
 Procedia - Social and Behavioral Sciences   80  ( 2013 )  119 – 138 

1877-0428 © 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.

Selection and peer-review under responsibility of Delft University of Technology
doi: 10.1016/j.sbspro.2013.05.009 

20th International Symposium on Transportation and Traffic Theory 

On the distribution of urban road space for multimodal congested 
networks  

Nan Zhenga and Nikolas Geroliminisa* 
a School of Architecture, Civil and Environmental Engineering, Laboratory of Urban Transport 
Systems, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland 

Abstract 

Transport systems in  real cities are complex with many modes of transport sharing and competing fo r limited 
road space. This work intends to understand how space distributions for modes and interactions among modes  
affect network traffic performance. While the connection between performance of transport systems and general 
land allocation is the subject of extensive research, space allocation for interacting modes of t ransport is an open 
research question. Quantifying the impact of road space distribution on the performance of a congested 
multimodal transport system with a dynamic aggregated model remains a challenge. In this paper, a mult imodal 
macroscopic fundamental diagram (MFD) is developed to represent the traffic dynamics of a mult imodal 
transport system. Optimization is performed with the objective of min imizing the total passenger hours travelled 
(PHT) to serve the total demand by red istributing road space among modes. Pricing strategies are also 
investigated to provide a higher demand shift to more efficient modes. We find by an application to a bi-modal 
two-region city that (i) the proposed model captures the operational characteristics of each mode, and (ii) optimal 
dynamic space distribution strategies can be developed. In practice, the approach can serve as a physical 
dynamic model to inform space distribution strategies for policy makers with different goals of mobility.  
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1 INTRODUCTION   

     As cities around the world grow rapidly and more people through different modes compete for limited urban 
road infrastructure to travel, it is important to understand how this space can be managed to improve 
accessibility for travelers. The ult imate goal of research towards this direction is to develop modeling and 
optimization tools, which will contribute on how to redistribute city space to multip le transportation modes and 
to understand what level of mobility cities of different structures  and topologies can achieve.  

     Management strategies can be implemented to partition a city so that road space is deliberately allocated 
between competing modes. A lthough the allocation of this space is a policy -oriented decision, it should be 
informed by the correct physics and dynamics of the multimodal flows. Th is system can be treated as an 
interconnected network of regions (sub-networks) with one or more modes moving. In this extension, different  
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parts of a city can be subject to different management strategies (see for example Fig. 1). Perhaps bus-only 
streets are allocated only in the central reg ion while other parts of the city allow vehicles to operate in  mixed  
traffic. Changes in infrastructure, demand, or operations in one region have impact on the behavior of adjoining 
regions. While recent findings in the macroscopic modeling and dynamics of traffic in cities have provided 
knowledge of single-mode/ single-region cities and single-mode/multi-region cit ies, the understanding of mult i-
mode, multi-region cities is limited. 

 
Fig. 1.  A multi-region, multimodal system 

     Under a multimodal environment, space should be allocated taking into account spatiotemporal differences in 
the demand, the topology, and the control characteristics. These spatiotemporal decisions are important because 
if they are made incorrectly, space could be wasted. If this wasted space could be productively used by low-
occupancy vehicles without affect ing the more productive modes, mobility is being restricted. For example, 
recent studies in Californian freeways, have questioned the effectiveness of high-occupancy vehicle (HOV) lanes 
and have shown that HOV lanes are underutilized and the passenger capacity of freeways has decreased, 
resulting in heavier congestion levels [1]. 

     Operat ional characteristics should be considered as well. Despite the different features of modes in terms of 
occupancy (number of passengers), driving behavior (speeds, acceleration an d deceleration profiles, length), 
duration of travel, scheduled vs. non-scheduled service, a  common characteristic is the following: all of these 
vehicles when moving to an urban environment make stops related to traffic congestion (e.g. red phases at traffic 
signals) and other stops, which also cause delays to the transportation system as a whole, e.g. buses stop at bus 
stops to board/alight passengers, taxis stop frequently and randomly when they search/pick up/deliver passengers, 
cars may  stop/maneuver when search/find a parking spot. While there is a good understanding and vast literature 
of the dynamics and the modeling of congestion for congestion-related stops, the effect of service or general 
purpose stops in the overall performance of a transportation system still remains a challenge. It is intuitive that 
the effect of these stops during light demand conditions in the network capacity is almost negligible, but 
nowadays city centers are experiencing high level o f congestion and the frequency in time a nd space of the 
service stops is significantly high. 

