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1. Introduction

Let (X,‖ · ‖) be a complex Banach space. As usual, for a linear operator A, we denote by D(A) the
domain of A, by σ(A) its spectrum, while ρ(A) := C − σ(A) is the resolvent set of A, and denote by
the family R(z; A) = (zI − A)−1, z ∈ ρ(A) of bounded linear operators the resolvent of A. Moreover,
we denote by L (Y , Z) the space of all bounded linear operators between two normed spaces Y and
Z with the operator norm ‖ · ‖L (Y ,Z) , we abbreviate this notation to L (Y ) when Y = Z , and write
‖T ‖L (X) as ‖T ‖ for every T ∈ L (X) when it has no loss of the clarity.

When dealing with parabolic evolution equations, it is usually assumed that the partial differential
operator in the linear part is a sectorial operator, stimulated by the fact that this class of operators
appears very often in the applications. For example, one can find from [17,27,37] that many elliptic
differential operators equipped with homogeneous boundary conditions are sectorial when they are
considered in the Lebesgue spaces (e.g. L p-spaces) or in the space of continuous functions. We here
mention that the operator Aε in Example 1.1, which acts on a domain of “dumb-bell with a thin
handle”, is sectorial on V p

ε . However, as presented in Example 1.1 and Example 1.2, though the resol-
vent set of some partial differential operators considered in some special domains such as the limit
“domain” of dumb-bell with a thin handle or in some spaces of more regular functions such as the
space of Hölder continuous functions, contains a sector, but for which the resolvent operators do not
satisfy the required estimate to be a sectorial operator.

Example 1.1. In this notation the “dumb-bell with a thin handle” has the form

Ωε = D1 ∪ Q ε ∪ D2
(
ε ∈ (0,1]; small

)
,

where D1 and D2 are mutually disjoint bounded domains in R
N (N � 2) with smooth boundaries,

joined by a thin channel, Q ε (which is not required to be cylindrical), which degenerates to a 1-
dim line segment Q 0 as ε approaches zero. This implies that passing to the limit as ε → 0, the limit
“domain” of Ωε consists of the fixed part D1, D2 and the line segment Q 0. Without loss of generality,
we may assume that Q 0 = {(x,0, . . . ,0); 0 < x < 1}. Let P0 = (0,0, . . . ,0), P1 = (1,0, . . . ,0) be the
points where the line segment touches the boundary of D1 and D2. Put Ω = D1 ∪ D2.

Firstly, consider the evolution equation of parabolic type equipped with Neumann boundary con-
dition in the form ⎧⎨⎩

ut − �u + u = f (u), x ∈ Ωε, t > 0,

∂u

∂n
= 0, x ∈ ∂Ωε,

(1.1)

where � stands for the Laplacian operator with respect to the spatial variable x ∈ Ωε , ∂Ωε is the
boundary of Ωε , ∂

∂n denotes the outward normal derivative on ∂Ωε and f : R → R is a nonlinearity.
Let V p

ε (1 � p < ∞) denote the family of spaces based on L p(Ωε), equipped with the norm

‖u‖V p
ε

=
(∫

Ω

|u|p + 1

εN−1

∫
Q ε

|u|p
) 1

p

.

Define the linear operator Aε : D(Aε) ⊂ V p
ε 	→ V p

ε by

D(Aε) =
{

u ∈ W 2,p(Ωε); �u ∈ V p
ε ,

∂u

∂n

∣∣∣∣
∂Ωε

= 0

}
,

Aεu = −�u + u, u ∈ D(Aε).
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It follows from a standard argument that the operator Aε generates an analytic semigroup on V p
ε .

Moreover, the following estimate holds

∥∥R(λ;−Aε)
∥∥

L (L p(Ωε))
� C

|λ| , for λ ∈ Σ ′
θ ,

where Σ ′
θ = {λ ∈ C; |arg(λ− 1)| � θ} with θ > π

2 , and C is a constant that does not depend on ε (e.g.
see [17,37]).

The limit problem of (1.1) as ε → 0 is the following problem studied in [6]⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

wt − �w + w = f (w), x ∈ Ω, t > 0,

∂ w

∂n
= 0, x ∈ ∂Ω,

vt − 1

g
(gvx)x + v = f (v), x ∈ Q 0 = (0,1),

v(0) = w(P0), v(1) = w(P1),

where w is a function that lives in Ω and v lives in the line segment Q 0, the function g : [0,1] →
(0,∞) is a smooth function related to the geometry of the channel Q ε , more exactly, on the way
the channel Q ε collapses to the segment line Q 0. Observe that the vector (w, v) is continuous in the
junction between Ω and Q 0 and the variable w does not depend on the variable v , but v depends
on w .

We identify V p
0 with L p(Ω) ⊕ L p

g (0,1) (1 � p < ∞) endowed with the norm ‖(w, v)‖V p
0

=
(
∫
Ω

|w|p + ∫ 1
0 g|v|p)1/p . Consider the operator A0 : D(A0) ⊂ V p

0 	→ V p
0 defined by

D(A0) = {
(w, v) ∈ V P

0 ; w ∈ D(�Ω), v ∈ Lp
g (0,1),

w(P0) = v(0), w(P1) = v(1)
}
,

A0(w, v) =
(

−�w + w,− 1

g

(
gv ′)′ + v

)
, (w, v) ∈ V p

0 , (1.2)

where �Ω is the Laplace operator with homogeneous Neumann boundary conditions in L p(Ω) and
D(�Ω) = {u ∈ W 2,p(Ω); ∂u

∂n |∂Ω = 0}.
As pointed out by [4], the operator A0 defined by (1.2) is not a sectorial operator. Its spectrum is

all real and, therefore, it is contained in a sector but the resolvent estimate is different from the case
of sectorial operator. More precisely, the operator A0 has the following properties (see also [3,5]):

(a) the domain D(A0) is dense in V P
0 ,

(b) if p > N
2 , then A0 is a closed operator,

(c) A0 has compact resolvent, and
(d) for some μ ∈ (0, π

2 ), Σμ := {λ ∈ C \ {0}; |argλ| � π − μ} ∪ {0} ⊂ ρ(−A0), and for N
2 < q � p the

following estimate holds:

∥∥R(λ;−A0)
∥∥

L (V q
0 ,V p

0 )
� C

1 + |λ|γ ′ , λ ∈ Σμ, (1.3)

for each 0 < γ ′ < 1 − N
2q − 1

2 ( 1
q − 1

p ) < 1, where C is a positive constant.

Remark 1.1. In fact, it is easy to prove that the estimate (1.3) with p = q > N
2 is equivalent to

‖R(λ;−A0)‖L (V p
) � C̃

γ ′ (λ ∈ Σμ \ {0}) for 0 < γ ′ < 1 − N
2p , where C̃ is a positive constant.
0 |λ|
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We refer to [3, Section 2] for a complete and rigorous definition of the dumb-bell domain, and to
[2–5,9,16,21] for related studies of partial differential equations involving dumb-bell domain.

Example 1.2. Assume that Ω is a bounded domain in R
N (N � 1) with boundary ∂Ω of class C4m

(m ∈ N). Let Cl(Ω), l ∈ (0,1), denote the usual Banach space with norm ‖ · ‖l . Consider the elliptic
differential operator A′ : D(A′) ⊂ Cl(Ω) 	→ Cl(Ω) in the form

D
(

A′) = {
u ∈ C2m+l(Ω); Dβu

∣∣
∂Ω

= 0, |β| � m − 1
}
,

A′u =
∑

|β|�2m

aβ(x)Dβu(x), u ∈ D
(

A′),
where β is a multiindex in (N ∪ {0})n , |β| = ∑n

j=1 β j , Dβ = ∏n
j=1(−i ∂

∂x j
)β j . The coefficients

aβ :Ω 	→ C of A′ are assumed to satisfy

(i) aβ ∈ Cl(Ω) for all |β| � 2m,
(ii) aβ(x) ∈ R for all x ∈ Ω and |β| = 2m, and

(iii) there exists a constant M > 0 such that

M−1|ξ |2 �
∑

|β|=2m

aβ(x)ξβ � M|β|2, for all ξ ∈ R
N , x ∈ Ω.

Then, the following statements hold.

(a) A′ is not densely defined in Cl(Ω),
(b) there exist ν, ε > 0 such that

σ
(

A′ + ν
) ⊂ S π

2 −ε =
{
λ ∈ C \ {0}; |arg λ| � π

2
− ε

}
∪ {0},

∥∥R
(
λ; A′ + ν

)∥∥
L (Cl(Ω))

� C

|λ|1− l
2m

, λ ∈ C \ S π
2 −ε,

(c) the exponent l
2m − 1 ∈ (−1,0) is sharp. In particular, the operator A′ + ν is not sectorial.

Notice in particular that the Laplace operator satisfies the conditions (a)–(c) in Example 1.2. For
more details we refer to [42].

Let us recall the following definition:

Definition 1.1. Let −1 < γ < 0 and 0 < ω < π/2. By Θ
γ
ω(X) we denote the family of all linear closed

operators A : D(A) ⊂ X → X which satisfy

(1) σ(A) ⊂ Sω = {z ∈ C \ {0}; |arg z| � ω} ∪ {0} and
(2) for every ω < μ < π there exists a constant Cμ such that

∥∥R(z; A)
∥∥ � Cμ|z|γ for all z ∈ C \ Sμ. (1.4)

A linear operator A will be called an almost sectorial operator on X if A ∈ Θ
γ
ω(X).
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Observe that from Example 1.1 and Remark 1.1, if p > N
2 , then A0 ∈ Θ

−γ ′
μ (V p

0 ) for some γ ′ ∈
(0,1 − N

2p ) and μ ∈ (0, π
2 ), that is, A0 is an almost sectorial operator on V p

0 . Also, from Example 1.2

one can find that (A′ + ν) ∈ Θ
l

2m −1
π
2 −ε

(Cl(Ω)), which implies that A′ + ν is an almost sectorial operator

on Cl(Ω).

Remark 1.2. Let A ∈ Θ
γ
ω(X), then the definition implies that 0 ∈ ρ(A).

Remark 1.3. We say that the estimate (1.4) in Definition 1.1 is “deficient” since γ > −1. From [38],
note in particular that if A ∈ Θ

γ
ω(X), then A generates a semigroup T (t) with a singular behavior

at t = 0 in a sense, called semigroup of growth 1 + γ . Moreover, the semigroup T (t) is analytic in
an open sector of the complex plane C, but the strong continuity fails at t = 0 for data which are
not sufficiently smooth. Hence, it is impossible to apply to A the general results and techniques on
generation of strongly continuous operator semigroup, as it is developed in [37].

Examples of almost sectorial operators which are not sectorial were first introduced by W. von Wahl
in [42]. Since then, some other examples for such operators were also presented, see [27, Exam-
ple 3.1.33] and [38]. Recently, the study of evolution equations involving almost sectorial operators
has been investigated to a large extent. We would like to mention that F. Periago and B. Straub [38]
give a functional calculus for almost sectorial operators, and using the semigroup of growth 1 + γ
which is defined by this functional calculus, obtained the existence and uniqueness of mild solutions
and classical solutions for Cauchy problems of abstract evolution equations involving almost sectorial
operators, that, by constructing an evolution process of growth 1 + γ , A.N. Carvalho et al. [6] estab-
lished the existence of mild solutions for Cauchy problem for non-autonomous evolution equation, in
which the operator in the linear part depends on time t and for each t , it is almost sectorial, and
that J.M. Arrieta et al. [4,5] analyzed the behavior of the asymptotic dynamics of a reaction–diffusion
equation in a dumb-bell domain as the channel shrinks to a line segment, where the partial differen-
tial operator in equation forms an almost sectorial operator in appropriate space. Moreover, from [12],
one can find results on linear abstract Cauchy problem with almost sectorial operators, whenever the
part of this operator in the closure of its domain is sectorial. Notice also that most of the previous
research concerns the case of derivative of first order (integer order) in time, there has been little
regarding the case of derivative of fractional order in time.

