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Here we consider algebraic varieties which are closures of products of conjugacy
classes in algebraic groups. Estimates for the dimension of such varieties are
obtained. Moreover, these estimates are used in some questions of the Invariant
Theory. Also, the structure of the monoid generated by the semisimple conjugacy
classes in SL,(K) is described. @ 1995 Academic Press, Inc.

INTRODUCTION

The investigation of products of conjugacy classes in groups is rather
popular in the Group Theory ([1]). The most advanced problem there is
one of the representation of a group G as C", U;_,C',C,C,...C,,
where C,C,,...,C, are some conjugacy classes of G. One of the ques-
tions is to point out the smallest integers n, m, k (if it is possible) such
that G=C", G = U,-S,nC", G = C,C,...C, for any conjugacy classes
C,Cy,...,C, from some fixed set §. For instance, such a set S may
contain only one fixed conjugacy class of G or all non-central classes, etc.
Another question is an existence of a conjugacy class C satisfying the
equality C? = G for a fixed integer d (J. Thompson conjectured that such
a class exists for d = 2, if G is a finite simple group. This conjecture is
proved for some classes of finite simple groups [1, 10]).

The most considerable achievements in this direction were obtained
when G is a finite or linear group. We have no aim to give here any survey
of this results. We only mention that any element of O,(K) can be
represented as a product of k reflections, where k < n.

Qur interest is to consider algebraic varieties which are the closures
(with respect to the Zariski topology) of conjugacy classes in algebraic
groups. The source of such interest is connected with the following
questions. Suppose G is an algebraic group acting regularily on an
algebraic variety X. It is important to know the number min(G, X) =
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min{dim X — dim X*|g € G, g # 1} (here X¥ is the set of g-invariant
points), or, at any rate, to estimate this number. For instance, such
estimates can be used in the Invariant Theory ([6]). Sometimes the number

corank g = dim X — dim X¥*

is known for some g € G. If, in addition, we know that C* = G for any
conjugacy class C except, maybe, classes which a priori can not contain
elements of the minimal corank, then

min(G, X') > corank g/ k.

But in many cases it is enough to know the integer k such that the closure
C* of C* coincides with G. It should be noted that the estimates of such
are rather easier than for the case C¥ = G. This gives us the stimulus to
study these algebraic varieties. Moreover, such varieties are connected
with some stratifications of G which are Int G-invariant.

In this paper we deal with algebraic groups over an algebraically closed
field of characteristic 0.

In the first part we collect the simplest properties of algebraic varieties

M, =TC,...C,,

where C,, ..., C, are some conjugacy classes of an algebraic group G. The
second part is devoted to estimates of the numbers &,e, such that
G=Ck G-= C,C,...C,, where G is a simple algebraic group and
C,C,,...,C, are any non-central conjugacy classes of G. In particular, we
show that k& < 2rank(G), e < 2rank(G) + 1. For k such an estimate is
sharp if we want to have the general one for all types of groups. It follows,
for instance, from the result on reflections in O, (K). In the third part the
applications of such estimates in the direction mentioned above is given.
These results in most parts deal with the dimension of considered vari-
eties. But it would be interesting to describe them more precisely from the
geometrical point of view, say, in the spirit of the work [11].

In the last part we give some examples of the behaviour of such varieties
in the case G = SL,(K). The most interesting thing here is the structure
of the monoid generated by the semisimple conjugacy classes. This struc-
ture is induced by some multiplication on the set of partitions of all
m < n. Many questions are closely connected with manipulations under
partitions (representations, Schubert varieties, etc.). Presumably, products
of conjugacy classes play the defined role for these kind of questions.



PRODUCTS OF CONJUGACY CLASSES, I 717

1. MuLTICLASSES OF ALGEBRAIC GROUPS

1.1. Let G be a group. By a k-conjugacy class of G (or simply k-class)
we mean a product

Mk = C]CZ"'Ck = {gng"'gklgl = Cl}’

where C,,...,C, are conjugacy classes of G. (If & > 1, we will suppose
that C;, ¢ Z(G) for all i.) Every k-class of G is also called a multiclass
of G.

The product of two multiclasses is again a multiclass, and we have a
commutative monoid M(G) of multiclasses. If G € M(G), then the group
G is the zero of M(G) (by zero we mean the element 0 € M(G) such that
0 -m = 0 for every m € M(G)), and in this case we can speak about the
ideal of nilpotent elements:

NM(G) = {m € M(G)|m“ = 0 for some integer d}.

The covering number of G (denoted cn(G)) is the smallest integer n
such that m"™ = 0 for all m € NM(G) (see [1]). The extended covering
number of G (denoted ecn(G)) is the smallest integer n such that
mm,...m, = 0 for every m,m,,...,m, € NM(G).

1.2. Let G be an algebraic group. For every subset X C G by X we
will denote the closure of X in G. If C is a conjugacy class of G, then C is
an open subset of C. Moreover, if G is a connected group, then C is an
irreducible variety.

Let M, = C,C,...C, be a multiclass of G. It is easy to show that:

C,C,...C,cM,;
CC, . .C,C,,...C,cM, foreveryi=1,... k;

4

o T

M,\, is irreducible, if G is connected;
d. M, contains an open subset of M,;

Question. When is M, open in M,?

Let M(G) be the set of closures of all multiclasses of G. We define

my-my =m - m,

for every m,, m, € M(G). Thus we have an algebraic operation on M(G)
which is associative and commutative.

We will denote by ¢cn(G) (respectively by ecn(G)) the smallest integer ¢
(respectively e) such that

m¢ = 0 (respectively mym, ... m, = 0)
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for every m € NM(G) (respectively m,,..., m, € NM(G)). The integers
cn(G), ecn(G) will be also called a covering number and an extended
covering number.

ProrosiTiON 1. Let f: M(G) — M(G) be the natural homomorphism
(f(m) = m). Then the set f(NM(G)) coincides with the ideal of all nilpotent
elements of M(G). Moreover, cn(G) < 2cn(G), ecn(G) < 2 ecn(G).

Proof.  This follows from the well-known fact that G = UV, if U,V are
openin Gand U=V =G. ¢

Now we will suppose that G is connected and G = [G, G]. We denote
the unipotent radical of G by R (G).

ProposiTion 2. Let Cy,...,C, be conjugacy classes of G. Suppose that
the image of each C; in G/ R, (G) generates the group G/ R,. If k =
2dim G, then C,C,...C, = G.

Proof. Let M,=C,...C,, | <k, M, # G. We will show
dimM,C,,, > dim M,. (1)

Suppose dimM,C;,,= dim M,. Since gM, M,C,,, for every g € C, |,
and gM, M,C,,, are irreducible, then gM, = M,C, |, (because
dimM,C, | = dim M)). Thus, g,M, = gZM, for every g,, 8, € C,,, and
therefore g;'¢,M, =M, Let H = = (g;'¢,lg,, 8, € C;1y). We have
HM, = M, and consequently HM, = M,. The group G/ R (G) is semisim-
ple (we have G =[G, G)), and the image of C,,,inG/R, (G) generates
the group G/ R, (G). Hence H = G. Since HM, = M,, then M, = G. It is
a contradiction. Thus we have proved (1). Now our assertion follows from
(1) and Proposition 1. g

ProrosiTion 3. The natural homomorphism
¢: NM(G) - NM(G/R,(G))
is surjective.