     In this paper, we present a macroscopic approach for optimizing road space allocation for mult imodal 
transport systems with focus on two modes of transport, cars and buses and two regions, the city center and the 
periphery. Extensions to more complex city structures are also discussed. This approach should not only deal 
with the problems mentioned above, but also will switch the interest from the currently inefficient vehicle 
throughput based optimizat ion to the more efficient for networks and society, passenger throughput optimization. 
Congestion pricing strategies for cars are also considered to further facilitate the demand shift when preferential 
treatment to buses is offered. 
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2 BACKGROUND  

    Existing literature on the physics of urban congestion can be divided generally into city -scale, street-scale, and 
car-to-car scale. City-scale investigations have thus far looked only at the behaviour of one mode and the 
involved dynamics of traffic congestion.  Studies of mult iple modes, on the other hand, have only been made at 
the street-level scale for simplistic time-independent scenarios. Planning studies have looked at public transport 
on a city scale, particularly buses on idealized road networks. Making road space allocation decisions, however, 
requires consideration of interactions and dynamics between multip le modes. To date, such considerations have 
been made only at the much finer street scale and still in a time -independent and unrealistic environment. Thus, 
the existing body of work leaves a gap to be filled—a physically realistic time-dependent, city-scale model 
including multiple modes that interact with each other.  

    There is a strong understanding and vast literature of congestion dynamics and spreading in street- or car-to-
car-scale traffic systems with a single mode of traffic, e.g. a  highway  section with cars. Besides traffic scientists, 
mathematicians and physicists have also contributed to the field of traffic flow. Because of the numerous 
publications, we refer the reader to reference [2] for an overview. Briefly speaking, the main modeling 
approaches can be classified as follows: Car-following models deal with the non-linear interactions and 
dynamics of single vehicles [3]. To address computational burden, cellu lar automata describe the dynamics of 
vehicles in  a coarse-grained way  by discretizing space and time, (e.g. [4][5]). Gas-kinetic models formulate a 
partial differential equation for the spatio-temporal evolution of the vehicle density and the velocity distribution 
(e.g. [6]). First-order flow models are based on a partial differential equation for the density and a fundamental 
diagram relation (e.g. [7][8]). Second-order models contain an additional equation for non-steady state 
conditions. In continuum models, a network is approximated as a continuum in which users choose their routes 
in a two-dimensional space (e.g. [9]). 
 
     On  the public transport side at city-scale, modelers have analyzed how systems should be designed, e.g. 
Wirasinghe et al. [10] considered how to systematically design a bus transit system for an  idealized  city with 
centralized demand. However, these models have been only applied to one mode, and only in the steady -state 
operation. Researches have also been done to look at  how multip le modes can share the road, but only on the 
street-scale level. Sparks and May [11] developed a mathematical model to evaluate priority lanes for h igh 
occupancy vehicles on freeways. Later, Dahlgren [12] and Daganzo and Cassidy [13] studied how d ifferent 
modes use freeways, recognizing that if different modes serve different numbers of passengers, then analyses 
should not consider all vehicles with the same weight. But these works are limited to small scale systems. They 
looked at the effect on total passenger travel time if a lane on a specific road section were dedicated to multiple 
occupant vehicles. This consideration of different  occupancies between vehicles is imp ortant because it 
recognizes that some modes carry more passengers than others. The importance of considering passengers rather 
than vehicles was earlier mentioned by Vuchic [14]. He criticized street-scale evaluations based only on vehicle 
flows, because mult imodal systems should integrate the occupancies of each mode. A qualitative analysis of 
space allocation can be found in Gonzales et al [15]. The quantitative treatment of the transit process (e.g. 
network route design, scheduling) is reflected in a considerable amount of effort in numerous publications (e.g. 
[16] and others), and will not be addressed here. 

