy of non-standard finite difference methods of Mickens [12,13] are widely used for singularly perturbed two-
point boundary value problems. See for instance [14–16]. However, their extensions for the coupled PDEs whose solutions
possess oscillatory dynamics, have not been seen in the literature.

The rest of this paper is organized as follows. In Section 2, we discuss the existence and stability of equilibria for the
model under consideration. Section 3 deals with the construction of the fitted operator finite difference method which is
analyzed for convergence in Section 4. Illustrative numerical results are presented in Section 5. Finally, we discuss these
results and draw some conclusions in Section 6.

2. Existence and stability of equilibria

In many of the delay differential equation models, the time delay τ acts as a bifurcation parameter. As the delay τ passes
through some critical value τ ⋆, a couple of complex conjugating eigenvalues of the system passes the imaginary axis at some
pure imaginary points and stable periodic Hopf bifurcating solutions occur. Then when τ passes τ ⋆, the real parts of these
eigenvalues pass to the positive real axis causing the Hopf bifurcating solution to be unstable. We summarize these features
of the solution via the existence and stability of a positive equilibrium following the works in [17,8,1].

Let κ̃ corresponds to the ratio κ/λ. Then, if κ̃ < 1, the trivial solution
(u(t, x), v(t, x)) = (0, 0)

is asymptotically stable and it is the only global attractor for all non-negative solutions. Therefore, the increase in the time
delay τ does not have affect on the stability of the trivial equilibria.

On the other hand, when κ̃ > 1 the trivial solution is unstable and a positive equilibrium (Uκ̃(x), Vκ̃(x)) will bifurcate
from the trivial solution at κ̃ = 1. In this case, for each fixed 0 < κ̃−1 ≪ 1 when the delay parameter τ increases, it passes
through a sequence {τκ̃n}

∞

n=0 of critical delay. When τ = τκ̃n , n = 0, 1, . . . a bifurcation occurs and the positive equilibrium
(Uκ̃ , Vκ̃) is asymptotically stable for τ < τκ̃0 and unstable for τ > τκ̃0 . Moreover, the bifurcating solutions which occur from
the Hopf bifurcation point τ = τκ̃0 are stable while those occurring from the Hopf bifurcation points τ = τκ̃n , n = 1, 2, . . .
are unstable.

In summary,
• If κ̃ ≤ 1, then the zero solution is stable and is the only global attractor of all non-negative solutions.
• If κ̃ > 1, a unique positive equilibrium (Uκ̃ , Vκ̃) bifurcates from κ̃ = 1 and (u, v) = (0, 0) while the zero solution is

unstable.
• For each fixed 0 < κ̃−1 ≪ 1 there exists a sequence {τκ̃n}

∞

n=0 such that the positive equilibrium (Uκ̃ , Vκ̃) is asymptotically
stable if 0 ≤ τ < τκ̃0 and unstable if τ > τκ̃0 .

• A Hopf bifurcation will occur as the delay τ increasingly passes through each point τκ̃n , n = 1, 2, . . . .
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3. Construction of the numerical method

In this section, we describe the construction of the fitted numerical method for solving the system (1.5)–(1.6) with the
initial data (1.3) and boundary conditions (1.4) respectively. Following the method of lines, we find an approximation to
the derivatives of the functions u(t, x) and v(t, x)with respect to the spatial variable x by algebraic quantities in purpose of
transforming the two PDDEs into a system of DDEs.

Because of the similarities between the two PDEs in u(t, x) and v(t, x) we will describe the method for the equation in
u(t, x). The equation in v(t, x) is dealt similarly.

Let Nx be a positive integer and be discretized the interval [0, π] by the points

x0 = 0 < x1 < x2 < · · · < xNx = π

where h = xm+1 − xm = π/Nx;m = 0, 1, . . . ,Nx − 1. Let Um(t) ≈ u(t, xm).
We approximate the second partial derivative ∂2u

∂x2
(t, x) by

∂2u
∂x2

(t, xm) ≈
Um+1 − 2Um + Um−1

φ2
m

, (3.7)

where

φm = φm(κ, λ, h) =
2
ρm

sin
ρmh
2

and ρm =
√
κ/λ. It is obvious thatφm → h as h → 0. The functionφ2

m in Eq. (3.7) is conventionally termed as a denominator
function [18]. It can be constructed by using the theory of difference equations.