On the other hand, starting from some speculations of Leibniz and Euler, followed by the works of
other eminent mathematicians including Laplace, Fourier, Abel, Liouville and Riemann, the fractional
calculus which allows us to consider integration and differentiation of any order, not necessarily in-
teger, has been the object of extensive study for analyzing not only stochastic processes driven by
fractional Brownian motion, but also nonrandom fractional phenomena in physics, nonrandom frac-
tional optimal control, see [1,7,13,22,26,34,40] and references therein. One of the emerging branches
of this study is the theory of abstract partial differential equations that involve fractional derivatives
in time (including fractional diffusion equations), for short, we call fractional evolution equations. Let
us point out that a strong motivation for investigating such equations comes from physics. For exam-
ple, as stated in [15], fractional diffusion equations describe anomalous diffusion on fractals (physical
objects of fractional dimension, like some amorphous semiconductors or strongly porous materials;
see [1,33] and references therein). In normal diffusion (described by, such as the heat equation) the
mean square displacement of a diffusive particle behaves like const · t for t → ∞. A typical behavior
for anomalous diffusion is const · tα for some 0 < α < 1. Also, as indicated in [11,19,28,32], this class
of equations can provide a nice instrument for the description of memory and hereditary properties
of various materials and processes. What we want to emphasize is that this is the main advantage of
fractional models in comparison with classical integer-order models, in which such effects are in fact
neglected. At present, much interest has developed regarding the class of equations (see, e.g., [15,25,
30,36,39]). In particular, in [15] S.D. Eidelman and A.N. Kochubei considered the Cauchy problem of
an evolution equation with the fractional derivative with respect to the time variable and a uniformly
elliptic operator with variable coefficients acting in the spatial variables, where a fundamental solu-
tion of the Cauchy problem was constructed and investigated. We mention that much of the previous
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research on the fractional evolution equations was done provided that the operator in the linear part
is the infinitesimal generator of a strongly continuous operator semigroup, an analytic semigroup, or
a compact semigroup, or a Hille–Yosida operator, much less is known about the fractional evolution
equations with almost sectorial operators.

To explain the results better we need to introduce some terminology. We set I = (0, T ) for some

T > 0 and use the following notation for β � 0, gβ(t) =
{

1
Γ (β)

tβ−1, t > 0,

0, t � 0,
and g0(t) = 0, where

Γ (β) is the Gamma function.

Definition 1.2. Let f ∈ L1(I; X) and α � 0. Then the expression

Jαt f (t) := (gα ∗ f )(t) = 1

Γ (α)

t∫
0

(t − s)α−1 f (s)ds, t > 0, α > 0,

with J 0
t f (t) = f (t), is called Riemann–Liouville integral of order α of f .

Definition 1.3. Let f (t) ∈ Cm−1(I; X), gm−α ∗ f ∈ W m,1(I, X) (m ∈ N, 0 � m − 1 < α < m). The regular-
ized Caputo fractional derivative of order α of f is defined by

c Dα
t f (t) = Dm

t Jm−α
t

(
f (t) −

m−1∑
i=0

f (i)(0)gi+1(t)

)
, (1.5)

where Dm
t := dm

dtm .

In this work, motivated by the above consideration, we are interested in studying the Cauchy
problem for the linear evolution equation{

c Dα
t u(t) + Au(t) = f (t), t > 0,

u(0) = u0,
(LCP)

as well as the Cauchy problem for the corresponding semilinear fractional evolution equation{
c Dα

t u(t) + Au(t) = f
(
t, u(t)

)
, t > 0,

u(0) = u0
(SLCP)

in X , where c Dα
t , 0 < α < 1, is the regularized Caputo fractional derivative of order α and A is

an almost sectorial operator, that is, A ∈ Θ
γ
ω(X) (−1 < γ < 0, 0 < ω < π/2). The main purpose is

to study the existence and uniqueness of mild solutions and classical solutions of Cauchy problems
(LCP) and (SLCP). To do this, we construct two operator families based on the generalized Mittag-
Leffler-type functions and the resolvent operators associated with A, present deep analysis on basic
properties for these families including the study of the compactness, and prove that, under natural
assumptions, reasonable concepts of solutions can be given to problems (LCP) and (SLCP), which in
turn is used to find solutions to the Cauchy problems.

Remark 1.4. We make no assumption on the density of the domain of A.

Remark 1.5. (i) M.M. Dzhrbashyan and A.B. Nersessyan in [14] (see also [34]) showed that the solution
of the Cauchy problem
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{
c Dα

t u(t) + λu(t) = 0, t > 0,

u(0) = 1, 0 < α < 1,

has the form u(t) = Eα(−λtα), where Eα is the known Mittag-Leffler function. This result issues
a warning to us that no matter how smooth the data u0 is, it is inappropriate to define the mild
solution of problem (LCP) as follows

u(t) = T (t)u0 + 1

Γ (α)

t∫
0

(t − s)α−1T (t − s) f (s)ds,

where T (t) is the semigroup generated by A (see Remark 1.3 ), though this fashion was used in some
situations of previous research (see, e.g., [20]).

(ii) Let us point out that in the treatment of problems (LCP) and (SLCP), one of the difficult points
is to give reasonable concept of solutions (see also the work of E. Hernandez et al. [18]). Another is
that even though the operator A generates a semigroup T (t) in X , it will not be continuous at t = 0
for nonsmooth initial data u0.

(iii) It is worth mentioning that if it is the case when A is a matrix (or even bounded linear
operators) then A.A. Kilbas et al. [23, Section 7.4] obtained an explicit representation of mild solution
to problem (LCP).

Let us now give a short summary of this paper, which is organized in a way close to that given by
A.N. Carvalho et al. [6]. In Section 2 we give brief overview of the construction of functional calculus
about almost sectorial operators, state some results about the analytic semigroups of growth order
1 + γ , describe the necessity to use the regularized fractional derivative (1.5), and summarize some
properties on Caputo fractional derivative and two special functions. In Section 3, we construct a pair
of families of operators and present a deep analysis on the properties for these families. Based on the
families of operators defined in Section 3, a reasonable concept of solution is given in Section 4 to
problems (LCP), which in turn is used to analyze the existence of mild solutions and classical solutions
to the Cauchy problem. The corresponding semilinear problem (SLCP) is studied in Section 5. We first
investigate the existence of mild solutions, and then the existence of classical solutions. Finally, based
mainly on [6,38], we present three examples in Section 6 to illustrate our results.

Remark 1.6. Let us note that results in this paper can be easily extended to the case of (general)
sectorial operators.

2. Preliminaries

We first introduce some special functions and classes of functions which will be used in the fol-
lowing, for more details, we refer to [29,38]. Let −1 < γ < 0, and let S0

μ with 0 < μ < π be the open
sector {z ∈ C \ {0}; |arg z| < μ} and Sμ be its closure, that is Sμ := {z ∈ C \ {0}; |arg z| � μ} ∪ {0}. Set

F γ
0

(
S0
μ

) =
⋃
s<0

Ψ
γ
s
(

S0
μ

) ∪ Ψ0
(

S0
μ

)
,

F
(

S0
μ

) = {
f ∈ H

(
S0
μ

); there k,n ∈ N such that f ψk
n ∈ F0

(
S0
μ

)}
,

where

H
(

S0
μ

) = {
f : S0

μ 	→ C; f is holomorphic
}
,

H∞(
S0
μ

) = {
f ∈ H

(
S0
μ

); f is bounded
}
,
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ϕ0(z) = 1

1 + z
, ψn(z) := z

(1 + z)n
, z ∈ C\{−1}, n ∈ N ∪ {0},

Ψ0
(

S0
μ

) =
{

f ∈ H
(

S0
μ

); sup
z∈S0

μ

∣∣∣∣ f (z)

ϕ0(z)

∣∣∣∣ < ∞
}
,

and for each s < 0,

Ψ
γ
s
(

S0
μ

) :=
{

f ∈ H
(

S0
μ

); sup
z∈S0

μ

∣∣ψ s
n(z) f (z)

∣∣ < ∞
}
,

where n is the smallest integer such that n � 2 and γ + 1 < −(n − 1)s.
Observe that the classes of functions introduced above satisfy the inclusions

F γ
0

(
S0
μ

) ⊂ H∞(
S0
μ

) ⊂ F
(

S0
μ

) ⊂ H
(

S0
μ

)
.

Moreover, taking k,n ∈ N ∪ {0} with n > k, one easily sees that ψk
n ∈ F γ

0 (S0
μ).

Assume that A ∈ Θ
γ
ω(X) with −1 < γ < 0 and 0 < ω < π/2. Following F. Periago and B. Straub [38]

(see also A. McIntosh [31] and M. Cowling et al. [8]), a closed linear operator f → f (A) can be
constructed for every f ∈ F (S0

μ) via an extended functional calculus. In the following we give a short
overview to this construction.

For f ∈ F γ
0 (S0

μ), via the Dunford–Riesz integral, the operator f (A) is defined by

f (A) = 1

2π i

∫
Γθ

f (z)R(z; A)dz, (2.1)

where the integral contour Γθ := {R+eiθ } ∪ {R+e−iθ }, is oriented counter-clockwise and ω < θ <

μ < π . It follows that the integral is absolutely convergent and defines a bounded linear operator
on X , and its value does not depend on the choice of θ .

Notice in particular that for k,n ∈ N ∪ {0} with n > k,

ψk
n (A) = Ak(A + 1)−n

and the operator ψk
n (A) is injective. Notice also that if f ∈ F (S0

μ), then there exist k,n ∈ N such that

f ψk
n ∈ F γ

0 (S0
μ). Hence, for f ∈ F (S0

μ), one can define a closed linear operator, still denoted by f (A),

D
(

f (A)
) = {

x ∈ X; (
f ψk

n

)
(A)x ∈ D

(
A(n−1)k)},

f (A) = (
ψk

n (A)
)−1(

f ψk
n

)
(A),

and the definition of f (A) does not depend on the choice of k and n. We emphasize that f (A) is
indeed an extension of the original one and the triple (F γ

0 (S0
μ), F (S0

μ), f (A)) is called an abstract
functional calculus on X (see [29]).

With respect to this construction we collect some basic properties. For more details, we refer
to [38].

Proposition 2.1. The following assertions hold.