     Researchers have looked at allocating street space between more than one mode, through the dedication of a 
freeway lane to HOVs or a lane for buses on a city street ([17][18]). These methods have limited applicability, 
however, because they assume steady-state traffic flow and they also ignore the fluctuations and spill-over 
effects that typically characterize urban traffic congestion. Currie et al. [19] carried out impact analysis in 
planning studies of road space allocation. That analysis was based on a disaggregate micro -simulation which 
relies on intensive travel data inputs that are typically unreliable or unavailable. Researches in references [20], 
[21][22][23], focused on the connection between performance of transport sys tems and land use for 
transportation as a whole, without further consideration on allocation by usage.  
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      More recently, Gonzales and Daganzo [24] examined system optimum solutions for a transport system with 
cars and public transit share spaces for the morning commute problem. The authors solve user and system 
optimum for the bottleneck model and system optimum for the network model  (with an MFD representation). 
The proposed model recognizes that the network capacity for cars is reduced if transit operations receive 
dedicated space. However, quantifying the impact of this dedicated space on the performance of a transport 
system still remains an exclusive and challenging question. Mesbah et al. [25] proposed an optimizat ion 
framework for optimizing transit priority and allocating dedicated bus lanes. The optimization aims at 
minimizing the total travel t ime of both car travelers and public users. However, travel time is estimated by BPR 
function which is not valid for they dynamic case. In both references, the impact of the operation of buses (e.g. 
dwell time) on the delay of travelers was not discussed. 

     This gap is due to the lack of a traffic model, which will represent the flow dynamics of a multimodal system 
as a result of road space allocation. While various theories have been proposed to macroscopically model urban 
networks ([26][27][28][29]), only until recently Geroliminis and Daganzo [30] demonstrated the existence of a 
fundamental model (the macroscopic fundamental diagram - MFD) on congestion dynamics of single-mode 
system with empirical data. This reference showed that (i) an MFD is a plot between network space -mean flow 
and density,  (ii) the MFD is a property of the network itself (infrastructure and control) and not very sensitive to 
demand, i.e. the MFD should have a well-defined maximum and remain invariant when the demand changes and 
(iii) the space-mean flow is maximum for the same value of crit ical density of vehicles, for many origin -
destination tables. Daganzo and Gero limin is [30] and Gerolimin is and Boyaci [31] have derived analytical 
theories for the shape of the MFD as a function of network and intersection parameters, using variational theory 
(VT) for homogeneous and heterogeneous network topologies, respectively. Properties of well -defined MFDs, 
stability and scatter analysis and other simulation and experimental tests can be found in 
[32][33][34][35][36][37][38] and others. Recently, Gonzales et al. [39] observed through simulation an MFD for 
multimodal systems of cars and buses in the city center of Nairobi, Kenya.  

      Boyaci and Geroliminis [40] extended the VT theory for the multi-modal case and provided a semi-analyt ical 
approximation of the MFD, by considering that bus service related stops interact with traffic as hypothetical 
traffic signals with periodic characteristics. The operational characteristics of this hypothetical signal-bus stop 
depend on the dwell t imes and the frequencies of buses, while the capacity during  service stops is smaller as 
buses might block traffic. In VT theory a number of different observers (forward and backward) mo ve in the 
system of t raffic signals and for each observer the average speed (because of delays in red phases and bus stops) 
and the maximum passing rate are estimated. These observers create associated “cuts” in a network flow -density 
diagram and the lower envelope of these cuts provides a good approximation of the MFD for homogeneously 
congested areas. While VT has been proved to provide a tight cut (see [30]) in case of corridors with uniform 
density (i.e . incoming turns are about equal to outcoming ones). Nevertheless, application of variational theory in  
simulated and real networks (with turns, heterogeneous topology, route choice etc) show that this approach is a 
good approximation if congestion is evenly distributed. 

      Building in the knowledge of the single-mode macroscopic modeling, developing the dynamics of 
multimodal systems is promising. To summarize, a  macroscopic approach should be developed to estimate the 
dynamics and to optimize space allocation of mult imodal urban road systems. We will show that (i) the proposed 
approach captures the operational characteristics of d ifferent modes, (ii) the resulting system performances are 
consistent with the physics of traffic g iven different road space strategies, e.g. with or without dedicated bus 
lanes, (iii) allocation of road space can be readily optimized in a static and dynamic way, and (iv ) pricing 
strategies can further improve the efficiency of the system with less space dedicated for buses. Next section 
develops the methodological framework with respect to the mult imodal dynamics and the optimization approach. 
Section 4 presents the results of a case study with a two-region city and two modes of transport, while further 
research is discussed in Section 5. Table 1 p rovides a nomenclature fo r the d ifferent variables and parameters 
utilized in the paper. 
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Table 1: List of main variables and parameters. 
Variables Description 

 average number of passengers per car in region  

 demand generated at time  in region  with next destination region  

 demand generated at time  in region  with next destination region , choosing mode  