Proof. Let H=G/R,(G); H,..., H, be the simple components of
the semisimple group H (here G = [G, G]). Every conjugacy class of H is
a product of some conjugacy classes of H,,..., H,. Hence each multiclass
of H is the product of some conjugacy classes of H,,...,H,,. If m €
NM(H), then {m) = H and therefore in the decomposition of m into the
product of conjugacy classes of H,,..., H,, we can find classes of each
component H, Hence m = cm*, where {¢) = H, m* € M(H). Let C be
the conjugacy class of G such that ¢(C) = ¢ and M* be the multiclass of
G, o(M*) = m*. From proposition 2 we obtain that C € NM(G). Hence
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CM* € NM(G). Thus we have the element M = CM* € NM(G) such
that (M) =m. g

2. CoveriNG NUMBERS OF SIMPLE ALGEBRAIC GROUPS

Here G is a simple algebraic group over an algebraically closed field K
(char K = 0); T, B, W are a maximal torus, a Borel subgroup containing it,
the Weyl group of G; r = rank G; {a,,...,a,) is a simple root system.

By Int G we denote the group of inner automorphisms of G. The group
Int G operates naturally on the algebra of regular functions K{G]. The
subalgebra of invariant functions

C[G] = K[G]ImG

is the subalgebra of reguiar functions on G which are constant on the
conjugacy classes ({3, Chap. 11, Sect. 3. Let

G/ Int G = Speem C[G],
and let
7G> G/ IntG

be the quotient morphism corresponding to the injection C[G] — K[G]
({2, Chap. 11, Sect. 3]).

Tueorem 1. Let C, = Cg,,...,C, = Cg, be conjugacy classes of
Ep-- 8 EGNZGH M, =C,C,...Cp; let g, = tiuy,..., 8, = t.u, be
the Jordan decomposition, where t,,...,t, € T. Then

I dimwg(M,) = min(k — 1,7), if t,,...,t, & Z(G) and G is not
a group of the type B, F,,G,, or each element t,,...,t, is not in the
intersection of the kernels of all the long roots of G:

H. dim 7w (M) > min(lk/ 2}, r), if the number of g, such that
t; € Z(G) or the number of g; such that t; & Z(G) is even:

HI.  dim wg(M,) = min(((k ~ 1)/ 2], r) in all cases.

CoroLLARY 1. let k>2r+1 in case I, or k= 2r in case 11, or
k > 2r + 1 in the general case 111. Then M, = G.

Proof of the Corollary. The variety G/IntG is irreducible and
dim G/ Int G = rank G ((3, E, Chap. I, Sect. 3]). Since M, is closed and
Int G-invariant, then 7(M,) is closed in G/ Int G ([2, Chap. 11, Sect. 3)).
Ifk=r+1,0r k= 2r, 0or K = 2r + 1 in the corresponding cases, then
dim m;(M,) = r according to theorem 1. Therefore 7' M, and conse-
quently M, = G, as M, is closed and Int G-invariant. g
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CorouLary 2. Let C G\ Z(G) be a conjugacy class of G. Then
dim m5(C*) = min((k/ 2}, r). If k > 2r, then C* = G.

Proof of the Corollary. When C, = C, = -+ = (C, = C, the number
of t; € Z(G), or the number of ¢, & Z(G) is zero. Thus the condition 11
holds. The statements follow from theorem 1. g

CorovLLary 3. Let H be a semisimple algebraic group and let r be the
maximum of ranks of all simple components of G. If k = 2r, then mi* = H
for every m € NM(H),

Proof of the Corollary. Let G,,...,G, be all the simple components of
H and r,...,r, their ranks. It is easy to see that m = m,m,...m,,

where m, € NM(G). Since i’ = G according to corollary 2, we have
=2r
m’=G. g

Proof of Theorem 1.
Lemma 1. Let §,...,8,, be closed and W-invariant subsets of T. If
dimS;, > 1 foreveryi=1,...,m,and m < dim T, then

dim$,5;, - S, = m.

m”

Proof of the Lemma. It is sufficient to prove that dimM M, > dim M|,
if M,, M, are closed and W-invariant subsets of T, M, # T, dim M, > 1.
Suppose dim M, M,= dim M,. Then an irreducible component of the
dimension dim M| in M¢ coincides with an irreducible component of the
dimension dim MM, in MM, for every t € M,. Since dim M, > 1, there
exists an infinite set of elements ¢ = 7,¢; ' such that 1,1, € M,, M}t =
My, where M} is the union of all irreducible components of the dimen-
sion dim M| in M. Let H C T be the group generated by the elements
w(t), where o € W. Since M} is closed and W-invariant, then MJH = M.
But H is infinite and W-invariant. Therefore H =T and M}T = M},
Hence we have M = T. There is a contradiction. g

Lemma 2. Let ¢, t; € Z(G) (here we use the notations of theorem 1).
Then dim 7w (C,C) = 1.

Proof of the Lemma. We denote by C*,C* the conjugacy classes of
uu;. It is obvious that dim w(C;C)) = dim w(CFC)).

Let & be the Lie algebra of G. Since the centre of G is unimportant in
this consideration, we can suppose G < GL(®). Let tr be the trace in
End(®). If we prove that tr(C}*C[") # dim &, then we obtain the inequal-
ity dim w(CFC}) > 1. Really, if x € Cf, y € C} and x,y are in the
same Borel subgroup of G, then tr(xy) = dim &. Therefore wo(CTCT) is
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not one point, if tr(C,-*C;") # dim &. Since C,*CJ* is irreducible, then
dim 7 (CFCF) > 1.

Thus we have to prove that tf(C*C) # dim &. Let u;, =1+ n;, u; =
1 + n;, where n,, n;, are nilpotent elements of End(®). We have

Il

trf(ou,o”'u;) = tr(1) + tr(ono™") + te(n) + tr{on,0”'n;)

dim & + tr{on,0”'n;)
for every o € G. We need to prove that tr(on,oc” 'n;) # 0 for some

ogeG.
Let u, = exp(#n,;), where n, € @ (we suppose & < End(®)):

d min{n € N|r} = 0};

3

2=p,<p, < --- <p,beall primes <d-—-1;s,=—-1,s,= vi,...,
P . — - —
s, = V1. There exist elements o,,...,0, € G such that o #,0,"' =s, 7,

for every m = 1,..., e. Actually we can find such elements if we embed n,
in s/,(K) c & (the theorem of Jacobson and Morosov) and consider the
elements of G which correspond to s/,(K). Let