(i) α f (A) + βg(A) = (α f + βg)(A), ( f g)(A) = f (A)g(A) for all f , g ∈ F γ
0 (S0

μ), α,β ∈ C;

(ii) f (A)g(A) ⊂ ( f g)(A) for all f , g ∈ F (S0
μ); and

(iii) f (A)g(A) = ( f g)(A), provided that g(A) is bounded or D(( f g)(A)) ⊂ D(g(A)).
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Since for each β ∈ C, zβ ∈ F (S0
μ) (z ∈ C \ (−∞,0], 0 < μ < π ), one can define, via the triple

(F γ
0 (S0

μ), F (S0
μ), f (A)), the complex powers of A which are closed by Aβ = zβ(A) (β ∈ C). However,

in difference to the case of sectorial operators, having 0 ∈ ρ(A) does not imply that the complex
powers A−β with Reβ > 0, are bounded. The operator A−β belongs to L (X) whenever v Reβ >

1 + γ . So, in this situation, the linear space Xβ := D(Aβ), β > 1 + γ , endowed with the graph norm
‖x‖β = ‖Aβ x‖ (x ∈ Xβ), is a Banach space.

Next, we turn our attention to the semigroup associated with A. Since given t ∈ S0
π
2 −ω

, e−tz ∈
H∞(S0

μ) satisfies the conditions (a) and (b) of [38, Lemma 2.13], the family

T (t) = e−tz(A) = 1

2π i

∫
Γθ

e−tz R(z; A)dz, t ∈ S0
π
2 −ω

, (2.2)

here ω < θ < μ < π
2 −|arg t|, forms an analytic semigroup of growth order 1 +γ . For more properties

on T (t), please see the following proposition.

Proposition 2.2. (See [38, Theorem 3.9].) Let A ∈ Θ
γ
ω(X) with −1 < γ < 0 and 0 < ω < π/2. Then the

following properties remain true.

(i) T (t) is analytic in S0
π
2 −ω

and dn

dtn T (t) = (−A)n T (t) (t ∈ S0
π
2 −ω

);

(ii) The functional equation T (s + t) = T (s)T (t) for all s, t ∈ S0
π
2 −ω

holds;

(iii) There is a constant C0 = C0(γ ) > 0 such that ‖T (t)‖ � C0t−γ −1 (t > 0);
(iv) The range R(T (t)) of T (t), t ∈ S0

π
2 −ω

, is contained in D(A∞). Particularly, R(T (t)) ⊂ D(Aβ) for all β ∈ C

with Reβ > 0,

Aβ T (t)x = 1

2π i

∫
Γθ

zβe−tz R(z; A)x dz, for all x ∈ X,

and hence there exists a constant C ′ = C ′(γ ,β) > 0 such that

∥∥Aβ T (t)
∥∥ � C ′t−γ −Reβ−1, for all t > 0;

(v) If β > 1 + γ , then D(Aβ) ⊂ ΣT = {x ∈ X; limt→0; t>0 T (t)x = x}.

Remark 2.1. We note that the condition (ii) of the proposition does not satisfy for t = 0 or s = 0.

Recall that semigroups of growth 1 + γ were investigated earlier in [10,41].
The relation between the resolvent operators of A and the semigroup T (t) is characterized by

Proposition 2.3. (See [38, Theorem 3.13].) Let A ∈ Θ
γ
ω(X) with −1 < γ < 0 and 0 < ω < π/2. Then for

every λ ∈ C with Re λ > 0, one has R(λ,−A) = ∫ ∞
0 e−λt T (t)dt.

Below we briefly state the necessary notions and facts on fractional calculus. Let us begin with the
following definition.

Definition 2.1. Let f (t) ∈ L1(I, X), gm−α ∗ f ∈ W m,1(I, X) (m ∈ N, 0 � m − 1 < α < m). The
Riemann–Liouville fractional derivative of order α of f is defined by R Dα

t f (t) := Dm
t (gm−α ∗ f )(t) =

Dm
t Jm−α

t f (t), where Dm
t := dm

dtm .
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Assume that 0 < α < 1. We mention that the Caputo definition for the fractional derivative incor-
porates the initial values of the function and of its integer derivatives of lower order and the relevant
property that the derivative of a constant is zero is preserved. Moreover, the setting in (LCP) or (SLCP)
determines the necessity to use the regularized fractional derivative (1.5). In particular, if, for exam-
ple, one considers instead of (1.5) the Riemann–Liouville fractional derivative, but without subtracting
t−αu(0), then the appropriate initial data will be the limit value, as t → 0, of the fractional integral of
a solution of the order 1 − α, not the limit value of the solution itself. On the other hand, note that
for a smooth enough function u(t), the Caputo fractional derivative c Dα

t u can be written as

c Dα
t u(t) = 1

Γ (1 − α)

t∫
0

(t − s)−αu′(s)ds.

In the physical literature the expression on the right is used as the basic object for formulating frac-
tional diffusion equations (cf., e.g., [15]).

We summarize some properties on Riemann–Liouville integral and Caputo fractional derivative as
follows (cf., e.g., [34,39,40]):

Proposition 2.4. Let α,β > 0. The following properties hold.

(i) Jαt Jβ
t f = Jα+β

t f for all f ∈ L1(I; X);
(ii) Jαt ( f ∗ g) = Jαt f ∗ g for all g, f ∈ L p(I; X) (1 � p < +∞);

(iii) The Caputo fractional derivative c Dα
t is a left inverse of Jαt :

c Dα
t Jαt f = f , for all f ∈ L1(I; X),

but in general not a right inverse, in fact, for all f (t) ∈ Cm−1(I; X) with gm−α ∗ f ∈ W m,1(I, X) (m ∈ N,
0 � m − 1 < α < m), one has

Jαt c Dα
t f (t) = f (t) −

m−1∑
k=0

f (k)(0)gk+1(t).

At the end of this section, we present some properties of two special functions. Denote by Eα,β

the generalized Mittag-Leffler special function (cf., e.g., [29,34,39]) defined by

Eα,β(z) :=
∞∑

k=0

zk

Γ (αk + β)
= 1

2π i

∫
Υ

λα−βeλ

λα − z
dλ, α,β > 0, z ∈ C,

where Υ is a contour which starts and ends at −∞ and encircles the disc |λ| � |z|1/α counter-
clockwise. If 0 < α < 1, β > 0, then the asymptotic expansion of Eα,β as z → ∞ is given by

Eα,β(z) =
{

1
α z(1−β)/α exp(z1/α) + εα,β(z), |arg z| � 1

2απ,

εα,β(z), |arg(−z)| < (1 − 1
2α)π,

(2.3)

where

εα,β(z) = −
N−1∑ z−n

Γ (β − αn)
+ O

(|z|−N)
, as z → ∞.
n=1
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For short, set

Eα(z) := Eα,1(z), eα(z) := Eα,α(z).

Then we have

c Dα
t E

(
ωtα

) = ωE
(
ωtα

)
, J 1−α

t

(
tα−1eα

(
ωtα

)) = Eα

(
ωtα

)
.

Consider also the function of Wright-type

Ψα(z) :=
∞∑

n=0

(−z)n

n!Γ (−αn + 1 − α)
= 1

π

∞∑
n=1

(−z)n

(n − 1)!Γ (nα) sin(nπα), z ∈ C,

with 0 < α < 1. For −1 < r < ∞, λ > 0, the following results hold.

(W1) Ψα(t) � 0, t > 0;
(W2)

∫ ∞
0

α
tα+1 Ψα( 1

tα )e−λt dt = e−λα
;

(W3)
∫ ∞

0 Ψα(t)tr dt = Γ (1+r)
Γ (1+αr) ;

(W4)
∫ ∞

0 Ψα(t)e−zt dt = Eα(−z), z ∈ C;
(W5)

∫ ∞
0 αtΨα(t)e−zt dt = eα(−z), z ∈ C.

3. Properties of the operators Sα(t) and Pα(t)

Throughout this section we let A be an operator in the class Θ
γ
ω(X) and −1 < γ < 0, 0 < ω < π/2.

In the sequel, we will define two families of operators based on the generalized Mittag-Leffler-type
functions and the resolvent operators associated with A. They will be two families of linear and
bounded operators. In order to check the properties of the families, we will need a third object,
namely the semigroup associated with A. We stress that these families will be used very frequently
throughout the rest of this paper. Below the letter C will denote various positive constants.

Define operator families {Sα(t)}|t∈S0
π
2 −ω

, {Pα(t)}|t∈S0
π
2 −ω

by

Sα(t) := Eα

(−ztα
)
(A) = 1

2π i

∫
Γθ

Eα

(−ztα
)

R(z; A)dz,

Pα(t) := eα

(−ztα
)
(A) = 1

2π i

∫
Γθ

eα

(−ztα
)

R(z; A)dz,

where the integral contour Γθ := {R+eiθ } ∪ {R+e−iθ } is oriented counter-clockwise and ω < θ < μ <
π
2 − |arg t|.

We need some basic properties of these families which are used further in this paper.

Theorem 3.1. For each fixed t ∈ S0
π
2 −ω

, Sα(t) and Pα(t) are linear and bounded operators on X. Moreover,

there exist constants Cs = C(α,γ ) > 0, C p = C(α,γ ) > 0 such that for all t > 0,

∥∥Sα(t)
∥∥ � Cst−α(1+γ ),

∥∥Pα(t)
∥∥ � C pt−α(1+γ ). (3.1)
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Proof. Note, from the asymptotic expansion of Eα,β that for each fixed t ∈ S0
π
2 −ω

, Eα(−ztα),

eα(−ztα) ∈ F γ
0 (S0

μ). Therefore, by (2.1), the operator families {Sα(t)}|t∈S0
π
2 −ω

, {Pα(t)}|t∈S0
π
2 −ω

are well

defined, and for each t ∈ S0
π
2 −ω

, Sα(t) and Pα(t) are linear bounded operators on X . So, to prove the

theorem, it is sufficient to prove that the estimates in (3.1) hold.
Let T (t), t ∈ S0

π
2 −ω

, be the semigroup defined by (2.2). Then by (W4) and the Fubini Theorem, we

get

Sα(t)x = 1

2π i

∫
Γθ

Eα

(−ztα
)

R(z; A)x dz

= 1

2π i

∞∫
0

Ψα(λ)

∫
Γθ

e−λztα R(z; A)x dz dλ

=
∞∫

0

Ψα(s)T
(
stα

)
x ds, t ∈ S0

π
2 −ω

, x ∈ X . (3.2)

A similar argument shows that

Pα(t)x =
∞∫

0

αsΨα(s)T
(
stα

)
x ds, t ∈ S0

π
2 −ω

, x ∈ X . (3.3)

Hence, by (3.2), (3.3), Proposition 2.2(iii), (W1) and (W3), we have

∥∥Sα(t)x
∥∥ � C0

∞∫
0

Ψα(s)s−(1+γ )t−α(1+γ )‖x‖ds

� C0
Γ (−γ )

Γ (1 − α(1 + γ ))
t−α(1+γ )‖x‖, t > 0, x ∈ X,

∥∥Pα(t)x
∥∥ � αC0

∞∫
0

Ψα(s)s−γ t−α(1+γ )‖x‖ds

� αC0
Γ (1 − γ )

Γ (1 − αγ )
t−α(1+γ )‖x‖, t > 0, x ∈ X .

Therefore the estimates in (3.1) hold. This completes the proof. �
From now on, we will frequently use the representations (3.2) and (3.3) for operators Sα(t) and

Pα(t), respectively.

Theorem 3.2. For t > 0, Sα(t) and Pα(t) are continuous in the uniform operator topology. Moreover, for every
r > 0, the continuity is uniform on [r,∞).