 Bus mode share for demand  

 flow exiting region  of mode m at time  as a function of accumulations  

 fraction of  from region  to  with final destination  at time t 

 total distance traveled by all vehicles of mode  in region  at time  

 transfer flow of mode m from region  to  with final destination  

 space share allocation of region  at time t 

 utility of using mode  at time  in region  with next destination region  

 accumulation of mode  in region  with next destination region  at time  

 accumulation of mode  currently in region  at time  

 average number of on-board passengers per bus in region  with destination k  at time  

 binary variable showing the sequence of the trip, with value equal to 1 if a trip from 
region  to  passes through  immediately after leaving , and 0 otherwise  

 total number of bus on-board passengers in region  with destination k  at time  

 parameter for the effect of dwell times on bus speed in region  at time  

,  average travel time and speed by using mode  in region  at time  

 extra travel time spent due to bus dwell times in region  at time  

 average trip length of bus passengers in region i 

 average trip length of mode  in region i 

 storage capacity of buses (persons per vehicle) 

 bus discomfort (crowdedness) in region  at time  

 percentage of on-board passengers reaching destination i 

 parameters for mode choice and bus crowdness  

 

3 METHODOLOGICAL FRAMEWORK  

     Consider a city div ided into N reg ions as in Fig. 1, denoted by i =1,…, N. Criteria fo r partit ioning a reg ion 
(approximate size a few hundred links each) are: homogeneous distribution of congestion within each region to 
obtain a low scatter MFD (see for example [41]), similar topological characteristics and similar type of mode 
usage. Any region  is partit ioned into sub-regions, each one containing a specific type of mode usage, e.g. it can 
be dedicated bus lanes, mixed t raffic lanes, car-only lanes or any other special usage lanes. Demand and their 
aggregate origin-destination are considered known. We will later relax this assumption and investigate how 
uncertainty and errors in the demand influence our approach. The strategy of allocating fract ion of space to each 
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sub-region in region at time is denoted by vector (which can be static e.g. 20% of space for bus-only
lanes all the time, or dynamic e.g. 10% during off-peak while 20% during peak). The goal of road space 
optimization fo r a mult i-modal transport system of a city is to minimize the total passenger hours travelled (PHT)
over time for all modes of transport that serve the total demand by redistributing the road space in areas with 
different usages of the city. Mathematically, the optimization problem is

(1) is subject to the dynamics of the traffic system of the city. The dynamic interactions are illustrated in Fig. 2, 
where is the vector of accumulat ion of vehicle in different regions, the outflow, the demand and

the cost of travel for each of the regions. Given the initial state of the system at time and a space 
allocation strategy , the system modeled by three parts that interact at every time step: the traffic state and 
travel cost of each mode at each region, the flow dynamics within and between regions and mode choice of the 
generated demand at each region. We develop the methodological framework in the following sections.
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Fig. 2. System dynamics flow chart

3.1 Traffic flow dynamics

Let be the demand generated in  region with final destination choosing to travel with mode at
time . The total demand generated during this interval from i to k , . Route choice for each 
demand pair from to is defined exogenously with binary variables , that show the sequence of the trip, 
with value equal to 1 if a  trip from region to passes through immediately  after leaving , and 0 otherwise. It 
is assumed that all trips generated from with destination follow the same sequence of regions in their route.
For this paper it  is assumed that the sequence of regions is not altered by traffic conditions. Let  us now consider 
two modes bus and car, with indices and respectively . Let be the accumulation of mode

in region with final destination , be the transfer flow of mode m from region to with final 

destination . Note that . Note also that for i=k , is zero . is the trip ending
flow with final destination region i.