Since ρm is a constant value and hence the denominator function φm, we shall write ρ instead of ρm and φ instead of φm.
Eq. (1.5) with the initial data (1.3) and boundary conditions (1.4) then take the form

U0(t) = 0 = UNx(t), (3.8)

dUm(t)
dt

= λ
Um+1 − 2Um + Um−1

φ2
+ κUm(t)(1 − um(t − τ)+ a12vm(t − τ)), m = 1, . . . ,Nx − 1, (3.9)

with the initial data

um(θ) = u0(θ, xm), θ ∈ [−τ , 0]; m = 1, . . . ,Nx − 1, (3.10)

where um(t) is the exact value u(t, xm).
Now let Nt be a positive integer and k =

T
Nt

where 0 < t < T .
Discretizing the time interval [0, T ] through the points

0 = t0 < t1 < · · · < tNt = T

where tn+1 − tn = k, n = 0, 1, . . . ,Nt − 1.
We approximate the time derivative dUm(t)

dt at tn by

dUm(tn)
dt

≈
Un+1
m − Un

m

ψ(k)
, (3.11)

where the denominator function ψ(k) is given by

ψ(k) = (exp(κk)− 1)/κ.

Again we see that ψ(k) → k as k → 0.
Combining (3.8), (3.9) and (3.11), we have

Un+1
m − Un

m

ψ(k)
= λ

Un+1
m+1 − 2Un+1

m + Un+1
m−1

φ2(h)
+ κUn

m(1 − (Hu)
n
m + a12(Hv)nm) (3.12)

where (Hu)
n
m ≈ u(tn − τ , xm) and (Hv)nm ≈ v(tn − τ , xm), m = 1, . . . ,Nx − 1, n = 0, . . . ,Nt − 1 are the history functions

corresponding to the equations in u and v.
Eq. (3.12) can further be simplified as

−
λ

φ2
m
Un+1
m−1 +


1
ψ

+
2λ
φ2
m


Un+1
m −

λ

φ2
m
Un+1
m+1 =


1
ψ

+ κ(1 − (Hu)
n
m + a12(Hv)nm)


Un
m. (3.13)
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Eq. (3.13) can be written as a tridiagonal system

TLUn+1
=

1
ψ

Un
+ κUn(1 − Hn

u + a12Hn
v ), (3.14)

where Un
= [Un

1 , . . . ,UNx−1]
T ,Hu

n
= [(Hu)

n
1, . . . , (Hu)

n
Nx−1]

T ,Hvn = [(Hv)n1, . . . , (Hv)
n
Nx−1, n = 0, . . . ,Nt − 1]T and

TL = Tri


−
λ

φ2
,
1
ψ

+
2λ
φ2
,−

λ

φ2


.

On the interval [0, τ ] the delayed arguments tn − τ belong to [−τ , 0], and therefore the delayed variable (Hu)
n
m ≈

u(tn − τ , xm) is evaluated directly from the history functions u0(t, x) as

(Hu)
n
m = u0(tn − τ , xm), (3.15)

and Eq. (3.14) becomes of the form

TLUn+1
=

1
ψ

Un
+ κUn(1 − ϕ0(tn − τ)+ a12ϑ0(tn − τ)), (3.16)

where ϕ0(tn − τ) = [u0(tn − τ , x1), . . . , u0(tn − τ , xNx−1)]
T and ϑ0(tn − τ) = [v0(tn − τ , x1), . . . , v0(tn − τ , xNx−1)]

T .
Let s be the largest integer such that ts ≤ τ . By using Eq. (3.16) we can compute Un

m for 1 ≤ n ≤ s. Up to this stage, we
interpolate the data

(t0,U0
m), (t1,U

1
m), . . . , (ts,U

s
m)

using an interpolating cubic Hermite spline ϕm(t). Then Un
m = ϕ(tn, xm) for all n = 0, 1, . . . , s and m = 1, 2, . . . ,Nx − 1.