Proof. Let ε > 0 be given. For every r > 0, it follows from (W3) that we may choose δ1, δ2 > 0 such
that
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2C0

rα(1+γ )

δ1∫
0

Ψα(s)s−(1+γ ) ds � ε

3
,

2C0

rα(1+γ )

∞∫
δ2

Ψα(s)s−(1+γ ) ds � ε

3
. (3.4)

Then we deduce, by Proposition 2.2(i), that there exists a positive constant δ such that

δ2∫
δ1

Ψα(s)
∥∥T

(
tα1 s

) − T
(
tα2 s

)∥∥ds � ε

3
, (3.5)

for t1, t2 � r and |t1 − t2| < δ.
On the other hand, using (3.4), (3.5) and Theorem 3.1, we get

∥∥Sα(t1)x − Sα(t2)x
∥∥

�
δ1∫

0

Ψα(s)
(∥∥T

(
tα1 s

)∥∥ + ∥∥T
(
tα2 s

)∥∥)‖x‖ds +
δ2∫

δ1

Ψα(s)
∥∥T

(
tα1 s

) − T
(
tα2 s

)∥∥‖x‖ds

+
∞∫

δ2

Ψα(s)
(∥∥T

(
tα1 s

)∥∥ + ∥∥T
(
tα2 s

)∥∥)‖x‖ds

� 2C0

rα(1+γ )

δ1∫
0

Ψα(s)s−(1+γ )‖x‖ds +
δ2∫

δ1

Ψα(s)
∥∥T

(
tα1 s

) − T
(
tα2 s

)∥∥‖x‖ds

+ 2C0

rα(1+γ )

∞∫
δ2

Ψα(s)s−(1+γ )‖x‖ds

� ε‖x‖, for any x ∈ X,

that is,

∥∥Sα(t1) − Sα(t2)
∥∥ � ε,

which implies that Sα(t) is uniformly continuous on [r,∞) in the uniform operator topology and
hence, by the arbitrariness of r > 0, Sα(t) is continuous in the uniform operator topology for t > 0.
A similar argument enables us to give the characterization of continuity on Pα(t). This completes the
proof. �
Theorem 3.3. Let 0 < β < 1 − γ . Then

(i) the range R(Pα(t)) of Pα(t) for t > 0, is contained in D(Aβ);
(ii) S ′

α(t)x = −tα−1 APα(t)x (x ∈ X), and S ′
α(t)x for x ∈ D(A) is locally integrable on (0,∞);

(iii) for all x ∈ D(A) and t > 0, ‖ASα(t)x‖ � Ct−α(1+γ )‖Ax‖, here C is a constant depending on γ ,α.

Proof. It follows from Proposition 2.2(iv) that for all x ∈ X , t > 0, T (t)x ∈ D(Aβ) with β > 0. Therefore,
in view of (3.3), Proposition 2.2(iv) and (W3), we have
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∥∥Aβ Pα(t)x
∥∥ �

∞∫
0

αsΨα(s)
∥∥Aβ T

(
tαs

)∥∥‖x‖ds

� αC ′t−α(γ +β+1)

∞∫
0

Ψα(s)s−(β+γ ) ds ‖x‖

� αC ′ Γ (1 − β − γ )

Γ (1 − α(β + γ + 1))
t−α(1+β+γ )‖x‖,

which implies that the assertion (i) holds.
From (i), it is easy to see that for all x ∈ X , S ′

α(t)x = −tα−1 APα(t)x. Moreover, for every x ∈ D(A),
one has by Proposition 2.2(iv),

∥∥tα−1 APα(t)x
∥∥ � tα−1

∞∫
0

αsΨα(s)
∥∥T

(
tαs

)∥∥‖Ax‖ds � αC0
Γ (1 − γ )

Γ (1 − αγ )
t−αγ −1‖Ax‖.

Since −αγ − 1 > −1, this shows that S ′
α(t)x for each x ∈ D(A) is locally integrable on (0,∞), that is,

(ii) is true.
Moreover, Proposition 2.2(iv) and (3.2) imply that

∥∥ASα(t)x
∥∥ � C0t−α(1+γ )

∞∫
0

Ψα(s)s−1−γ ds‖Ax‖

� C0
Γ (−γ )

Γ (1 − α(1 + γ ))
t−α(1+γ )‖Ax‖, x ∈ D(A).

This means that (iii) holds, and completes the proof. �
Remark 3.1. Particularly, from the proof of Theorem 3.3(i) we can conclude that

∥∥APα(t)
∥∥ � Ct−α(2+γ ),

where C is a constant depending on γ ,α. Moreover, using a similar argument with that in Theo-
rem 3.2, we have that APα(t) for t > 0 is continuous in the uniform operator topology.

Theorem 3.4. The following properties hold.

(i) Let β > 1 + γ . For all x ∈ D(Aβ), limt→0;t>0 Sα(t)x = x;
(ii) For all x ∈ D(A), (Sα(t) − I)x = ∫ t

0 −sα−1 APα(s)x ds;
(iii) For all x ∈ D(A), t > 0, Dα

t Sα(t)x = −ASα(t)x;
(iv) For all t > 0, Sα(t) = J 1−α

t (tα−1 Pα(t)).

Proof. For any x ∈ X , note by (3.2) and (W3) that

Sα(t)x − x =
∞∫

Ψα(s)
(
T
(
tαs

)
x − x

)
ds.
0
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On the other hand, by Theorem 2.2(v) it follows that D(Aβ) ⊂ ΣT in view of β > 1 + γ . Therefore,
we deduce, using Proposition 2.2(iii), that for any x ∈ D(Aβ), there exists a function η(s) ∈ L1(0,+∞)

depending on Ψα(s) such that

∥∥Ψα(s)
(
T
(
tαs

)
x − x

)∣∣ � η(s).

Hence, by means of the Lebesgue dominated convergence theorem we obtain

Sα(t)x − x → 0, as t → 0,

that is, the assertion (i) remains true.
From (i) and Theorem 3.3(ii) we get for all x ∈ D(A),

(
Sα(t) − I

)
x = lim

s→0

(
Sα(t)x − Sα(s)x

) =
t∫

0

−λα−1 APα(λ)x dλ,

which implies that the assertion (ii) holds.
To prove (iii), first it is easy to see that 1

ϕ0
∈ F (S0

μ) and the operator ϕ0(A) is injective. Taking
x ∈ D(A), by Proposition 2.1(iii) one has

Sα(t)x = Eα

(−ztα
)
(A)x = (

Eα

(−ztα
)
ϕ0

)
(A)

(
1

ϕ0

)
(A)x.

Moreover, by (2.3), we have supz→∞ |ztα Eα(−ztα)| < ∞, which implies that

∣∣zEα

(−ztα
)
(1 + z)−1

∣∣ � C |z|−1t−α, as z → ∞,

where C is a constant which is independent of t . Consequently,

−zEα

(−ztα
)
(1 + z)−1 ∈ F γ

0

(
S0
μ

)
. (3.6)

Notice also that

c Dα
t Eα

(−ztα
)
(1 + z)−1 R(z; A) = (−z)Eα

(−ztα
)
(1 + z)−1 R(z; A).

Combining Proposition 2.1(ii) and (3.6), we get

c Dα
t

((
Eα

(−ztα
)(

1 + zβ
)−1)

(A)
) = 1

2π i

∫
Γθ

(−z)Eα

(−ztα
)
(1 + z)−1 R(z; A)dz

= (−z)(A)
(

Eα

(−ztα
)
(1 + z)−1)(A)

= −A
(

Eα

(−ztα
)
(1 + z)−1)(A).

Hence, we obtain
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Dα
t Sα(t)x = −A

(
Eα

(−ztα
)
(1 + z)−1)(A)(1 + z)(A)x

= −A
(

Eα

(−ztα
))

(A)x

= −ASα(t)x.

This proves (iii).
For (iv), by a similar argument with (iii), one can prove that tα−1eα(−ztα) belongs to F γ

0 (S0
μ) for

t > 0 and hence

Jαt
(
tα−1 Pα(t)

) = Jαt
(
tα−1eα

(−ztα
)
(A)

) = (
Eα

(−ztα
))

(A) = Sα(t),

in view of Jαt (tα−1eα(−ztα)) = Eα(−ztα). This completes the proof. �
Before proceeding with our theory further, we present the following result.

Lemma 3.1. If R(λ,−A) is compact for every λ > 0, then T (t) is compact for every t > 0.

Proof. Note first that as a consequence of Theorem 3.13 in [38], for every λ ∈ C with Reλ > 0,
R(λ;−A) = ∫ ∞

0 e−λs T (s)ds defines a bounded linear operator on X . Therefore, we obtain

λR(λ;−A)T (t) − T (t) = λ

∞∫
0

e−λs(T (t + s) − T (t)
)

ds. (3.7)

Let ε > 0 be given. For every λ > 0 and t > 0, it follows from Theorem 3.2 that there exists a ν > 0
such that sups∈[0,ν] ‖T (s + t) − T (t)‖ � ε

2 . So

λ

ν∫
0

e−sλ
∥∥T (t + s) − T (t)

∥∥ds � ε

2
. (3.8)

On the other hand, by Theorem 2.2(iii), we get

λ

∥∥∥∥∥
∞∫

ν

e−sλ(T (s + t) − T (t)
)

ds

∥∥∥∥∥ � λC

∞∫
ν

e−sλ((t + s)−1−γ + t−γ −1)ds

� 2Ct−γ −1e−λν,

which implies that there exists a λ0 > 0 large enough such that

λ

∥∥∥∥∥
∞∫

ν

e−sλ(T (s + t) − T (t)
)

ds

∥∥∥∥∥ � ε

2
, λ � λ0. (3.9)

Thus, for all λ � λ0, using (3.7), (3.8) and (3.9) we deduce that

∥∥λR(λ;−A)T (t) − T (t)
∥∥ � λ

ν∫
e−sλ

∥∥T (t + s) − T (t)
∥∥ds
0
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+ λ

∞∫
ν

e−sλ
∥∥T (s + t) − T (t)

∥∥ds

� ε.

It follows from the arbitrariness of ν > 0 that

lim
λ→∞

∥∥λR(λ;−A)T (t) − T (t)
∥∥ = 0.

Since λR(λ;−A)T (t) is compact for every λ > 0 and t > 0, T (t) is compact for every t > 0. �
With the help of this lemma we now show the following result.

Theorem 3.5. If R(λ,−A) is compact for every λ > 0, then Sα(t), Pα(t) are compact for every t > 0.

Proof. Let ε > 0 be arbitrary. Put

ςε(t) :=
∞∫
ε

Ψα(s)T
(
stα − εtα

)
ds, ζε(t) :=

∞∫
ε

Ψα(s)T
(
stα

)
ds.

Then, ζε(t) = T (εtα)ςε(t), and it is easy to prove that for every t > 0, ςε(t) is a bounded linear
operator on X . Therefore, by the compactness of T (t), t > 0, we see that ζε(t) is compact for every
t > 0.

On the other hand, note that

∥∥ζε(t) − Sα(t)
∥∥ �

∥∥∥∥∥
ε∫

0

Ψα(s)T
(
stα

)
ds

∥∥∥∥∥ � C0t−α(1+γ )

ε∫
0

Ψα(s)s−1−γ ds.