(1)
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      As long as flow  enters , it becomes part of accumulation . The dynamic equations between 
the state variables , flow variables , and the demand  of the system with  regions for the two  
modes are  

  

where,  is the occupancy of cars  in reg ion i, which is a constant (say 1-1.3 passenger per car) and will remain  

the same until the end of the trip and  is the number of generated car trips . Both equations are discrete 

versions of a mass conservation differential equation, where  represents an interval. (2) states that the change of 
car accumulation  over time equals to the internally generated demand from reg ion  to  minus the outflow 
from region   with final destination  plus the inflow from all regions adjacent to  with final destination , 
which is also the outflow for these regions. (3) is similar to (2), but without new generation of bus trips to the 
system (it is assumed that the amount of buses in service is usually constant during typical commuting hours ). 
Note that the number of buses in each region at different times depends on the relative speeds and MFDs of the 
regions.  

     Flow  is the minimum of two terms : the sending flow from reg ion i, which depends on the 
accumulat ions of region i and the boundary capacity of region , , which is a function of the receiving 
region’s accumulations. Nevertheless, this constraint can be ignored during the optimization process. The 
physical reasoning besides this assumption is that (i) boundary capacity decreases for accumulations much larger 
than the critical accumulation that maximizes flow (see [42]), and (ii) optimized space allocation will not allow 
the system to get close to gridlock. Note also that . 

     The sending flow of  is estimated by the macroscopic fundamental diagram  The MFD of mode  
of region  is denoted as . For our approach, the given condition is that the city is partit ioned in 
homogeneously congested regions and that each region has a well -defined MFD. MFD  can be analytically 
estimated as a function of accumulation fo r d ifferent mode usages and space allocations  using variational theory 
described in the previous section. Then,  

where  is the proportion of the outgoing flow  from region  to  with final destination . If the 
average distance traveled by travelers within reg ion  is assumed to be independent of their destinations, then the 
proportion  can be estimated as a ratio of the related accumulations , according to Little’s formula [43].  

     We should also estimate the dynamics of passengers for each mode and every reg ion. With respect to the car, 
we just need to mult iply both sides of (2) by . For simplicity, we assume . With respect to the bus, 
we need to estimate how the occupancy of bus (in passengers) evolves over time according to demand and 
fin ished trips. The dynamics of bus passengers are very different than bus dynamics. A  simple on-board 
passenger mass conservation equation is    

 
 

 
(2) 

 
 

 

 

 
(3) 

  (4) 

 
 

(5) 
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where  

    In (6), is the number of bus on-board passengers currently in region  with final destination . (7) 
estimates , the average number of on-board passengers per bus from reg ion  to . The RHS of (6) consists 
of the following terms: (i) the passenger inflow at t ime t+1 for the specific OD pair, (ii) the passengers that move 
outside region i while in the bus, (iii) the passengers that move inside region i while in the bus and (iv) the 
passengers that finish their trip inside reg ion i. The last term is non-zero  only for i=k  (binary  for i=k  and 
zero otherwise). This term approximates the passenger trip endings in region i as the mean of a  Bernoulli trial 
which is repeated z times for each passenger with probability of success . At each stop in region i, every on-
board passenger from the previous time step has probability  of reaching its destination.  is the average trip  
length of bus passengers and  is spacing between bus stops for region i, i.e. passengers travel  stops on 
average. Variable z is the number of stops that a bus travels during interval t, which is  (T is the 
duration of the interval and  is the space-mean speed of buses in region i, which will be estimated in  
Section 3.2). Note that the trip length of a passenger, , is different than the trip length of a bus in the region, 

. If more detailed data exists from real measurements, the generic model can be adjusted accordingly with a 
non-homogeneous Bernoulli process  (or a Brownian  motion). How the demand  is divided between the two 
modes,  and  is discussed in Section 3.3. 

3.2 Multimodal travel time estimation  

    The mult imodal traffic flow dynamics of the previous section considered that the demand is known for each 
mode. This will be an  input of a mode choice model, which is presented in the next  section. To  obtain this goal, 
it is important to identify the speed and travel time of each mode of transport. The estimation of space-mean 
speed  for each mode depends on the type of usage, i.e. mixed traffic of cars and buses or dedicated bus 
lanes. Keep in mind that variational theory estimat ion for shared-use of car and bus estimates the network flow 
and of cars for given car density given the conflicts and the operational characteristics of buses (frequency, dwell 
times etc). It does not estimate the speed of buses and extra effo rt is needed to account for the additional delay 
due to dwell times. This extra step is not required in separated bus lanes as there is only one mode of transport.  