1 i

-1 - —~
XS T o0, L Xy =X T X0, e X, S X T 0K, 10, .
Each element x,, is a polynomial c¢,7; + c,fi’ + -+ +c,_ ¢ ", where
€.y €y €K, ¢, # 0. Moreover, if the prime p <m and pla, then

¢, = 0. Thus, x, = an;; where @ € K*. Let L € End(®) be the space
generated by the elements on,0” ', 0 € G. Since x, € L, then & C L, as
& is an irreducible G-module. If tr(en,oc™'n;) = 0 for every o € G, then
n; is orthogonal to & (with respect to form tr). It is well-known that
G @ &' =End(®). If n; € *, then the space generated by {rn;7"'|7
€ G} belongs to &+ . We have proved above that the space generated by
{on,0™"'loc € G) contains &. The same is true for n,. Hence tr(on,o™'n;)
# 0 for some o € G (the form tr is not degenerated on &). Thus we have

proved our assertion. g

Lemma 3. Let a: T — K* be a root of G, t € T, t & Z(G). Suppose
that « is a short root, if G is of the type B,, F,,G,, or a« = t¢, + ¢, if G is
of the type C, and r > 2. Then there exists an element w € W such that
alw(t)) # L

Proof of the Lemma. The lattice gencrated by the W-orbit of «
coincides with the lattice generated by all roots ({4, Tables 1-1X]). This
proves our statement. g
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LemMma 4. Let L < G be a closed reductive subgroup of G; H=L/
Z(L), wy: H— H/ Int H the quotient morphism. Let X be a closed and
Int G-invariant subset of G; Y be a closed and Int L-invariant subset of
X N L:Y* be the image of Y in H. Then

dim 7 ( X) = dim m, (YF).

Proof of the Lemma. We can suppose that T* ¢ T, where T* is a
maximal torus of L. Since Y C X, then

dmXNT=dmYnNT*. (2)
Let T** = T*/ Z(L), then
dimY N T* > dimY* N T**, 3)
Since X € G is closed and Int G-invariant, then
dim X N T =dim7g(X) (4)

([3, Chap. II, Sect. 3)). The semisimple part of each element of Y* is
conjugate to some element of Y* N T**, because Y is closed in L and
Int L-invariant. Hence

dim Y* N T** = dim 7, (Y*) = dim 7, (Y¥). (5)
Now our statement follows from (2)-(5). g

LEmMMA 5. Let t,,t; & Z(G) (here we use the notations of theorem 1).
Then dim 7o(C,C) > 1

Proof of the Lemma. We can choose a root a such that a € {a,..., a,)
and «a satisfies the conditions of lemma 3. Therefore we can suppose
a(t),a(t;) # 1. Let o, be the reflection corresponding to a; P, = B{a,)B
be the parabolic subgroup of G; L = L be the Levi subgroup of P,. We
denote by Y the closure of the set {o1,0™'rt;7"'|o,7 € L} in G and by X
the closure of C, C in G, where C, ,C are the conjugacy classes of ¢,
Since alt), alt, ) +* 1 then the images of t,t; in L/ Z(L) are not tr1v1al
Moreover, L/ Z(L) PSL,(K). Hence the image Y* of Y in L/ Z(L) is
dense in L/ Z(L) (the product of two non-trivial classes in PSL,(K) is
dense in PSL,(K)). Therefore dimm,(Y*) > 1, where H =L/ Z(L).
Using lemma 4, we obtain dim m;(X) > 1. But X = C, C C C,C], be-
cause f; € C t, € C ([3, Chap. 1I, Sect. 3], and conscquently
dim wG(CTCTJ) >1. g

Now we can prove II and III. Suppose that the conditions II hold. If k&
is odd, we can take away one class. Thus we have an even number of those
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g, for which ¢; & Z(G), and an even number of those g;, for which
t; & Z(G). Then we may distribute the classes into pairs, where both
elements C,, C; in each pair satisfy the condition: ¢, ¢, € Z(G), or t,, 1 &

Z(G). We have dim 7,(C,C)) = 1, according to Lemmas 2, 5. Hence
dimC,C; N T > 1. Using Lemma I, we obtain

dim M, N T > min{the number of our pairs, r = rank G}.

But the number of our pairs = [k/ 2]. Hence we have proved 1I. When
the number of classes, for which ¢, € Z(G), and the number of classes, for
which ¢ & Z(G), are odd, we can remove one class and obtain the
conditions II. Thus we have II.

LEmMA 6. Let M C G be closed, irreducible and Int G-invariant. If
M + G and M contains a regular element x of G (i.e., the Int G-orbit of x
has dimension dim G — rank G), then

dim 75(gM) > dim w(M)
for every g € G\ Z(G).

Proof of the Lemma. let F C F be general fibers of the morphisms
gM — w(gM), G = G/ Int G. We will show

dim F < dim F. (6)

Suppose dim F = dim F. The sets F = ﬁf‘ gM, F are closed in G and F
is irreducible. Thus, from dim F = dim F we obtain F = F. LetUc M
be the union of all fibers of gM — 7;(gM) which have the dimension
dim F. All fibers of U coincide with the fibers of 7, as we have shown
above. Since the fibers of w; are Int G-invariant, the set U is Int G-
invariant too. Moreover, U contains an open subset of gM, according to
our supposition. Hence gM = U is Int G-invariant. We have

sgMs™ = sgs™'M = gM

for every s € G. Then hM = M for every h = g7 'sgs™!, where s € G.

Since G is a simple algebraic group, the closure of the group H generated
by the elements g~ 'sgs~! coincides with G. Then HM = GM = M, be-
cause HM = M and M is closed. Hence M = G. This is a contradiction.
We have proved (6).

Let us consider the morphism M — w;(M). Since the set of all regular
elements is open in G ([3, Chap. 111, Sect. 1]) and M is closed, the set of
regular elements in M is open in M and non-empty, because x € M.
Since M is irreducible and Int G-invariant, the dimension of a general
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fiber of M — w,(M) is equal to dim F. Comparing it with (6), we obtain
our statement. g

Now we need to introduce some notations. Let W, be the Weyl group of
{a,,...,a;); P,= BW;B be the parabolic subgroup corresponding to W
L; be the Levi subgroup of P, thatis, P, = L R (P)), where R, (P) is the
unipotent radical of P,. Let

Y B> L/ Z(L))

be the natural homomorphism (P, = B, L, =T, ¢,: B - 1).

Suppose that ¢,,...,t, & Z(G) and G is not of the type B,, F,,G,. In
this case we choose the usual numeration for a;, ..., «, ([4, Tables I-1X]),
if G has the type A,, D,,C, (in the case C, we have r > 2). If G has the
type Eg, E,, E,, we take the opposite numeration. It is easy to see that

{ay,..., a}-> is an irreducible root system for every j. Moreover, there is
no root B € (ay,...,a, ;) such that B L a), B L a,,...,B L a;
Since G is not B,, F,,G, and a, = ¢, — &,, if G is C,, the conditions of
Lemma 3 hold. Therefore we can assume that ¢,,...,t, & Z(L) (ie.
aft,) # 1 for every ¢,). Hence

o) # 1
form every i, j. Let us put

t; = i(1).