Hence, it follows from the compactness of ζε(t), t > 0, that Sα(t) is compact for every t > 0. By a
similar technique we can conclude that Pα(t) is compact for every t > 0. The proof is completed. �
4. Linear problems

Let A ∈ Θ
γ
ω(X) with −1 < γ < 0 and 0 < ω < π/2. We discuss the existence and uniqueness of

mild solution and classical solutions for the inhomogeneous linear abstract Cauchy problem{
c Dα

t u(t) + Au(t) = f (t), 0 < t � T ,

u(0) = u0,
(LCP)

where c Dα
t , 0 < α < 1, is the Caputo fractional derivative of order α, and u0 is given belonging to a

subset of X .

Assumption. Assume that u(·) : [0, T ] → X is a function such that

(H∗) u ∈ C([0, T ]; X), g1−α ∗u ∈ C1((0, T ]; X), u(t) ∈ D(A) for t ∈ (0, T ], Au ∈ L1((0, T ); X), and u sat-
isfies (LCP).
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Then, by Definitions 1.2 and 1.3, one can rewrite (LCP) as

u(t) = u0 − 1

Γ (α)

t∫
0

(t − s)α−1 Au(s)ds + 1

Γ (α)

t∫
0

(t − s)α−1 f (s)ds, (4.1)

for t ∈ [0, T ].

Before presenting the definition of mild solution of problem (LCP), we first prove the following
lemma.

Lemma 4.1. If u : [0, T ] → X is a function satisfying Assumption (H∗), then u(t) satisfies the following integral
equation

u(t) = Sα(t)u0 +
t∫

0

(t − s)α−1 Pα(t − s) f (s)ds, t ∈ (0, T ].

Proof. Note that the Laplace transform of an abstract function f ∈ L1(R+, X) is defined by f̂ (λ) :=∫ ∞
0 e−λt f (t)dt (λ > 0). Applying the Laplace transform to (4.1) we get û(λ) = u0

λ
− 1

λα Aû(λ) + f̂ (λ)
λα ,

that is,

û(λ) = λα−1(λα + A
)−1

u0 + (
λα + A

)−1
f̂ (λ).

On the other hand, using Proposition 2.3 and (W2) we deduce that

λα−1(λα + A
)−1

u0 + (
λα + A

)−1
f̂ (λ)

= λα−1

∞∫
0

e−λαt T (t)u0 dt +
∞∫

0

e−λαt T (t) f̂ (λ)dt

=
∞∫

0

d

dλ
e−(λt)α T

(
tα

)
u0 dt +

∞∫
0

∞∫
0

αtα−1e−(λt)αt T
(
tα

)
f (s)e−sλ ds dt

=
∞∫

0

∞∫
0

αt

τα
Ψα

(
1

τα

)
e−λtτ T

(
tα

)
dτ dt

+
∞∫

0

∞∫
0

∞∫
0

α

τ 2α
tα−1Ψ

(
1

τα

)
e−λt T

(
tα

τα

)
f (s)e−sλ dτ ds dt

=
∞∫

0

∞∫
0

α

τα+1
Ψα

(
1

τα

)
e−λt T

(
tα

τα

)
dτ dt

+
∞∫ ∞∫ ∞∫

ατ tα−1Ψ (τ )T
(
tατ

)
f (s)e−(s+t)λ dτ ds dt
0 0 0
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=
∞∫

0

e−λt

∞∫
0

Ψα(τ )T
(
tατ

)
dτ dt

+
∞∫

0

e−tλ

t∫
0

(t − s)α−1 f (s)

( ∞∫
0

ατΨ (τ )T
(
(t − s)ατ

)
dτ

)
ds dt

=
∞∫

0

e−λt Sα(t)dt +
∞∫

0

e−λt

t∫
0

(t − s)α Pα(t − s) f (s)ds dt

=
∞∫

0

e−λt

(
Sα(t)u0 +

t∫
0

(t − s)α−1 Pα(t − s) f (s)ds

)
dt.

This implies that

û(λ) =
∞∫

0

e−λt

(
Sα(t)u0 +

t∫
0

(t − s)α−1 Pα(t − s) f (s)ds

)
dt.

Now using the uniqueness of the Laplace transform (cf. [43, Theorem 1.1.6]), we deduce that the
assertion of the lemma holds. This completes the proof. �

Motivated by Lemma 4.1, we adopt the following concept of mild solution to problem (LCP).

Definition 4.1. By a mild solution of problem (LCP), we mean a function u ∈ C((0, T ]; X) satisfying

u(t) = Sα(t)u0 +
t∫

0

(t − s)α−1 Pα(t − s) f (s)ds, t ∈ (0, T ].

Remark 4.1. It is to be noted that:

(a) Unlike the case of strongly continuous operator semigroups, we do not require the mild solution
of problem (LCP) to be continuous at t = 0. Moreover, in general, since the operator Sα(t) is
singular at t = 0, solutions to problem (LCP) are assumed to have the same kind of singularity
at t = 0 as the operator Sα(t). This is the case, for instance, if f ≡ 0 so that we have that
u(t) = Sα(t)u0, which presents a discontinuity at the initial time;

(b) When u0 ∈ D(Aβ), β > 1 + γ , it follows from Theorem 3.4(i) that the mild solution is continuous
at t = 0.

For f ∈ L1((0, T ); X), the initial problem (LCP) has a unique mild solution for every u0 ∈ X . We
will now be interested in imposing further condition on f and u0 so that the mild solution will
become a classical solution. To this end we first introduce the following definition.

Definition 4.2. By a classical solution to problem (LCP), we mean a function u(t) ∈ C([0, T ]; X) with
c Dα

t u(t) ∈ C((0, T ]; X), which, for all t ∈ (0, T ], takes values in D(A) and satisfies (LCP).

We are now ready to state our main result in this section.
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Theorem 4.1. Let A ∈ Θ
γ
ω(X) with 0 < ω < π

2 . Suppose that f (t) ∈ D(A) for all 0 < t � T , A f (t) ∈
L∞((0, T ); X), and f (t) is Hölder continuous with an exponent θ ′ > α(1 + γ ), that is,∥∥ f (t) − f (s)

∥∥ � K |t − s|θ ′
, for all 0 < t, s � T .

Then, for every u0 ∈ D(A), there exists a classical solution to problem (LCP) and this solution is unique.

Proof. For u0 ∈ D(A), let u(t) = Sα(t)u0 (t > 0). Then it follows from Theorem 3.4(i), (iii) that u(t) is
a classical solution of the following problem{

c Dα
t u(t) + Au(t) = 0, 0 < t � T ,

u(0) = u0.
(4.2)

Moreover, from Lemma 4.1, it is easy to see that u(t) is the only solution to problem (4.2). Put

w(t) =
t∫

0

(t − s)α−1 Pα(t − s) f (s)ds, 0 < t � T .

Then from the assumptions on f and Theorem 3.1 we obtain

∥∥Aw(t)
∥∥ �

t∫
0

(t − s)α−1
∥∥Pα(t − s)

∥∥∥∥A f (t)
∥∥

L∞((0,T );X)
ds

� C p
∥∥A f (t)

∥∥
L∞((0,T );X)

1

−αγ
t−γ α,

which implies that w(t) ∈ D(A) for all 0 < t � T .
Next, we show c Dα

t w(t) ∈ C((0, T ]; X). Since w(0) = 0 and hence

c Dα
t w(t) = D1

t J 1−α
t w(t) = D1

t

((
J 1−α
t Qα

) ∗ f
) = D1

t (Sα ∗ f ), (4.3)

in view of Proposition 2.4 and Theorem 3.4(iv), where Qα(t) := tα−1 Pα(t), it remains to prove v(t) :=
(Sα ∗ f )(t) ∈ C1((0, T ]; X). Let h > 0 and h � T − t . Then it is easy to verify the identity

v(t + h) − v(t)

h
=

t∫
0

Sα(t + h − s) − Sα(t − s)

h
f (s)ds + 1

h

t+h∫
t

Sα(t + h − s) f (s)ds.

Again by the assumptions on f and Theorem 3.1, we have, for t > 0 fixed,∥∥(t − s)α−1 APα(t − s) f (s)
∥∥ � C p(t − s)−αγ −1

∥∥A f (s)
∥∥ ∈ L1((0, T ); X

)
,

for all s ∈ [0, t). Therefore, using Theorem 3.3(ii) and the Dominated Convergence Theorem we get

lim
h→0

t∫
0

Sα(t + h − s) − Sα(t − s)

h
f (s)ds =

t∫
0

(t − s)α−1(−A)Pα(t − s) f (s)ds

= −Aw(t). (4.4)
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Furthermore, note that

1

h

t+h∫
t

Sα(t + h − s) f (s)ds = 1

h

h∫
0

Sα(s) f (t + h − s)ds

= 1

h

h∫
0

Sα(s)
(

f (t + h − s) − f (t − s)
)

ds

+ 1

h

h∫
0

Sα(s)
(

f (t − s) − f (t)
)

ds + 1

h

h∫
0

Sα(s) f (t)ds.

From Theorem 3.1 and the Hölder continuity on f we have

1

h

∥∥∥∥∥
h∫

0

Sα(s)
(

f (t + h − s) − f (t − s)
)

ds

∥∥∥∥∥ � Cs Khθ ′−α(1+γ )

1 − α(1 + γ )
,

1

h

∥∥∥∥∥
h∫

0

Sα(s)
(

f (t − s) − f (t)
)

ds

∥∥∥∥∥ � Cs Khθ ′−α(1+γ )

1 + θ − α(1 + γ )
.

Also, since f (t) ∈ D(A) (0 < t � T ), limh→0
1
h

∫ h
0 Sα(s) f (t)ds = f (t) in view of Theorem 3.4(i). Hence,

1

h

t+h∫
t

Sα(t + h − s) f (s)ds → f (t) as h → 0+. (4.5)

Combining (4.4) and (4.5) we deduce that v is differentiable from the right at t and v ′+(t) = f (t) −
Aw(t) (t ∈ (0, T ]). By a similar argument with the above, one has that v is differentiable from the
left at t and v ′−(t) = f (t) − Aw(t) (t ∈ (0, T ]). Next, we prove Aw(t) ∈ C((0, T ]; X). To the end, let
Aw(t) = I1(t) + I2(t), where

I1(t) :=
t∫

0

(t − s)α−1 APα(t − s)
(

f (s) − f (t)
)

ds,

I2(t) :=
t∫

0

A(t − s)α−1 Pα(t − s) f (t)ds.

By Theorem 3.4(ii), we obtain I2(t) = −(Sα(t) − I) f (t). So, by the assumption of f and Theorem 3.2,
we see that I2(t) is continuous for 0 < t � T . To prove the same conclusion for I1(t), we let 0 < h �
T − t and write

I1(t + h) − I1(t)

=
t∫ (

(t + h − s)α−1 APα(t + h − s) − (t − s)α−1 APα(t − s)
)(

f (s) − f (t)
)

ds
0



R.-N. Wang et al. / J. Differential Equations 252 (2012) 202–235 223
+
t∫

0

(t + h − s)α−1 APα(t + h − s)
(

f (t) − f (t + h)
)

ds

+
t+h∫
t

(t + h − s)α−1 APα(t + h − s)
(

f (s) − f (t + h)
)

ds

:= h1(t) + h2(t) + h3(t).

For h1(t), on the one hand, it follows from Theorem 3.2 that

lim
h→0

(t + h − s)α−1 APα(t + h − s)
(

f (s) − f (t)
)

= (t − s)α−1 APα(t − s)
(

f (s) − f (t)
)
.