    The space-mean speed in a time interval is by definition the ratio of the total distance travelled and the total 
hours traveled. Let be the total distance travelled by vehicles of mode  (bus or car) in region  at time  
and  the average trip length of mode m in region i. Then, for steady state queuing systems 

 [43] and . Gerolimin is and Daganzo [44] have shown that trip length of cars in 
downtown Yokohama was a time invariant variable. The average trip length of buses can be easily estimated as 
buses have fixed routes. By using the above equations and variational theory ([30][31]), we can estimate (i)  
and  for car-only regions and mixed traffic car-bus regions and (ii)  for bus-only regions. For shared-use 
car-bus regions, the speed of buses further decreases because of dwell t imes for picking up and dropping off 
passengers by a parameter and  . If we assume that buses have the same 
speed with cars when they are not stopped at bus stops then  can be approximated as  

 

 

(6) 

 

 
 

(7) 

 

 
 

(8) 
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where is the total t ime spent at bus stops (total dwell time) in interval t, and is the average t ravel 
time of buses in region i exclud ing , which is given by  . Average travel time of cars in region i, 

, can be estimated as .

    To validate all of the above assumptions, we performed a micro -simulat ion of San Francisco network taken 
from [42] which provides a low scatter MFD and can be estimated with variational theory with small error.
While in the previous version this was a car-only simulation, we performed addit ional simulations for shared-use 
bus-car lanes and for dedicated bus lanes with different bus frequencies and dwell t imes . Figure 3 summarizes 
the MFDs in  some of the scenarios for mixed t raffic (Fig. 3a) and the dedicated bus lanes (Fig.3b), while Fig. 3c
shows the average speed of cars, the speed of buses and estimated speed of bus es according to the 
aforementioned methodology (time interval is 5min). A  detailed  analysis of these results will be reported in a 
future publication as it is beyond the scope of the current paper.

Fig. 3. (a) the MFD of mixed car-bus network; (b) The MFD of dedicated bus lanes; (c) Speed profile for mixed
network 

3.3 Mode choice

Suppose that the selection of the preferred mode is made by the travelers only once when they enter the 
network and start their trip. The total demand generated at each time interval is assigned to 
the preferred modes through an endogenous approach. Mode choice of a traveler only happens at this moment
and remains the same until her trip is finished. The choice of a mode is based on the utility of the mode, which is
expressed as the travel cost of using that mode at the beginning of the trip. We consider that the travel cost of the 
whole route consists of travel t ime for cars and buses and , on-board spatial discomfort for 
buses and extra costs for cars vs. buses (e.g. parking, tolls , fare) for each region i and interval t. 
Calculation of utility for car and bus for a specific origin destination pair (from to ) is given by (10), where
the summat ion term considers the set of all reg ions that a trip passes on its route from i to k , , that can be 
estimated using binaries . 

(10)

where

The rationale o f the spatial discomfort is that (i) the utility of using bus decreases if number of on-board 
passengers (crowdedness) increases and (ii) it  prevents the buses from reaching overcrowded conditions if buses
are much faster than cars. Spatial discomfort o f passengers is a function of the average occupancy of a bus at
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time , which is the ratio between the average on-board passengers per bus in reg ion ,  and the 
storage passenger capacity of a bus, . As the unit of utility is time, the spatial discomfort term shall be 
transformed to time unit. Parameter  should be calibrated with real data. Nevertheless, during the optimization  
process, which is described in details in the next section, we noticed that by changing the chosen value o f   by 
±50%, objective function varies only by 2-3%. A different formulation with the same logic can be proposed for 

, which should always be a monotonically increasing function of bus average occupancy.    

     Given the described utilit ies, we propose to model the mode choice of buses over time  and  
with a sequential approach, where the difference of utilit ies between the modes for a g iven origin destination pair 
is  . 

    (12) states that (i) if traffic condit ions do not change, mode choice percentage remains the same as of the 
previous period and (ii) if traffic conditions change, mode choice percentage changes in proportion to the 
difference in utilities as expressed by , and to the evolution of . In  such a way, we assume that all 
travelers make s mart choices based on current and historic informat ion. Note that travelers choose the mode of 
travel only once in the beginning of their trip based on the traffic conditions of this time. Parameters  and  
need to be calibrated with real data. Alternatively, one can  use the traditional logit-form model. Since we are 
trying to model a dynamic choice process and we consider that a dynamic estimation of a logit model might be a 
challenging task, we utilize the proposed approach.  