For n = s+1, s+2, . . . ,Nt −1, whenwemove from level n to level n+1we extend the definitions of the cubic Hermite
spline ϕm(t) to the point (tn + k,Un+1

m ). Then the history terms (Hu)
n
m can be approximated by the functions ϕm(tn − τ) for

n ≥ s. That is,

(Hu)
n
m ≈ ϕm(tn − τ),

and Eq. (3.14) becomes of the form

TLUn+1
=

1
ψ

Un
+ κUn(1 − ϕ(tn − τ)+ a12ϑ(tn − τ)), (3.17)

where ϕ(tn − τ) = [(Hu)
n
1, . . . , (Hu)

n
Nx−1]

T and ϑ is the set of cubic Hermite splines that interpolate the data (tn, V n
m).

Proceeding in the similar manner for the equation in v, we have

TLV n+1
=

1
ψ

V n
+ κV n(1 + a21ϕ(tn − τ)− ϑ(tn − τ)), (3.18)

where V n
= [V n

1 , . . . , VNx−1]
T ,

(Hv)nm =


ϑ0(tn − τ , xm) tn ≤ τ
ϑm(tn − τ) tn > τ

along with

V0(t) = 0 = VNx . (3.19)

Our FOFDM then consists of Eqs. (3.14)–(3.18) along with (3.8) and (3.19), which can be summarized as:
TLUn+1

=
1
ψ

Un
+ κUn(1 − Hn

u + a12Hn
v ),

TLV n+1
=

1
ψ

V n
+ κV n(1 + a21Hn

u − Hn
v ),

(3.20)

where
(Hu)

n
m =


u0(tn − τ , xm), tn ∈ [0, τ ]
ϕm(tn − τ), tn ∈ (τ , T ]

(Hv)nm =


v0(tn − τ , xm), tn ∈ [0, τ ]
ϑm(tn − τ), tn ∈ (τ , T ].

(3.21)

This method is analyzed for convergence in the next section whereas the corresponding numerical results are presented
in Section 5.
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4. Analysis of convergence

As usual with most of the classical convergence finite difference methods, the convergence for the proposed FOFDM is
proved via consistency and stability.

4.1. Consistency of the FOFDM

We assume that the function u(t, x) and its partial derivatives with respect to both t and x are smooth and satisfy∂ i+ju(t, x)
∂t ixj

 ≤ C; ∀i, j ≥ 0, (4.22)

where C is a constant that is independent of the time and space step-sizes.
The local truncation error (LTE) for the discrete equations in u in the FOFDM (3.16) and (3.17) is given by

(LTE)u = ut(tn, xm)−
un+1
m − un

m

ψ
− λ


uxx −

un+1
m−1 − 2un+1

m + un+1
m+1

φ2
m


. (4.23)

The first term on the right-hand side of Eq. (4.23) satisfiesut(tn, xm)−
un+1
m − un

m

ψ

 =

ut(tn, xm)−
un+1
m − un

m

k
+

un+1
m − un

m

k
−

un+1
m − un

m

ψ


≤

ut(tn, xm)−
un+1
m − un

m

k

+ un+1
m − un

m

k
−

un+1
m − un

m

ψ


≤

k
2

|utt(ξ , xm)| +
κk
 1
2 +

κk
6 + · · ·


1 +

κk
2 + · · ·

(un+1
m − un

m), ξ ∈ [tn, tn+1]

≤
k
2
C +

κk
 1
2 +

κk
6 + · · ·


1 +

κk
2 + · · ·

(un+1
m − un

m) (using (4.22))

→ 0 as k → 0. (4.24)