We denote by the symbol C;; the conjugacy class of ¢;; in L,/ Z(Lj). Let
M, i =C,Cy...Cp.

J

Lemma 7. If the set M, _, ; contains a regular element of the group

L/Z(L)and M, _,; =L, \/Z(L,_\), then

M, ;=Ly Z(Lf)'

Proof of the Lemma. Let G =L,/ Z(L), L =L; /Z(L), H=L/
Z(L)y=L; \/Z(L; ), X=M, |, Let Y be the closure of the set
{(o gt Doy Koyt )y D) .. (o, e, Do ' Doy,...,0,_ € L)in L.
We have Y € X N L. Moreover, the image Y¥of Yin H =L,/ Z(Lj_l)
contains the set M, _, ; . Hence Y* = H and dim 7,(Y*) = rank H =
rank G — 1. Since G is a simple algebraic group, we can use Lemma 4 for
G, L, X,Y,Y* instead of G, L, X,Y,Y*. Thus

dim we(M,_, ;) = dim 75(X) > rank G — 1. (7)
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The set M,_, ; C G = L;/ Z(L)) contains a regular element of G accord-
ing to_the condition of the lemma. Therefore we can use Lemma 6 for
M=M c G and g € C, ;. We have

n—1,§

dim 'n-é(ﬂ,,_j) = dim W(}(gﬁn-l,j

) > dimwg(M, ).

OI'M

n—

L= G. In both cases,
dim v(;(ﬁn'j) = rank G
according to (7). Hence M, ; = G=L,y Z(L). «u

Lemma 8. Ift,,....t, & Z(G) and G is not of the type B,, F,, G, then
the conditions of Lemma 7 hold for every ]WM, [Wj,j,l,j =1,...,r. More-
over, the set M, ; contains a semisimple regular element of L,/ Z(L)).

Proof of the Lemma. Let j=1. Then M,, = C,, is the conjugacy
class of the non-trivial semisimple element ¢, = ¢ (¢,) in the group of
rank one L,/ Z(L,). Thus ¢, is a semisimple regular element in M ,.
Since M, , = C, , =1 =L,/ Z(L,), the second condition holds too.

Suppose that our statement is true for every j/ <j. We can suppose
j=rand G =L,/ Z(L)), because L;/ Z(L)) is a semisimple algebraic
group (the center of G is unimportant in our consideration). Using our

supposition for j = — 1,r — 2 and lemma 7, we obtain M, , =L,/

Z(L,_)). Thus, we need to prove only that the set M, , contains a
semisimple regular element of G. Let F < G be the subgroup generated
by the root subgroups of the root system {ay,...,a,_;>; T = (h, (1),
h (t),....,h, (t)) <T be the maximal torus of F; Z,=Tn CG(IF).
Then we have

T=T,Z,,

and each element t, € C; N T is represented as t;, = t;z, where I, € Ty,
z; € Z;. Let us consider the sets

S = {(o-ltla]“)(aztzoz“)...(a,t,o,")lcr,,...,qr, € F},
S, = {(a,i,a,“)(azizaz‘l)...((r,i,o,“)lal,...,a, € F}.
We will show
S, =F. (8)

In fact, FZ, =L, ,, Z < Z(L,_)). Thus, the image of §, in L __,/
Z(L,_,) coincides with M, ,_,. Since M, ,_, =L, _,/Z(L, _))and §, is
closed and Int G-invariant, then we obtain (8). According to our construc-
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tion we have S = §,z, where z = z,z,... z,. Using (8), we obtain

TpzcSzcScM,,. 9)
Now, we will show that for every root 8 € (ay,...,a,)
dim(Tﬁ N TFz) <r-—1, (10)

where T; = Ker 8. If dim(T; N T.z) =r — 1 for any root B, then ;N
Trz = Tpz, because Tz is closed and irreducible. Thus T,z = Tﬂot for
some t € T, where T‘BU is the identity component of 7. But T,:,TB0 are
subgroups in T. Hence T, = TBO and consequently the root subgroups
h,(t),..., h, (t) belong to the kernel of B: T — K*. Thus we obtain
Bla, BLlay...,B La,_, This is impossible, when G is not
B,, F,, G,. Now we have proved (10). Then, there exists s € Tz, s &€ Ker
for any 8 € {a,,..., «,). The element s is regular ([3, Chap. II, Sect. 4])
and, according to (9), s€ M, ,. g

If G isnot B, F,,G, and k <r + 1, then we have Mk,k—l =L,/
Z(L,_,) according to lemmas 7, 8. Let C,l...C,k_be the comnjugacy
classes of ¢,...,¢ in G. Then C,C,...C, cM,=CC, - C,
because C, C C, ([3, Chap. 11, Sect. 3]). Using Lemma 4, we obtain

dim wg(M,) = dim w;(C,C,. " C ) = k — 1.

Thus we have 1.
Suppose G is a group of the type B,. Let a; =&, ~ ¢,,...,a, =¢,bea

standard numeration of the roots ({4, Table II]). Since ¢,,...,1, &
N, Ker(+¢, + ¢;), we may suppose that ¢(¢,) # 1 for every i, . If r > 2,
then there is no such g € (a,,...,;,@;, ) that B L «;,...,8 L a;. In

this case we can use the proof of lemma 8. Therefore, we need to consider
the case r = 2 and to prove dim 7;(C,C,) > 1, dim w5(C,C,C,) = 2 (here
C,,C,,C, are conjugacy classes of g,, g,, ;). The first inequality follows
from the proof of Lemma 8. The second equality will follow from the
existence of regular element in C,C, and Lemma 6. An element ¢t € C,C,
N T is regular, if ¢ & Ker y for every y € {a;, a,). Let

D, = Kera, U Ker(¢, + ¢,), D, = Kera, U Kereg,.
It is sufficient to prove that

C,C,nT¢ D, UD,. (11)

Since w(C,C,) is irreducible and w(C,C,) = w5(C,C, N T), then (11)
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will follow from

cC.nT¢D,, (12)
T, NT¢D,. (13)
Let B =¢, + 55 G, = (X,,X_, 7, Gy = (X4, X_p) < G be the sub-

groups of rank one generated by the root subgroups; T, = <{h,(¢)) < G,,
T, = (hy(1)) < Gz be their maximal tori. Then T = T|T, and o1 = 10
for every o € G, ’TEG We can choose 1, € C, N T, t, € C, N T such
that «(t,) # 1, B{r,) # l (This 1s possible accordmg to supposition 1) If
t, =ty ly, t, = lyty, where ¢, ; € T, then

otio”rt,r 7 = (ot,0 7, )ttty (14)

for every o € G, , 7 € Gg. Since a(1;) * 1, B(t;) # 1, then 1, & Z(G,),
ty & Z(Gy). Using (14), we can see that there exists t € C,C; N T,
alt) # 1, B(t) # 1. Hence we have (12). If we write Ty for 7| in the proof
of Lemma 8, we obtain the inclusion 7,z c C,C, N T for some z € T.
Moreover, if T,z € Ker y for some y € {a,, a,), then y L a,. There are
only two roots: +8 which are orthogonal to «. Hence T,z ¢ D, and we
have (13).