On the other hand, for t ∈ (0, T ] fixed, by Remark 3.1 and the assumption on f , we get

∥∥(t + h − s)α−1 APα(t + h − s)
(

f (s) − f (t)
)∥∥

� C ′
p K (t + h − s)−α(1+γ )−1(t − s)θ

′

� C ′
p K (t − s)(θ

′−α−αγ )−1 ∈ L1((0, t); X
)
.

Thus, by means of the Dominated Convergence Theorem one has

lim
h→0

t∫
0

(t + h − s)α−1 APα(t + h − s)
(

f (s) − f (t)
)

ds

=
t∫

0

(t − s)α−1 APα(t − s)
(

f (s) − f (t)
)

ds,

which implies that h1(t) → 0 as h → 0+ .
For h2(t), using Theorem 3.3(i) and Remark 3.1, we obtain

t∫
0

(t + h − s)α−1
∥∥APα(t + h − s)

∥∥
L[X]

∥∥ f (t) − f (t + h)
∥∥ds

�
t∫

0

C ′
p K (t + h − s)−α(1+γ )−1hθ ′

ds

= C ′
p Khθ ′

α(1 + γ )

(
h−α(1+γ ) − (h + t)−α(1+γ )

)
.

This yields h2(t) → 0 as h → 0+ .
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Moreover, h3(t) → 0 as h → 0+ by the following estimate

∥∥∥∥∥
t+h∫
t

(t + h − s)α−1 Pα(t + h − s)
(

A f (s) − A f (t + h)
)

ds

∥∥∥∥∥
� 2C p

−αγ

∥∥A f (s)
∥∥

L∞(0,T ;X)
h−αγ

in view of A f (s) ∈ L∞((0, T ); X) and Theorem 3.2.
The same reasoning gives I1(t −h)− I1(h) → 0 as h → 0+ . Consequently, Aw ∈ C((0, T ]; X), which

implies that v ′ ∈ C((0, T ]; X), provided that f is continuous on (0, T ]. Thus, by (4.3) we have c Dα
t w ∈

C((0, T ]; X). Hence, we prove that u + w is a classical solution to problem (LCP), and Lemma 4.1
implies that it is unique. This completes the proof. �
5. Nonlinear problems

In this section we apply the theory developed in the previous sections to the nonlinear fractional
abstract Cauchy problem {

c Dα
t u(t) + Au(t) = f

(
t, u(t)

)
, t > 0,

u(0) = u0,
(SLCP)

where A ∈ Θ
γ
ω(X) with 0 < ω < π

2 , and c Dα
t , 0 < α < 1, is the Caputo fractional derivative of order α.

Definition 5.1. By a mild solution to problem (SLCP), we mean a function u ∈ C((0, T ]; X) satisfying
u(t) = Sα(t)u0 + ∫ t

0 (t − s)α−1 Pα(t − s) f (s, u(s))ds (t ∈ (0, T ]).

Theorem 5.1. Let A ∈ Θ
γ
ω(X) with −1 < γ < − 1

2 and 0 < ω < π
2 . Suppose that the nonlinear mapping

f : (0, T ] × X → X is continuous with respect to t and there exist constants M, N > 0 such that

∥∥ f (t, x) − f (t, y)
∥∥ � M

(
1 + ‖x‖ν−1 + ‖y‖ν−1)‖x − y‖,∥∥ f (t, x)

∥∥ � N
(
1 + ‖x‖ν

)
,

for all t ∈ (0, T ] and for each x, y ∈ X, where ν is a constant in [1,− γ
1+γ ). Then, for every u0 ∈ X, there exists

a T0 > 0 such that the problem (SLCP) has a unique mild solution defined on (0, T0].

Proof. For fixed r > 0, we introduce the metric space

Fr(T , u0) = {
u ∈ C

(
(0, T ]; X

); ρT
(
u, Sα(t)u0

)
� r

}
,

ρT (u1, u2) = sup
t∈(0,T ]

∥∥u1(t) − u2(t)
∥∥.

It is not difficult to see that, with this metric, Fr(T , u0) is a complete metric space. Take L :=
T α(1+γ )r + Cs‖u0‖. Then for any u ∈ Fr(T , u0), we have

∥∥sα(1+γ )u(s)
∥∥ � sα(1+γ )

∥∥u − Sα(t)u0
∥∥ + sα(1+γ )

∥∥Sα(t)u0
∥∥ � L.

Choose 0 < T0 � T such that
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C p N
T −αγ

0

−αγ
+ C p N Lν T −α(ν(1+γ )+γ )

0 β
(−γ α,1 − να(1 + γ )

)
� r, (5.1)

MC p
T −αγ

0

−αγ
+ 2Lρ−1T −α(γ +(1+γ )(ν−1))

0 β
(−αγ ,1 − α(1 + γ )(ν − 1)

)
� 1

2
, (5.2)

where β(η1, η2) with ηi > 0, i = 1,2, denotes the Beta function. Assume that u0 ∈ X . Consider the
mapping Γ α given by

(
Γ αu

)
(t) = Sα(t)u0 +

t∫
0

(t − s)α−1 Pα(t − s) f
(
s, u(s)

)
ds, u ∈ Fr(T0, u0).

By the assumptions on f , Theorems 3.1 and 3.2, we see that (Γ αu)(t) ∈ C((0, T ]; X) and∥∥(Γ αu
)
(t) − Sα(t)u0

∥∥
� C p N

t∫
0

(t − s)−αγ −1(1 + ∥∥u(s)
∥∥ν)

ds

� C p N
T −αγ

0

−αγ
+

t∫
0

C p N Lν(t − s)−αγ −1s−να(1+γ ) ds

� C p N
T −αγ

0

−αγ
+ C p N Lν T −α(ν(1+γ )+γ )

0 β
(−γ α,1 − να(1 + γ )

)
� r,

in view of (5.1). So, Γ α maps Fr(T0, u0) into itself. Next, for any u, v ∈ Fr(T0, u0), by the assumptions
on f and Theorem 3.1 we have∥∥(Γ αu

)
(t) − (

Γ α v
)
(t)

∥∥
� C p M

t∫
0

(t − s)−αγ −1(1 + ∥∥u(s)
∥∥ρ−1 + ∥∥v(s)

∥∥ρ−1)∥∥u(s) − v(s)
∥∥ds

� C p Mρt(u, v)

t∫
0

(t − s)−αγ −1(1 + 2Lν−1s−α(ν−1)(1+γ )
)

ds

� 2Lρ−1T −α(γ +(1+γ )(ν−1))

0 β
(−αγ ,1 − α(1 + γ )(ν − 1)

)
ρT0(u, v)

+ MC p
T −αγ

0

−αγ
ρT0(u, v).

This yields that Γ α is a contraction on Fr(T0, u0) due to (5.2). So Γα has a unique fixed point u ∈
Fr(T0, u0) by the Banach Fixed Point Theorem, which is a mild solution to problem (SLCP) on (0, T0].
The proof is completed. �

By a similar argument as in the proof of Theorem 5.1 we have
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Corollary 5.1. Let A ∈ Θ
γ
ω(X) with −1 < γ < − 2

3 and 0 < ω < π
2 . Suppose that f : (0, T ] × Xβ → X

(β ∈ (1 + γ ,−1 − 2γ )) is continuous with respect to t and there exist constants M, N > 0 such that

∥∥ f (t, x) − f (t, y)
∥∥ � M

(
1 + ‖x‖ν−1

β + ‖y‖ν−1
β

)‖x − y‖β,∥∥ f (t, x)
∥∥ � N

(
1 + ‖x‖ν

β

)
,

for all t ∈ (0, T ] and for each x, y ∈ Xβ , where ν is a constant in [1,− γ +β
1+γ ). Then, for every u0 ∈ Xβ , there

exists a T0 > 0 such that the problem (SLCP) has a unique mild solution u ∈ C((0, T0]; Xβ).

Remark 5.1. If A ∈ Θ
γ
ω(X) with −1 < γ < 0 and 0 < ω < π

2 , then we can derive the local existence
and uniqueness of mild solutions to problem (SLCP), under the conditions:

(1) u0 ∈ Xβ with β > 1 + γ ;
(2) the nonlinear mapping f : [0, T ] × X → X is continuous with respect to t and there exists a

continuous function L f (·) : R
+ → R

+ such that

∥∥ f (t, x) − f (t, y)
∥∥ � L f (r)‖x − y‖,

for all 0 � t � T and for each x, y ∈ X satisfying ‖x‖,‖y‖ � r.

Indeed, for r >
C p T

−αγ
0−αγ supt∈[0,T ] ‖ f (t, u0)‖ fixed, we may choose 0 < T0 � T such that

sup
t∈[0,T0]

∥∥(Sα(t) − I
)
u0

∥∥ + C p T −αγ
0

−αγ

(
L f (r)r + sup

t∈[0,T0]
∥∥ f (t, u0)

∥∥) < r (5.3)

in view of Theorem 3.4(i). Assume that the map Γ α is defined the same as in Theorem 5.1 and the
space Fr(T0, u0) is replaced by the following Banach space:

F ′
r(T0, u0) =

{
u ∈ C

([0, T0]; X
); u(0) = u0 and sup

t∈[0,T0]
‖u − u0‖ � r

}
.

Then, it is easy to verify, thanks to the assumptions on f and (5.3), that Γ α maps F ′
r(T0, u0) into

itself and is a contraction on F ′
r(T0, u0), which implies that the problem (SLCP) has a unique mild

solution defined on [0, T0].

Since 1 > 1 + γ (−1 < γ < − 1
2 ), X1 = D(A) is a Banach space endowed with the graph norm

‖x‖X1 = ‖Ax‖ (x ∈ X1). The following is the existence of X1-smooth solutions.

Theorem 5.2. Let A ∈ Θ
γ
ω(X) with −1 < γ < − 1

2 , 0 < ω < π
2 and u0 ∈ X1 . Let there exist a continuous

function M f (·) : R
+ → R

+ and a constant N f > 0 such that the mapping f : (0, T ] × X1 → X1 satisfies

∥∥ f (t, x) − f (t, y)
∥∥

X1 � M f (r)‖x − y‖X1 ,∥∥ f
(
t, Sα(t)u0

)∥∥
X1 � N f

(
1 + t−α(1+γ )‖u0‖X1

)
,

for all 0 < t � T and for each x, y ∈ X1 satisfying supt∈(0,T ] ‖x(t) − Sα(t)u0‖X1 � r, supt∈(0,T ] ‖y(t) −
Sα(t)u0‖X1 � r. Then there is a T0 > 0 such that the problem (SLCP) has a unique mild solution defined on
(0, T0].
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Proof. For u0 ∈ X1 and r > 0, set

F ′′
r (T , u0) =

{
u ∈ C

(
(0, T ]; X1); sup

t∈(0,T ]
∥∥u − Sα(t)u0

∥∥
X1 � r

}
.