The second term of Eq. (4.23) satisfiesuxx(tn, xm)−


un+1
m−1 − 2un+1

m + un+1
m+1

φ2


≤

uxx(tn, xm)−


un
m−1 − 2un

m + un
m+1

h2

+


un
m−1 − 2un

m + un
m+1

h2
−

un+1
m−1 − 2un+1

m + un+1
m+1

φ2


≤

h2

12
|uxxxx(tn, ζ )| +

 (ρh/2)2/3 − (ρh/2)4/60 + · · ·

1 − (ρh/2)2/6 + · · ·

+ k |uxxt(ξ , xm)| ,

≤
h2

12
C + h2

 (ρ/2)2/3 − h2(ρ/2)4/60 + · · ·

1 − (ρh/2)2/6 + · · ·

+ kC (using (4.22)),

→ 0 as h → 0 and k → 0, (4.25)

where xm−1 < ζ < xm+1 in the third last inequality above.
The results that we obtained in Eqs. (4.24) and (4.25) prove that LTE → 0 as k → 0 and h → 0. Similarly, we can see

that the LTE for the equation in v tends to 0, as h → 0 and k → 0. This proves the consistency of our FOFDM.

4.2. Stability of the FOFDM

In this section we apply the von Neumann analysis to prove the stability of our method.
For simple notation, we write F(t, τ , x) = 1 − u(t − τ , x) + a21v(t − τ , x) and Gn

τ ,m = 1 − Un
τ ,m + a21V n

τ ,m. Then, the
solution function uℓ(t − τ , x) = Tℓ(t)Xℓ(x) is bounded as

|uℓ(t − τ , x)| = |Tℓ(t)| ≤ e(κF(t,τ ,x)−λℓ
2)t

≤ eκF(t,τ ,x)T .

Plugging the solution

Un
m = wneimh,
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where i =
√

−1 in Eq. (3.14), we obtain
1
ψ

+
2λ
φ2


−
λ

φ2


eih + e−ihwn+1 =


1
ψ

+ κ

1 − Un

τ ,m + a21V n
τ ,m


wn. (4.26)

From Eq. (4.26), the amplification factor ς is given by

ς =

1
ψ

+ κGn
τ ,m

1
ψ

+
4λ
φ2m

sin2 h
2

. (4.27)

Eq. (4.26) can be rewritten as

wn = ςnw0.

Now the amplification factor ς given in Eq. (4.27) must satisfy the inequality

|ςn
| ≤ eκG

n
τ ,mT

= ekNκG
n
τ ,m ,

yielding

|ς | ≤ e
kκGnτ ,mN

n . (4.28)

The minimum value for the right-hand side of Eq. (4.28) occurs when n = N , therefore, we bound the left-hand side of
Eq. (4.28) by ekκG

n
τ ,m .

Eq. (4.26) now becomes

1
ψ

+ κGn
τ ,m

1
ψ

+
4λ
φ2m

sin2 h
2

≤ ekκG
n
τ ,m . (4.29)

Multiplying both the numerator and denominator of the left-hand side of Eq. (4.29) by ψ yields

1 + κψGn
τ ,m

1 +
4λψ
φ2m

sin2 h
2

≤ ekκG
n
τ ,m . (4.30)

As n → ∞, ψ → k and the left-hand side of Eq. (4.30) satisfies the inequality

1 + κψGn
τ ,m

1 +
4λψ
φ2m

sin2 h
2

≈
1 + kκGn

τ ,m

1 +
4kλ
φ2m

sin2 h
2

< 1 + kκGn
τ ,m < ekκG

n
τ ,m (4.31)

for any choice of denominator functions ψ and φ. This proves that the proposed FOFDM is unconditionally stable.
Using the Lax–Richtmyer theory [19,20], we have the following theorem.

Theorem 4.1. The FOFDM given by (3.20)–(3.21) is convergent of order O(k + h2) in the sense that

max


max
1≤m,n≤N−1

{|u(tn, xm)− Un
m|}, max

1≤m,n≤N−1
{|v(tn, xm)− V n

m|}


≤ C(k + h2),

where U and V are the numerical solutions obtained by this FOFDM and N is the total number of subintervals taken in either
directions.

5. Numerical results

To see the performance of the proposed FOFDM, we consider the following example.

Example 5.1 ([8]). Consider problem (1.5)–(1.6) with a12 = 0.5, a21 = 0.8, λ takes values in [0.0085, 0.0105] ∪

[0.999, 1.0105], κ ∈ {0.01, 1.01}, τ ∈ {1, 20, 100, 170} and T ∈ {100, 800, 2500, 4500}. The initial data is taken as

u(θ, x) = v(θ, x) = 0.1

1 +

θ

τ


sin x, θ ∈ [−τ , 0], 0 ≤ x ≤ π, t ≥ 0.