Thus, we have proved I in the case, when G is a group of the type B,.

Let G be a group of the type F, or G,. There exists a simple algebraic
subgroup L < G of the type D, or A,. We have supposed that ¢,..., 1,
are not in the intersection of the kernels of all long roots. Therefore we
can choose #,,...,t, € L\ Z(L). If we change C,,...,C, for the conju-
gacy classes of 1,,..., 1, in L and use lemma 4 and our results for D, and
A,, we obtain L.

Now theorem I is completely proved. g

3. APPLICATIONS

3.1. Let G be an algebraic group which acts on a variety X. Forg € G
we denote the number

dim X - dim X*
(where X¢ = {x € X|g(x) = x}) by the symbol corank g. Then we define
min(G, X) = min{corank glg € G, g & Z(G)},
max(G, X) = max{corank glg € G},
min, (G, X) = min{corank glg € G, g & Z(G), g = g,}
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(here g, is the semisimple part of g), forn € Z*
G[n] = {g € Glcorank g < n}.

We will deal with an action which satisfies the following conditions:

(a) corank g,g,,..., 8, < L/, corank g; for every g, g, ...,
gm € G,
(b) G[n]is a closed subset of G. (%)

3.2. THEOREM 2. Let G be a simple algebraic group and let the action G
on X satisfies the conditions (+). Then

1. min(G, X) = max(G, X)/ 2rank G;

1. min (G, X) = max(G, X)/ (rank G + 1), or G is a group of the
type B,, F,,G, and min (G, X) = corank t, where t € T is an element of a
maximal torus which belongs to the intersection of the kernels of all the long
roots.

Proof. Let g € G\ Z(G), corank g = min(G, X), and let C, be the
conjugacy class of g. We have

Cr=G

according to Corollary 1 (here r = rank G). Let n = max(G, X) — 1. If
ng' C Gln], then C§’= G c Ginl, as Gln] is closed. This is in contradic-
tion with the definition of max(G, X). Hence there exists an element
h € C2'\ Glnl. Therefore

corank 4 = max(G, X),
h=g8- 8,
where g, &5, ..., &, € C. Using condition (*,a.), we obtain
2r
corank & = max(G, X) < ), corank g;.

i=1

Since the elements g,,..., g,, belong to the same conjugacy class, their
coranks are equal to each other. Hence

2r corank g = 2r min( G, X) = max(G, X).

Let 1 € T\ Z(G), corank t = min (G, X), and C, be the conjugacy
class of ¢. If G is not B,, F,, G,, or ¢ is not in the intersection of kernels
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of all long roots, then
=G
according to Corollary I. Now the proof can be obtained as above. g

3.3. Now we describe three cases when conditions ( ) hold.

1. X = A% is the affine space and the action of G on X is equivalent
to a linear action.

2. X = P(V), where V is a rational G-module and G is a central
extension of G.

3. X is an algebraic group, G < X is a closed subgroup which acts on
G by inner automorphisms.

Let us check (). Let g,,-..,8,€G, 0, =8,8---&m—1> 02 = &m>
X, = N",'X*%, X, =X*n Suppose that
m-—1
corank o, < Y. corank g;. (15)

i=1
It is easy to see, that in all our cases

dim X, N X, = dim X + dim X, — dim X. (16)
Using (15) and (16), we obtain

corank 0,0, = dim X — dim X772 < dim X — dim X, N X,
< (dim X — dim X,) + (dim X — dim X})

”n

< corank o, + corank o, < Y. corank g,.
i-1

Thus we have checked a.

Let us check b. In case I we can suppose that X is a rational G-module.
Then the set G[n] is the intersection of two closed subsets of End X,
namely, G and L, = {f € End X|rank(f — 1) < n}. This implies b.

In case 2 we consider the subset of End V

L,={f€EndVlrank(f — A - 1) < n for some A € K}

(here V is a linear space over K). Let d = dimV, A = (a,j) be a matrix of
the size d X d, where {a,-j} are algebraically independent over K, and let x
be a transcendental element over the field K({a;}). If n < d, the (n + 1)
X {(n + 1) minors of A — xE are polynomials with respect to x. The
coefficients of such polynomials lie in K({a,}). Let f(x), f(x),..., fi{x)
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be the set of such polynomials and let {cpq} be the set of coefficients of
f,(x). There exists the set of polynomials

bis-- b, €K[{c,0}] € K[{a;}]
such that for every homomorphism
€ K[{cpq}] - K
the set e(f(x)), e(f,(x)), ..., e(f,(x)) has a common root if and only if

e(¢,) = e(d,) = -+ = e(o,,) = 0 (here we also use the fact that among
fi(x), ..., f,(x) there is the polynomial

an — X dap B PP |

a a,, —Xx - a

21 22 2n+1 +1

. =(—l)" x"thy e
a a - X

n+1

which has the coefficient at x"*! # 0 ([5, Chap. IV, Sect. 5). If we
consider ¢,..., ¢,, as polynomials from KA[{aU}], then L, is the algebraic
set corresponding to ¢,,...,¢,,. Hence, L, is closed in End V. We can
suppose G < SL(V). Therefore the kernel of the homomorphism

9:G » G c PGL(V)

is finite. This implies that the image of the closed subset I:,, NG of Gis
closed in G but 19(]1,, N G) = G[n] and, consequently, we have b.

If X is an algebraic group and G < X, then g € G[n] if and only if the
conjugacy class of g in X has dimension < n. Let X(n) be the set of all
x € X such that the conjugacy class of x has dimension < n. It is known
that X(n) is closed in X ([2, Chap. II, Sect. 2]). Hence G[n] = G N X(n)
is closed in G.

3.4. Let V be a faithful rational G-module. The numbers min(G, V')
and min(G, P(J')) we call a class and a projective class of the linear group
G < GL(V) and denote it by cl(G) and pr.cl(G) ([6]). Using the estimates
of Zarhin ([7]) which give lower bounds of ranks of operators of simple Lie
algebras, we have obtained in [6] the inequality pr.cl{G) > dimV/ 6r,
where G is a simple algebraic group and V is an irreducible rational
G-module. Here we can improve this inequality using Theorem 2.

THEOREM 3. Let G be a simple algebraic group and let V be a faithful
irreducible rational G-module. Then
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I. c(G) = pr.c(G) > dimV/ 3r;
II. clG)=(dimV —dimVT)/2r.