For any u ∈ F ′′
r (T , u0), by the assumptions on f and Theorem 3.1 we have∥∥(Γ αu

)
(t) − Sα(t)u0

∥∥
X1

�
t∫

0

(t − s)α−1
∥∥Pα(t − s)

∥∥∥∥ f
(
s, u(s)

) − f
(
s, Sα(t)u0

)∥∥
X1 ds

+
t∫

0

(t − s)α−1
∥∥Pα(t − s)

∥∥∥∥ f
(
s, Sα(t)u0

)∥∥
X1 ds

� C p

t∫
0

(t − s)−αγ −1(M f (r)r + N f + N f s−α(1+γ )‖u0‖
)

ds

� C p
(
M f (r)r + N f

) T −αγ

−αγ
+ C p N f T −α(1+2γ )β

(−γ α,1 − α(1 + γ )
)‖u0‖.

Using this result and an analogous idea as in Theorem 5.1, we obtain the conclusion of the theorem.
Here we omit the details. �

Next, we will derive mild solutions under the condition of compactness on the resolvent of A.

Theorem 5.3. Let A ∈ Θ
γ
ω(X) with −1 < γ < 0 and 0 < ω < π

2 . Let

(H1) R(λ,−A) be compact for every λ > 0;
(H2) f : [0, T ] × X → X be a Carathéodory function and for any r > 0, there exists a function mr(t) ∈

L p((0, T );R
+) with p > − 1

αγ such that

∥∥ f (t, x)
∥∥ � mr(t), and lim inf

r→+∞
‖mr(t)‖L p(0,T )

r
= σ < ∞

for a.e. t ∈ [0, T ] and all x ∈ X satisfying ‖x‖ � r.

Then for every u0 ∈ D(Aβ) with β > 1 + γ , the problem (SLCP) has at least a mild solution, provided that

C pσ

(
T 1−(1+αγ )q

1 − (1 + αγ )q

) 1
q

< 1, (5.4)

where q = p/(p − 1).

Proof. Assume that u0 ∈ D(Aβ). On C([0, T ]; X) define the map

(
Γ αu

)
(t) = Sα(t)u0 +

t∫
(t − s)α−1 Pα(t − s) f

(
s, u(s)

)
ds.
0
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From our assumptions it is easy to see that Γμ is well defined and maps C([0, T ]; X) into itself. Put

Ωr = {
u ∈ C

([0, T ]; X
); ‖u‖ � r, for all 0 � t � T

}
,

for r > 0 as selected below. We seek for solutions in Ωr . We claim that there exists an integer r > 0
such that Γ α maps Ωr into Ωr . In fact, if this is not the case, then for each r > 0, there would exist
ur ∈ Ωr and tr ∈ [0, T ] such that ‖(Γ αur)(tr)‖ > r. On the other hand, by (H2) and Theorem 3.1 we
get

r <
∥∥(Γ αur)(tr)∥∥

�
∥∥Sα

(
tr)u0

∥∥ +
tr∫

0

∥∥(tr − s
)α−1 Pα

(
tr − s

)
f
(
s, u(s)

)∥∥ds

� sup
t∈[0,T ]

∥∥Sα(t)u0
∥∥ +

tr∫
0

C p
(
tr − s

)−1−αγ
mr(s)ds

� sup
t∈[0,T ]

∥∥Sα(t)u0
∥∥ + C p

( tr∫
0

s−(1+αγ )q ds

) 1
q
( tr∫

0

mp
r (s)ds

) 1
p

� sup
t∈[0,T ]

∥∥Sα(t)u0
∥∥ + C p‖mr‖L p(0,T )

(
T 1−(1+αγ )q

1 − (1 + αγ )q

) 1
q

,

where q = p/(p − 1). Dividing both sides by r and taking the lower limit as r → ∞, one has 1 �
C pσ( T 1−(1+αγ )q

1−(1+αγ )q )1/q, which contradicts (5.4). Hence for some positive integer r, Γ α(Ωr) ⊂ Ωr .
The rest of the proof is divided into three steps.
Step 1. Γ α is continuous on Ωr .
Take {un}∞n=1 ⊂ Ωr with un → u in C([0, T ]; X). Then by the continuity of f with respect to the

second argument we deduce that

f
(
s, un(s)

) → f
(
s, u(s)

)
for a.e. s ∈ [0, T ].

Moreover, observe from (H2) and Theorem 3.1 that for a fixed 0 < t � T ,

(t − s)α−1
∥∥Pα(t − s) f

(
s, un(s)

)∥∥ � C p(t − s)−1−αγ mr(s) ∈ L1(0, t).

Thus, by means of the Lebesgue dominated convergence theorem we obtain

t∫
0

(t − s)α−1
∥∥Pα(t − s)

∥∥ · ∥∥ f
(
s, un(s)

) − f
(
s, u(s)

)∥∥ds → 0,

which means that limn→∞ ‖Γ αun − Γ αu‖∞ = 0. So Γ α is continuous on Ωr .
Step 2. P := {(Γ αu)(·); · ∈ [0, T ], u ∈ Ωr} is equicontinuous.
For 0 < t1 < t2 � T and δ > 0 small enough, we have∥∥(Γ αu

)
(t1) − (

Γ αu
)
(t2)

∥∥ � I1 + I2 + I3 + I4 + I5,
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where

I1 = ∥∥Sα(t1)u0 − Sα(t2)u0
∥∥,

I2 =
t2∫

t1

(t2 − s)α−1
∥∥Pα(t2 − s) f

(
s, u(s)

)∥∥ds,

I3 =
t1−δ∫
0

(t1 − s)α−1
∥∥Pα(t2 − s) − Pα(t1 − s)

∥∥∥∥ f
(
s, u(s)

)∥∥ds,

I4 =
t1∫

t1−δ

(t1 − s)α−1
∥∥Pα(t2 − s) − Pα(t1 − s)

∥∥∥∥ f
(
s, u(s)

)∥∥ds,

I5 =
t1∫

0

∣∣(t2 − s)α−1 − (t1 − s)α−1
∣∣ · ∥∥Pα(t2 − s)

∥∥∥∥ f
(
s, u(s)

)∥∥ds.

From Theorem 3.2 and Theorem 3.4(i) it is easy to see that I1 → 0 when t1 → t2. Moreover, using
(H2) and Theorem 3.1 we get

I2 � C p

(
(t2 − t1)

1−(1+αγ )q

1 − (1 + αγ )q

) 1
q

‖mr‖L p(0,T ),

I3 � sup
s∈[0,t1−δ]

∥∥Pα(t2 − s) − Pα(t1 − s)
∥∥( t1−δ∫

0

(t1 − s)qα−qq ds

) 1
q

‖mr‖L p(0,T )

� sup
s∈[0,t1−δ]

∥∥Pα(t2 − s) − Pα(t1 − s)
∥∥( t1+q(α−1)

1 − δ1+q(α−1)

1 + q(α − 1)

)
‖mr‖L p(0,T ),

I4 � C p

t1∫
t1−δ

(t1 − s)α−1 · 2(t1 − s)−α(γ +1)mr(s)ds

� C p

( t1∫
0

(
(t1 − s)−q(γ α+1) − (t2 − s)−q(αγ +1)

)
ds

) 1
q

‖mr‖L p(0,T )

� C p

( t1∫
0

(t1 − s)−q(αγ +1) − (t2 − s)−q(γ α+1) ds

) 1
q

‖mr‖L p(0,T )

= C p

(
(t2 − t1)

1−(1+αγ )q

1 − (1 + αγ )q
+ t1−(1+αγ )q

1 − t1−(1+αγ )q
2

1 − (1 + αγ )q

) 1
q

‖mr‖L p(0,T ).

It follows from Theorem 3.2 that Ii (i = 2,3,4,5) tends to zero independent of u ∈ Ωr as t2 − t1 → 0,
δ → 0. Hence, we can conclude that ‖(Γ αu)(t1) − (Γ αu)(t2)‖ → 0 as t2 − t1 → 0, and the limit is
independent of u ∈ Ωr . For the case when 0 = t1 < t2 � T , since
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t2∫
0

(t2 − s)α−1
∥∥P (t2 − s) f

(
s, u(s)

)∥∥ds � C p

(
t1−q(αγ +1)

2

1 − q(αγ + 1)

) 1
q

‖mr‖L p(0,T ),

in view of (H2) and Theorem 3.1, ‖(Γ αu)(t2)‖ can be made small when t2 is small independently of
u ∈ Ωr . Thus, the assertion in Step 2 holds.

Step 3. For each t ∈ [0, T ], {(Γ αu)(t); u ∈ Ωr} is precompact in X .
For the case when t = 0, it is not difficult to see that {(Γ αu)(0); u ∈ Ωr} = {u0: u ∈ Ωr} is com-

pact. Let t ∈ (0, T ] be fixed and ε, δ > 0. For u ∈ Ωr , define the map Γ α
ε,δ by

(
Γ α

ε,δu
)
(t) = Sα(t)u0 +

t−ε∫
0

∞∫
δ

ατ (t − s)α−1Ψα(τ )T
(
(t − s)ατ

)
f
(
s, u(s)

)
dτ ds.

Since A has compact resolvent, {T (t)}t>0 is compact in view of Theorem 3.5. Thus, for each t ∈
(0, T ], {Γ α

ε,δu)(t); u ∈ Ωr, δ > 0, 0 < ε < t} is precompact in X . On the other hand, by (H2) and
Theorem 3.1, a direct calculation yields

∥∥(Γ αu
)
(t) − (

Γ α
ε,δu

)
(t)

∥∥
�

∥∥∥∥∥
t∫

0

δ∫
0

ατ(t − s)α−1Ψα(τ )T
(
(t − s)ατ

)
f
(
s, u(s)

)
dτ ds

∥∥∥∥∥
+

∥∥∥∥∥
t∫

t−ε

∞∫
δ

ατ (t − s)α−1Ψα(τ )T
(
(t − s)ατ

)
f
(
s, u(s)

)
dτ ds

∥∥∥∥∥
�

t∫
0

C p(t − s)−1−αγ mr(s)ds

δ∫
0

τ−γ Ψα(τ )dτ

+
t∫

t−ε

C p(t − s)−1−αγ mr(s)ds

∞∫
δ

τ−γ Ψα(τ )dτ

� C p

(
T 1−(1+αγ )q

1 − (1 + αγ )q

) 1
q

‖mr‖L p(0,T )

δ∫
0

τ−γ Ψα(τ )dτ

+ C p

(
ε1−(1+αγ )q

1 − (1 + αγ )q

) 1
q

‖mr‖L p(0,T )

Γ (1 − γ )

Γ (1 − γ α)
.

Using the total boundedness we have that for each t ∈ (0, T ], {(Γ αu)(t); u ∈ Ωr} is precompact in X .
Therefore, for each t ∈ [0, T ], {(Γ αu)(t); u ∈ Ωr} is precompact in X.

Finally, by Steps 1–3 and the Arzelà–Ascoli theorem, Γ α is a compact operator. So, by Schauder’s
second fixed point theorem, Γ α has a fixed point, which gives a mild solution. This completes the
proof. �
Theorem 5.4. Let A ∈ Θ

γ
ω(X) with 0 < ω < π

2 and −1 < γ < − 1
2 . Suppose that there exists a continuous

function M ′
f (·) : R

+ → R
+ and a constant κ > α(1 + γ ) such that the mapping f : [0, T ] × X → X satisfies
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∥∥ f (t, x) − f (s, y)
∥∥ � M ′

f (r)
(|t − s|κ + ‖x − y‖),

for all 0 � t � T and x, y ∈ X satisfying ‖x‖,‖y‖ � r. In addition, let the assumptions of Theorem 5.2 be
satisfied and u be a mild solution corresponding to u0 , defined on [0, T0]. Then u is the unique classical solution
to problem (SLCP) on [0, T0], provided that u0 ∈ D(A) with Au0 ∈ D(Aβ), β > (1 + γ ).