6. Discussion and future plans

In this paper we have designed and analyzed a fitted operator finite difference method (FOFDM) for a coupled system
of two partial delay differential equations. Using the method of lines, this problem is transformed into a system of ordinary
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Fig. 1. Profile of u(t, x) for λ = 0.0096, κ = 0.01, τ = 1 and T = 100.

Fig. 2. Profile of v(t, x) for λ = 0.0096, κ = 0.01, τ = 1 and T = 500.

delay differential equations which are then solved with the proposed FOFDM. This FOFDM is analyzed for convergence and
we found that this method is of order 1 with respect to time and is of order 2 with respect to space discretizations.

In our test example, we considered many scenarios for the selection of the parameters κ and λ such that the ratio κ/λ
remains close to one. The results are presented in Figs. 1–30. We have noticed that when κ/λ < 1, the solutions do always
go to the unique stable trivial attractor (0, 0) (see Figs. 5, 6, 13, 14, 21, 22, 29 and 30). When the ratio κ/λ passes the unity,
a stable or a stable periodic solution bifurcates from κ/λ = 1 (see Figs. 3, 4, 9–12, 19, 20, 27 and 28). When we continue
increasing the ratio κ/λ unstable periodic solutions bifurcate from κ/λ = 1 like what have been seen in Figs. 17, 18, 25 and
26. Finally, by increasing the ratio κ/λmore, unstable aperiodic solutions appear like what have been seen in Figs. 1, 2, 7,
8, 15, 16, 23 and 24. This confirms the theoretical results.

The results which we have obtained by fixing the value of the time delay τ = 100 show that the model is very sensitive
to the change in the values of the parameters. Changes in the ratio κ/λ from 0.99951 passing by 1.01 and 1.005 to 1.01101
showed four different scenarios about the behavior of the positive equilibrium. A similar situation is seen for τ = 170,where
changes in the ratio κ/λ from 0.99951 to 1.007 have shown four different stability scenarios for the positive equilibrium.
These scenarios are the trivial equilibrium (0, 0), a stable positive equilibrium, a periodic positive equilibrium and aperiodic
positive equilibrium. This again confirms the theoretical results.

In summary, from the results that we have obtained by our simulations, we conclude that for a fixed τ > τκ0 > 0 if

• the ratio κ/λ is less than or equal to one then the solution tends to the trivial attractor (0, 0) and the solution is stable
and no positive exists.
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Fig. 3. Profile of u(t, x) for λ = 0.0098, κ = 0.01, τ = 1 and T = 500.

Fig. 4. Profile of v(t, x) for λ = 0.0098, κ = 0.01, τ = 1 and T = 500.

Fig. 5. Profile of u(t, x) for λ = 0.0105, κ = 0.01, τ = 1 and T = 500.
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Fig. 6. Profile of v(t, x) for λ = 0.0105, κ = 0.01, τ = 1 and T = 500.

Fig. 7. Profile of u(t, x) for λ = 0.0097, κ = 0.01, τ = 20 and T = 800.

Fig. 8. Profile of v(t, x) for λ = 0.0097, κ = 0.01, τ = 20 and T = 800.



1484 E.B.M. Bashier, K.C. Patidar / Computers and Mathematics with Applications 61 (2011) 1475–1492

Fig. 9. Profile of u(t, x) for λ = 0.0098, κ = 0.01, τ = 20 and T = 800.

Fig. 10. Profile of v(t, x) for λ = 0.0098, κ = 0.01, τ = 20 and T = 800.

Fig. 11. Profile of u(t, x) for λ = 0.0099, κ = 0.01, τ = 20 and T = 800.
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Fig. 12. Profile of v(t, x) for λ = 0.0099, κ = 0.01, τ = 20 and T = 800.

Fig. 13. Profile of u(t, x) for λ = 0.0105, κ = 0.01, τ = 20 and T = 800.