Proof. Let V =Y V,  be the decomposition of V' into the sum of
weight subspaces. Then

dimV, < {dimV. (17)

([7], lemma 1). If y # 0, then ([7, Lemma 2])

dimV, < ——dimV. (18)

+1

If we exclude the case r =1, dimV = 2 which obviously satisfies the
statement of theorem 3, we can obtain from (17), (18)

dimV, < 3dim V.
Hence for every weight x
dimV — dimV, > dimV (19)

(here r > 1 or dim V' > 2). If we have the finite set of homomorphisms {x;:
T — K}, we can find an element ¢ € T such that y,(t) # x,(¢) for every
X; * x,- Using (19), we obtain

max(G, P(V)) = $dim V. (20)

Now 1 follows from (20) and theorem 2. Using the same arguments we
obtain II. g

Remark. The inequalities (17), (18) follow from the theory of weights.
To obtain the inequality like (20), we can use also the theory of characters
for representations of compact groups. But in this case we can obtain only
max(G, P(V)) > 3 dim V. In fact, we expect that there are the estimates
which are stronger than (17), (18) with respect to the asymptotic be-
haviour. The inequality 1I of theorem 3 gives the possibility to improve the
estimates for cl(G).

The classes of linear groups play an important role in the Invariant
Theory ({6]). But in the case of reductive groups it is more important to
know the numbers

cl,(G) = min (G, V),
pr.cl (G) = min (G, P(V)),
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because slice-subgroups of reductive groups are reductive too and the
analysis of such subgroups uses the information about coranks of semisim-
ple elements ((6]). g

THEOREM 4. Let G be a semisimple algebraic group and let V be a
faithful irreducible rational G-module. Then

c(G) = prel (G) = 2dimV/ (r + 1)
and
d(G) = (dimV — dimV'7)/ (r + 1),

or G is a group of the type B,, F,, G, and cl (G) = corankt, where t € T
lies in the intersection of kernels of all long roots.

Proof. This follows from the same arguments as Theorem 3. g

Remark. In the case when G is a semisimple group (not necessarily
connected), we have obtained in [6] the inequality pr.c(G) >
LdimV/[G:G")r (here G" is the identity component of G). Using
Theorem 3, it is possible to obtain

pr.c(G) = tdimV/ [G:G°]r.

Details and applications of the improvement of the codimension inequality
of invariant algebras will be done in another work. g

3.5. THEOREM 5. Let G be a simple algebraic group and let T be a
maximal torus. Suppose that G is embedded into an algebraic group F as a
closed subgroup. Let g € G\ Z(G) and C, be the conjugacy class of g in F.
Then

dim C, = (dim F — dim C(7T))/ (rank G + 1).

If, in addition, g € T and g is not in the intersection of kernels of all long
roots of G, when G is of the type B,, F,, G,, then

dim C, > (dim F — dim C(T))/ (rank G + 1).
Proof. Let L be the Lie algebra of F. We consider the adjoint action

G on L. There exists an element ¢ € T such that LT = L. Hence
dim C.(¢) = dim L” = dim L" = dim C.(T) and therefore

max{G, F) > dim F — dim C(t) = dim F — dim Cp(T).

Now our assertion follows from Theorem 2. g
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4. Examperes; SL (K)

4.1. Here we give some examples of multiclasses and their behaviour
in G = SL(k) (K is algebraically closed and char K = 0).

Prorosition 4. Let a,b € G be semisimple matrices with different
eigenvalues and let C,, C, be their conjugacy classes. Then

G\ Z(G) c C,C,.

Besides, there exists only one conjugacy class C such that C? = G. This is
the class of the matrix

2

d= diag(a,ae, ae ,...,ae"‘l),

where ¢ = exp(2mi/ n) and a"e™" "/ = 1.
CoroLrary 4. C,C,= G.
Proof of the Corollary. Obvious.

Proof of the Proposition. We omit the proof of the next assertion which
is an exercise in linear algebra and can be done by manipulations with
transvections.

LEmMma 9. Let A SL,(K) — K™ be the function which is the principal
i-minor, that is,

I S P" Gy "7 ay

Let 8, #0,8,+0,....8,_, #0 € K* and let

a, 4ap, 0 0
0 a,, ax 0 0

g=1]0 Az Ay 0 0
0 0 a

Then there exists a matrix s € SL (K) such that

Asgs™ ') =8, 4,(ses7 ") =8,,....4,_\(ses') =8, .
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Now we can prove the first part of the theorem. Let
8, =4,(ab), 8, = A,(ab),...,8,_, = 4,_(ab).

For any x € G \ Z(G) we can find a conjugate matrix which looks like g.
According to lemma 9, A(x’) = 8,, 4,(x") =38,,...,4,_(x')=8§,_, for
some x’ conjugate to x. The Gauss decomposition gives

x' = u,abu,. (21)

where u;, € U™, u, € U (here U™, U are the groups of lower and upper
triangular unipotent matrices in SL,(K)). Since a, b have different eigen-
values, the maps

fiU->U, f:U-U,
which are defined by the formulas
fo(u) =uau='a™',  fi(u)=>b""ubu""
€u € U™ or u € U), are injections. Moreaver, f,(U7), f,(U) are closed in
U~ or U ([8, Chap. VI, Sect. 18]). Hence f,, f, are bijections. Therefore
wa = (vyau)” 'aja = wau"' € C,,
bu, = b(b~'wybuy ') = uhbuy ' € C,
for some u, € U™, u, € U. From (21) we obtain now
x' € C,Cy.

This implies our assertion, because C,C,, is Int G-invariant.
Let C? = G for some conjugacy class C (not necessarily semisimple).
Then

e =goga™!, 1=grgr! (22)
forsome g € C, o, 7 € G (here ¢, 1 are scalar matrices). Since £,1 € Z(G)
we can suppose g,ogo !, rgr~' € B (here B is the group of upper
triangular matrices). Let r|, ..., r, be the eigenvalues of g. It follows from
(22) that

Filmy = €5 P2l = Eseves Pplainy =

Frgny =1, rargoy =1, r,rg, =1 (23)
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for some substitutions 7, ¢ € §,,. Let
t = diag(r,,ry,....r,).

It follows from (23) that there exist elements w,, w, € W such that

L P -1 _ -1
witw, =1 ‘g, Wytw, " =1t .

Let w = w,w,. Then

witw™ " = te. (24)

We obtain from (24)
ry=rE,ry=rgl . .. r, =rg""! (25)

(under a proper numeration of the eigenvalues). Since ¢ is the semisimple
part of g and all eigenvalues of r are different (according to (25)) then
g = t. Moreover, rl'e™""1/2 =1 and all diagonal matrices which satisfy
(25) are conjugate. Hence the equality C2 = G is possible only for the
single conjugacy class C. Furthermore, G \ Z(G) c C? according to the
first part of the theorem. The incusion Z(G) C C? is obvious. g

Remark. The Proposition 4 show that the product of two ‘“‘general”
semisimple conjugacy classes is open in its closure and this closure
coincides with the whole group. Moreover, the complement has dimension
zero. In cases when there is a multiplicity of eigenvalues, we will be able to
obtain weaker results (up to closures).

ProrosiTioN 5. Let C < G\ Z(G) be an arbitrary conjugacy class and
let C, be the class of a semisimple matrix a with different eigenvalues. Then

CC,=G.