Proof. In order to prove that u is a classical solution, by Theorem 4.1 and the condition on f , we
only have to verify that u is Hölder continuous with an exponent ς > α(1 + γ ) on (0, T0]. For fixed
t ∈ (0, T0], take 0 < h < 1 such that h + t � T0. We estimate the difference

∥∥u(t + h) − u(t)
∥∥

�
∥∥Sα(t + h)u0 − Sα(t)u0

∥∥ +
∥∥∥∥∥

h∫
0

(t + h − s)α−1 P(t + h − s) f
(
s, u(s)

)
ds

∥∥∥∥∥
+

∥∥∥∥∥
t∫

0

(t − s)α−1 P(t − s)
[

f
(
s + h, u(s + h)

) − f
(
s, u(s)

)]
ds

∥∥∥∥∥
= I1 + I2 + I3.

By Theorem 3.1, Theorem 3.3(ii) and the assumptions on f we obtain

I1 =
∥∥∥∥∥

t∫
0

−sα−1 APα(s)u0 ds

∥∥∥∥∥ � C p

−αγ

(
(t + h)−αγ − t−αγ

)
,

I3 � M ′C p

t∫
0

(t − s)−αγ −1(|h|κ + ∥∥u(s + h) − u(s)
∥∥)ds

� M ′C p

−αγ
T −αγ

0 hκ + M ′C p

t∫
0

(t − s)−αγ −1
∥∥u(s + h) − u(s)

∥∥ds.

Put N2 := supt∈(0,T0) ‖ f (t, u(t))‖. Then, it follows from Theorem 3.1 that

I2 � C p

h∫
0

(t + h − s)−αγ −1
∥∥ f

(
s, u(s)

)∥∥ds � C p N2

−αγ

(
(t + h)−αγ − t−αγ

)
.

Collecting these estimates and using the inequality (t +h)−αγ − t−αγ � h−αγ (0 < −αγ < 1) we have

∥∥u(t + h) − u(t)
∥∥ � C p N2 + C p

−αγ

(
(t + h)−αγ − t−αγ

) + M ′
p

−αγ
T −αγ

0 hκ

+ M ′C p

t∫
(t − s)−αγ −1

∥∥u(s + h) − u(s)
∥∥ds
0
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� C p N2 + C p + M ′C p

−αγ
hς + M ′C p

t∫
0

(t − s)−αγ −1
∥∥u(s + h) − u(s)

∥∥ds,

where ς = min{κ,−αγ } > α(γ + 1). Now, it follows from the Gronwall inequality that u is Hölder
continuous on (0, T0]. This completes the proof of the theorem. �
6. Applications

In this section, we present three examples (Examples 6.1–6.3) motivated from physics, which do
not aim at generality but indicate how our theorems can be applied to concrete problems. Exam-
ples 6.1 and 6.2 are inspired directly from the work of A.N. Carvalho et al. [6], and they describe
anomalous diffusion on fractals (physical objects of fractional dimension, like some amorphous semi-
conductors or strongly porous materials; see [1,33] and references therein). Example 6.1 is the limit
problem of certain fractional diffusion equations in complex systems on domains of “dumb-bell with
a thin handle” (see, e.g., [1,33]). Example 6.2 displays anomalous dynamical behavior of anomalous
transport processes (see, e.g., [1,33]). Example 6.3 is a modified fractional Schrödinger equation with
fractional Laplacians whose physical background is statistical physics and fractional quantum mechan-
ics (see, e.g., [22,39]). We refer the reader to M. Kirane et al. [24] and references therein for more
research results related to fractional Laplacians.

Example 6.1. Consider the system of fractional partial differential equations in the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c Dα
t w − �w + w = f (w), x ∈ Ω, t > 0,

∂ w

∂n
= 0, x ∈ ∂Ω,

c Dα
t v − 1

g
(gvx)x + v = f (v), x ∈ (0,1),

v(0) = w(P0), v(1) = w(P1),

w(x,0) = w0(x), x ∈ Ω, v(x,0) = v0(x), x ∈ (0,1),

(6.1)

where Ω = D1 ∪ D2 and D1 and D2 are mutually disjoint bounded domains in R
N (N � 2) with

smooth boundaries, joined by the line segment Q 0, and c Dα
t , 0 < α < 1, is the regularized Caputo

fractional derivative of order α, that is,

(
c Dα

t u
)
(t, x) = 1

Γ (1 − α)

(
∂

∂t

t∫
0

(t − s)−αu(s, x)ds − t−αu(0, x)

)
. (6.2)

When α = 1, we regard (6.1) as the limit problem of (1.1) as ε → 0, which is described more detail in
Example 1.1. Here, our objective is to show that system (6.1) is well posed in V p

0 := L p(Ω) ⊕ L p
g (0,1)

(1 � p < ∞).
Let the operators A0 : D(A0) ⊂ V p

0 	→ V p
0 be defined by

D(A0) = {
(w, v) ∈ V P

0 ; w ∈ D(�Ω), v ∈ Lp
g (0,1),

w(P0) = v(0), w(P1) = v(1)
}
,

A0(w, v) =
(

−�w + w,− 1

g

(
gv ′)′ + v

)
, (w, v) ∈ V p

0 ,

where �Ω is the Laplace operator with homogeneous Neumann boundary conditions in L p(Ω) and
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D(�Ω) =
{

u ∈ W 2,p(Ω); ∂u

∂n

∣∣∣∣
∂Ω

= 0

}
.

From Example 1.1, if p > N
2 , then A0 ∈ Θ

−γ ′
μ (V p

0 ) for some γ ′ ∈ (0,1 − N
2p ) and μ ∈ (0, π

2 ). Therefore,
system (6.1) can be seen as an abstract evolution equation in the form

{
c Dα

t u + A0u = f (u), t > 0,

u(0) = u0 = (w0, v0) ∈ V p
0 .

(6.3)

We assume that the nonlinearity f : R → R is globally Lipschitz continuous. It can define a Nemytskiı̆
operator from V p

0 into itself by f (w, v) = ( fΩ(w), f I (v)) with fΩ(w)(x) = f (w(x)), x ∈ Ω , and
f I (v)(x) = f (v(x)), x ∈ (0,1), such that

∥∥ f (u) − f
(
u′)∥∥

V p
0

� L′′(r)
∥∥u − u′∥∥

V p
0
,

for all u, u′ ∈ V p
0 satisfying ‖u‖V p

0
,‖u′‖V p

0
� r. Hence, from Remark 5.1, (6.3) (that is, (6.1)) has a

unique mild solution provided that u0 ∈ D(Aβ

0 ) with β > 1 − γ ′ (in particular, u0 ∈ D(A0)).

Example 6.2. Let Ω be a bounded domain in R
N (N � 1) with boundary ∂Ω of class C4. Consider the

fractional initial–boundary value problem⎧⎪⎨⎪⎩
(

c Dα
t u

)
(t, x) − �u(t, x) = f

(
u(t, x)

)
, t > 0, x ∈ Ω,

u|∂Ω = 0,

u(0, x) = u0(x), x ∈ Ω,

(6.4)

in the space Cl(Ω) (0 < l < 1), where � stands for the Laplacian with respect to the spatial variable
and c Dα

t , representing the regularized Caputo fractional derivative of order α (0 < α < 1), is given
by (6.2). Set

Ã = −�, D( Ã) = {
u ∈ C2+l(Ω); u = 0 on ∂Ω

}
.

It follows from Example 1.2 that there exist ν, ε > 0 such that Ã + ν ∈ Θ
l
2 −1
π
2 −ε

(Cl(Ω)). Then, problem

(6.4) can be written abstractly as

{
c Dα

t u(t) + Ãu(t) = f (u), t > 0,

u(0) = u0.

With respect to the nonlinearity f , we assume that f : R → R is continuously differentiable and
satisfies the condition

∣∣ f (x) − f (y)
∣∣ � k(r)

r
|x − y|, |x|, |y| � r, (6.5)

for any r > 0. It defines a Nemytskiı̆ operator from Cl(Ω) into Cl(Ω) by f (u)(x) = f (u(x)) with

∥∥ f (u) − f (v)
∥∥

l � k(r)‖u − v‖Cl(Ω), ‖v‖Cl(Ω),‖u‖Cl(Ω) � r.
C (Ω)
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Noting l
2 − 1 ∈ (−1,− 1

2 ), we then obtain (i) according to Remark 5.1, (6.4) has a unique mild solution

for each u0 ∈ D( Ãβ) with β > l
2 . Moreover, (ii) if f ′, f ′′ are continuously differentiable functions

satisfying the condition (6.5), then one finds that the Nemytskiı̆ operator satisfies the assumptions of
Theorem 5.2 and Theorem 5.4, which implies that for each u0 ∈ D( Ã) with Ãu0 ∈ D( Ãβ) (β > l

2 ), the
corresponding mild solution to (6.4) is also a unique classical solution.

Example 6.3. Consider the following fractional Cauchy problem{(
c Dα

t u
)
(t, x) + (−i� + σ)

1
2 u(t, x) = f

(
u(t, x)

)
, t > 0, x ∈ R

2,

u(0, x) = u0(x), x ∈ R
2,

(6.6)

in L3(R2), where σ > 0 is a suitable constant, i� is the Schrödinger operator and c Dα
t (0 < α < 1) is

given by (6.2). Let

Â = (−i� + σ)
1
2 , D( Â) = W 1,3(

R
2) (a Sobolev space).

Then i� generates a β-times integrated semigroup Sβ(t) with β = 5
12 on L3(R2) such that

‖Sβ(t)‖L (L3(R2)) � M̂tβ for all t � 0 and some constants M̂ > 0 (see [35]). Therefore, by virtue of
[43, Theorem 1.3.5(P.15), Definition 1.3.1 for C = I (P.12)], we deduce that the operator i�+σ belongs
to Θ

β−1
π
2

(L3(R2)), which denotes the family of all linear closed operators A : D(A) ⊂ L3(R2) → L3(R2)

satisfying σ(A) ⊂ S π
2

= {z ∈ C \ {0}; |arg z| � π
2 } ∪ {0}, and for every π

2 < μ < π there exists a con-

stant Cμ such that ‖R(z; A)‖ � Cμ|z|β−1 for all z ∈ C \ Sμ. Thus, it follows from [38, Proposition 3.6]

that Â ∈ Θ
−1+2β
ω (L3(R2)) for some 0 < ω < π

2 . Moreover, the system (6.6) can be rewritten as fol-
lows: {

c Dα
t u + Âu = f (u), t > 0

u(0, x) = u0 ∈ L3(
R

2).
Assume that f : C → C is globally Lipschitz continuous. Then we have a Nemytskiı̆ operator from
L3(R2) to itself given by f (u)(x) = f (u(x)), and ‖ f (u)− f (v)‖L3(R2) � L̂(r)‖u − v‖L3(R2) for a constant
L̂(r) and all u, v ∈ L3(R2) such that ‖u‖L3(R2) � r and ‖v‖L3(R2) � r. Consequently, it follows from

Remark 5.1 that (6.6) has a unique mild solution provided u0 ∈ D( Â)τ with τ > 5
6 .
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