Fig. 14. Profile of v(t, x) for λ = 0.0105, κ = 0.01, τ = 20 and T = 800.
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Fig. 15. Profile of u(t, x) for λ = 0.999, κ = 1.01, τ = 100 and T = 2500.

Fig. 16. Profile of v(t, x) for λ = 0.999, κ = 1.01, τ = 100 and T = 2500.

Fig. 17. Profile of u(t, x) for λ = 1.000, κ = 1.01, τ = 100 and T = 2500.
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Fig. 18. Profile of v(t, x) for λ = 1.000, κ = 1.01, τ = 100 and T = 2500.

Fig. 19. Profile of u(t, x) for λ = 1.005, κ = 1.01, τ = 100 and T = 2500.

Fig. 20. Profile of v(t, x) for λ = 1.005, κ = 1.01, τ = 100 and T = 2500.
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Fig. 21. Profile of u(t, x) for λ = 1.0105, κ = 1.01, τ = 100 and T = 2500.

Fig. 22. Profile of v(t, x) for λ = 1.0105, κ = 1.01, τ = 100 and T = 2500.

Fig. 23. Profile of u(t, x) for λ = 1.003, κ = 1.01, τ = 170 and T = 4500.
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Fig. 24. Profile of v(t, x) for λ = 1.003, κ = 1.01, τ = 170 and T = 4500.

Fig. 25. Profile of u(t, x) for λ = 1.005, κ = 1.01, τ = 170 and T = 4500.

Fig. 26. Profile of v(t, x) for λ = 1.005, κ = 1.01, τ = 170 and T = 4500.
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Fig. 27. Profile of u(t, x) for λ = 1.007, κ = 1.01, τ = 170 and T = 4500.

Fig. 28. Profile of v(t, x) for λ = 1.007, κ = 1.01, τ = 170 and T = 4500.

Fig. 29. Profile of u(t, x) for λ = 1.0105, κ = 1.01, τ = 170 and T = 4500.
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Fig. 30. Profile of v(t, x) for λ = 1.0105, κ = 1.01, τ = 170 and T = 4500.

• the ratio κ/λ is greater than 1 then there is a positive equilibrium and a positive real number κ1 ∈ (1, κ⋆) such that
if 1 < κ/λ ≤ κ1 then the positive equilibrium solution is stable, and if κ/λ ∈ (κ1, κ

⋆
] then it is unstable periodic or

aperiodic.

Hence, these results thatwe have obtained by our FOFDM confirm the theory about the existence and stability of the positive
equilibrium when τ > 0 and κ/λ > 1. Moreover, our results are comparable to those obtained in [8] in which the authors
solved problem (1.5)–(1.6) using the method of steps (where one transforms the DPDE into a system of ordinary PDEs) and
the MATLAB PDE toolbox for τ = 20, 100 and 170 and T = 800, 2500 and 4500. Their simulations show that the solution
is stable for κ/λ = 0.98 and tends to the trivial attractor (0, 0), when they took κ/λ as 1.01 and τ = 100, a bifurcating
periodic stable solution is noticed and finally when they took τ = 170 and κ/λ = 1.01 they obtained an unstable Hopf
bifurcating solution.

Another remarkable fact is that we have tested the MATLAB dde23 solver for solving the transformed system of DDEs
and the dde23 could solve the problem for the delay τ = 20 and T = 800 but it failed to solve the system for τ = 100 and
τ = 170 on the domains [0, T ] with T = 2500 and T = 4500. The dde23 solved the problem using 12371 grid points and
consumed 70.02 s to compute the solution. On the other hand, our FOFDM solved the same problem using 3000 grid points
and consumed 2.95 s to compute the solution. It is worth mentioning here that basically our method is able to produce a
reliable solution to the problem with less number of grid points and in fairly less CPU time as compared to other in-built
solvers.

Lastly, to avoid technicalities, we have considered the case when both diffusion coefficients λ1 and λ2 are the same.
However, our approach can be extended for the general cases (for instance problem (1.1)–(1.2)) where λ1 ≠ λ2 with
necessary modifications. Currently, we are working on extending this approach to the model of two competitive species.
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