Proof. Let g € C and let C™! be the conjugacy class of g~!. Accord-
ing to Proposition 5, we have C~' c C,C, for any conjugacy class C, of a
semisimple matrix b with different eigenvalues. Then o0g~ o~ ! = rar~'b
for some o,7€ G and b~ ! =o0go 'rar~! € CC,. Therefore, any
semisimple matrix with different eigenvalues belongs to CC,. Hence
CC,=G. g

Remark. 1t may occur that the set G\ CC, would be rather big.
For instance, let n > 4, g = diag(l,e,...,¢), where &' ! =1,
a = diagler;, ..., a,), where «a, # a; for any i #j, and G; =
{g € Glrank(g — A - 1) < n — 3}. One can see that G; € G\ CC,, G, is
closed in G and dim G, = n? — 9.
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ProposiTiON 6. Let C,,...,C, € G\ Z(G) be conjugacy classes. Then
cC,..C,=G.

Proof. It is obvious for n = 2. Suppose this is true for n — 1. Let
P={(a;) € Gla,;=0for j=1,...,n -1}, L ={(a,;;) € Pla,, =0 for

nj

i=1,...,n— 1}. Using the Jordan decomposition, we can choose ele-
ments g, €C, N P,..., g, € C, N P such that their images g,,..., &, in
L/ Z(L) = PSL, _(K) under the natural homomorphism
P—-L/Z(L)
are not trivial. We have
CE.CEz"'CEH =L/Z(L). (26)

where C, is the conjugacy class of g,. It follows from (26) that among the
elements

(a,g,o,’l)(azgza{') T (0?,-1gn—10}r—11)’

where o,...,0,_, € L, there exists a matrix a with different eigenvalues.

The statement follows now from Proposition 5. g
CoroLLArY 5. cn(SL,(K)) = ecn(SL,(K)) = n.

Proof. According to Proposition 6,
en(SL,(K)) <ecn(SL,(K)) <n.

On the other hand, there exists a conjugacy class C such that C" '# G
(for instance, the class of a = diag(l,e,...,¢), "' =1). Hence
cn(SL(K)) > n. g

Remark. The result of Proposition 6 is better than the one of Theorem
1 when we deal with non-semisimple conjugacy classes of groups which
have the type A,.

4.2, Now we consider the closures of multiclasses generated by
semisimple conjugacy classes.
Let a = diag(a,, ..., a,). By the symbol a(i) we denote

diag(a,,...,a;_,4a,.,,-..,a,) € GL, _(K).

The next result is very useful for our considerations.
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Lemma 10.  Leta = diag(a,,...,a,), b = diag(b,, ..., b,). Suppose that
there exist pairs (i, j),(i', j') such that

dim C,,.Cpy=(n —1)> =1
()= b(j) i (27)
dim Cy\Chpy = (n = 1)" — 1
ab, #a, b, (28)
then
C.C, =G,

where C .\, Coiiyo Coiiry Chiyry © GL, - (K), C,,C, € SL (K} are the corre-
sponding conjugacy classes.

Proof. We can suppose that i’ = j' = n. Let us consider the set
' = {g1a87 '8,b¢5" 181, 8, € SL,((K)}

(here SL, _(K) is embedded into SL,(K) in the natural way). It follows
from (27) that

dmSnNnT=n-2.
Hence

dmC,C,NT>n—2.

Suppose dim C,C, N T = n — 2. Then the affine variety C,C, N T has an
irreducible component which is

T, =T N {diag(x,,..., x,)lx, = a,b,}.

Since 7w, (C,C,) is irreducible (see 2), then C,C, N T = WT,. Now we can
consider in the same way the case i =j = n. Thus, we will obtain a
contradiction with (28). Hence

dimC,C,NT=n~1.
Therefore C,C,= G. g
Now we need to introduce some new notations. Let
Ap=(m,....om ), m =>2m,> " >m,

be a partition of m =m, + m, + --- +m,. By the symbol U(A,) we
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denote the union of all sequences

a= (al,...,al,az,...,az,...,ak,...,ak),
n, n, .

2

where a; € K*, a, + a; for every i # j, and by the symbol I we define

U 1)) Uo)

(Am,msn

(here (0) is only a symbol). Then, for every m = 2k we introduce the
subset B,, < 11 which consists of elements

a= (a,,...,a,,az,...,az)
k k

and the set

Let m < n and let n — m be even. Then for every partition A,, and for
every

a=(a),-..,0,,85,...,05,...,0;,..., ;) € U(A,)
we introduce symbols {a, §), where 8 € K* and
k
§m=m/2 = Tla™
e
i=1

Thus, for every such a there are (n — m)/ 2 symbols {a, §). In the case
= 2k, m = 0, we take for § any kth root of 1.
Now we connect the elements of U1 and the symbols {a, §) with closed
and Int G-invariant subsets of G. Let

a=(ay,--,81,85,...,85,...,8,,...,a,) €U(A,).
We define
T[a]= {diag(xh“"xn)lx)= =xm,=a1’xml+1= =xm[+m2

n
=y Xpemet T T X Ty Ilx = 1}.
i=1
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If there exists the symbol {a, §), we put
T[{a,8)] = T[a] N {diag(x,, ..., X, )X, s 1 Xpoms2 = 0.
Xpm+3Xp—m+a = 5,' "9xn—l‘xn = 6}‘

Let Mlal], M[{a,8)] be the closures in G of the sets Int GT[al.
Int GT[{a, )] (by Int GX for every X € G we mean the set of all
elements conjugated to elements of X).

ProrosiTioN 7. Let a € WA,,), A, =(m,,...,m,). Then Mla] =
{g € Glrank(g —a;1) <n —m, foreveryi =1,...,k}.
If, in addition, n — m = 21, then

k
M[{a,8)] =M[a]l N {g € Gldet(g —x - 1) = (—1)"{211()( -a)™

!
X [T(x* + &,x + 8) for arbitrary ¢, € K}.
ji=1

Proof. It is easy to show that the right sides of both equalities are
closed and contain Int GT[a] or Int GT[{a, )] as a dense subset. This
implies our assertions. g

Now we define an operation on the set 1. Let
a=(a;,...,a,,ay,...,085,...,8;,...,4;) € U(A),

Ap={(P P2 Pr)>
b=(by,....,b,by,....b,,....b0,,....,b) € I(A,),

Yq = (ql’q27-'-aqe)-

Suppose p; = q,. In all cases, except k = e = 2, p = g = n, we define

ach = (ci,...,€,C0,...,Cg5...5Cpy..n,¢) € W(a,), (29)

where a, = (s}, 5,5,...,5,) is the partition of s =5, + -+ +s, and
s;i=p,+aq,—n,ifp +9-—n>0 (30)
(if p, + g, — n < 0, then we put a b = (0)), the elements ¢, ..., c, must

be computed according to the formulas

¢, =ab,,c,=ab,,...,c,=ab,.
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If k=e=2, p=gqg=n, then we put
aob={c, ). (31)

where ¢ is obtained by the same rule as above and 6 = a,a,b,b,.

THEOREM 6. Let M, = C,C,...C, be a multiclass of G. If C\,...,C,
are semisimple, then there exists an element a € W1 such that M.k = Mla] or
M, = M[{a, 8)]. The multiplication of such multiclasses in the monoid
M(G) (see 1) can be defined by the following rules:

MlalM[b] = M[a-b],
M[{a,8>]|M[b] = M[a-b],
M[{a,8)]M[{b,e)] = M[a-b].

Proof. For every m < n we put

u, = Uli(a,) clt.

A

m

One can observe that the set
{M[a]la e 1I,,,}

coincides with the set of semisimple conjugacy classes of GL,(K). If, in
addition, ITa/™ =1, we obtain the semisimple conjugacy classes of
SL,(K). Therefore, it is sufficient to prove the rules of multiplication.
For a € UI,, we will denote the conjugacy class of a in GL,(K) by the
symbol C,,.
Let a € U(A,,) and A = (m,..., m,). We define

h(a) =k,I(a) =m,.

We will say that a pair a,b €W, is concerted if I(a) + I(b) < m,
h(a), h(b) > 2 and either A(a) or h(b) > 3.

Lemma 11, Suppose m = 4 and a, b € I, is a concerted pair. Then one
can construct concerted pairs a',b' e 1 _ | and a",b" € 1, _| by taking
away one element from a and one from b such that a' =a", b’ # b" or
al # al! bl —_ b”

, .

This lemma can be proved by induction and a routine consideration of
cases.
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LEmma 12, Suppose n > 3 and a, b € 11, is a concerted pair. Then

dimC,C, = n? — 1.

Proof. let n =3. Then a = (a,,a,,a;) or b = (b, b,,b,). If we use
Proposition 5, we obtain our assertion. Now we carry out the proof by
induction using Lemmas 10, 11. g

Let m = 2k and

a={(a,,...,a,,8,,...,4,) €8,

b=(b....b..bs,....b,) €B,,.

Let V' be the space of the natural representation of GL,(K), g, € C,,
g, €C,, H=1{g, g,). There exists a chain VY2V, > -« DV, =0 of
H-modules such that dimV,/ V,, , < 2 ([9]). This implies that g = g, g, is
conjugate to a matrix

diag(a,,...,a;,8a; ', ..., 80, "), (32)

where 8 = a,a,bb,, if g is semisimple.

Now we can prove the rule of multiplication for two conjugacy classes.
We exclude the trivial case when one of the classes belongs to the center
of G.

Let a,be U, n = 2; ha), h(b) = 2; l{a) = I(b). Let ¢ be the element
of U(«a,) constructed according to the rule (29) (here @, = (5,,...,5,) is
the partition of s = s, + -+ +s, constructed according to the rule (30)).
Letg, €C,, g, € C,and g = g,g, be semisimple. The matrices g, g5, g
act naturally on the linear space V of the dimension n. There is a
subspace

U=V, eV, e eV, cV

such that dim I, = s, and the restriction of g,, g,, & on V, are the scalar
matrices a, - 1,b, - 1,a,b, - 1 (this follows from the definitions and the
dimension formula for intersections). Let g,, g, be the images g,, g, in
GL(V/ U) and let abe U, _, be the corresponding sets of eigenvalues
of g,, g,. There are two cases: a, b is a concerted pair or @, b € B,_,-In
the first case we use Lemma 12 and obtain

CC, N T =Wr[c] (33)

(here W is the Weyl group of G = SL,(K)). In the second case we use
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(32) and obtain
TG, N T = WT[<c, 8)]. (34)

The inclusions C,C, > Ml[c] or C,C, > M[{c, 8] follow now from (33) or
(34). The contrary inclusions follow from the proposition 7. Thus

C.C, = M[a]M[b] = M[a-b].

Now we can prove the general case. letaell,be llq. It is possible
toextend a and b upto d € 1, b € I, adding different elements of K*,
According to the definitions, we have a o = @ o b. Since Mla), M[b] are
the conjugacy classes and M|a} c Mla), M[b] c M[b], we have

M[a-b] c M[a]M[b].

If we take any conjugacy class C, from M[a] and any one C, from M[b],
the product C,C, will lie in M[x o y] < M[a~b}as x, y are extensions of
a, b. Therefore

M{a-b] = M{a]M[b).

The cases of multiclasses M[{a, 6] are easily reduced to the case M[al.
Really, there exists a semisimple element g € M[(a, §)] whose eigenval-
ues with multiplicity coincide with elements of a. Now we can use the
same arguments as above. g

Remark. It is easy to see that the analogous construction will describe
the case G = GL (K).

4.3.  We denote by the symbol IWS(G) the monoid generated by the
semisimple conjugacy classes of G in M(G). Consider some properties of
A_L(G) which easily follow from Proposition 7 and Theorem 6.

I. If Mla] is not a conjugacy class, then a € U(A,,) for some
A, =(m,...,m,), where m < n — 2. In this case

k
dim M{a] =n*- Y m? - 1.

i=1

I1. If M[{a, 8)]is not a multiclass of the type M[x], then a € l1(A,),
where m < n — 4. In this case

dim M[{a,8)] = n® -

4

m?—(n—-m)/2.

k
=1
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HI If a €U(A,) and m <n — 4, the multiclass M[{a, 5] may
occur only among 2-classes.

V.UMt a=0(a,...,0,,05, .., 05,.c., Qg,...,a,), d;=C(a,...,a)),
G, ="(a,y,...,ay),...,4, = (a,,...,a,), then

Mlal =M[a ] aM[d,] n---nM[a4,].

V. M[(0)] = G.
V1. For an integer i < n we define

M(G) = {M[a], M[{a,8)])ll(a) = n —i}.
If i > n, we put
M{(G)=G.
The muitiplication in MJ(G) induces the maps
M(G) x M{(G) = M;™(G).
Thus, X/IZ(G ) is a graded monoid. Moreaver, the set

M(G,m) = U M(G)

izm

is an ideal of MS(G). Note that A_/I_S’(G) belongs to the discriminant variety
of the morphism 7;: G » G/IntG ifandonly if i <n — 2.

VII. Let A, be the set of all partitions of all positive integers < n.
We also suppose that (0) € A,. For the symbol @ we put

AG = (A, @A € A4,}.

The set 4, = A, U AY_, is a commutative monoid with respect to the
operation defined by the rules corresponding to (30), (31) and theorem 6.
The map

f: M(G)~4,,
where f(Mla]) = A, for a € U(r,) and f(M[(a, 8}) = (A, @) for all

8, is a homomorphism. The image of this homomorphism is the submonoid
of 4, generated by all partition of the number #.
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Note added in proof. 1 am grateful to Prof. M. Herzog, Prof. Z. Arad, and Dr. A. Lev for

the useful discussions of this work which took place after this article was submitted and sent
for the publication. In particular, Dr. A. Lev pointed out to me that stronger assertions than

Pr

10.
1L

opositions 4 and 6 are known.
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