    (12) tries to succeed a set point, which is equal utilities of modes in our case (equilibrium in the choices). This 
type of controllers is a generic widely used control loop feedback mechanis m. The equation calculates an error 
value as the difference between a measured process variable and a desired setpoint. It attempts to min imize the 
error  by adjusting the process inputs, . The ad justment depends on the present error (term ) and the 
accumulation of past errors (term ). Sensitivity analysis of parameters ,  and  is performed later.  

3.4 Optimization framework  

    After modeling the system dynamics, we can now describe the optimization framework. Given values for the 
space allocation vector , which include temporal and spatial variables, the total passenger hours travelled (PHT)  
can be obtained as  (where  is the duration of the interval ) 

Optimization of  (13) is highly non-linear. We solve this problem by a non-linear p rogramming method, the 
sequential quadratic programming  (SQP). SQP method solves a sequence of optimization sub-problems, each of 
which optimizes a quadratic model of the objective subject to a linearizat ion of the constraints. Consider a non-
linear programming problem of the form  subject to constraints  and . In our 
case,  will state the constraints of implementation of space allocation in practice, e.g. space should not be 
frequently reallocated.   will be system dynamics equations introduced in the previous sections. The 
general Lagrangian for this problem is defined as (  and  are Lagrange multipliers)  

At an iteration , an approximation is made of the Hessian of the Lagrangian  function, using a quasi-Newton 
updating method. This is then used to generate a quadratic programming sub -problem, and it  can be solved 
using any QP algorithm. The solution is used to form a search direct ion  for searching a new iterate 

, where the step length  is determined by an appropriate line search procedure. The iteration will 

 

 

 
(12) 

 

 (13) 

 (14) 
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continue until stop criterion is achieved: the change of objective function is below a certain threshold. For 
detailed description of the SQP algorithm, please refer to reference [45]. We apply this algorithm for mult iple 
initial values (around 1000) to avoid  convergence to local min ima, which might be the case for a non-smooth
objective function.

4 RESULTS

An application of the developed methodological framework is performed  with a case study of a two -reg ion 
city. Consider an urban network with two concentric regions, as shown in Fig. 4. Mixed  traffic of buses and cars
occurs in the outside region (periphery), while a fraction o f road space in the center reg ion is dedicated to buses. 
The radius of the center region is 1.6km and of the periphery is 3.2km. The road networks of the 
two regions are well connected at the border. We simulate an urban road traffic system for 4 -hours (80 t ime
units), a typical morn ing or evening period. Demand has a symmetric trapezoidal shape with time and the length
of peak period is equal to 1hr. A 70% fract ion of the demand generated in the periphery will travel to the city
center and 30% fraction of the demand generated in the center will travel to the periphery of the city. The
dynamics of the system follow the equations defined in section 3.1, 3.2 and 3.3, while MFDs for different sub-
areas are estimated with variat ional theory. Two modes of transport are considered available in the system, car
and bus. A fraction 10% of the users are captive and do not have access to cars. The network topology, signal 
settings and traffic parameters are as fo llows: (i) two-lane one-way roads with block lengths 154m and

308m, (ii) signal settings for all intersections, green, ; cycle, and offset, ,
(iii) a triangular fundamental diagram for each link with free flow speed for buses and cars, ; jam 
density, for cars and and congested wave speed for buses and cars, 

.

Static (Section 4.1) and dynamic (Section 4.2) space allocations are investigated. We also investigate how an 
area-based (Section 4.3) pricing strategy can further facilitate demand shift  from cars to public transport.
Sensitivity analysis for the non-physical parameters of the model is performed in Section 4.4, while the effect of 
demand increase and uncertainty is also integrated in the analysis.

Fig. 4. An illustration of the case study

4.1 Static space allocation

We first investigate the performance of the traffic system, where a constant amount of space is allocated to
dedicated bus lanes in the center region during all times. The results of the basic scenario where buses and cars 
share the whole network system without bus lanes, and of a scenario where 10% and 15% of the space in the
center region is dedicated to bus lanes, are shown in Fig. 5. Note that the system performance of the latter
scenarios significantly improves. The highly congested part disappears, the center of the city operates close to 
the maximum outflow of the car MFD, and total person hours traveled (PHT) during peak hours reduces by more
than half. 

lb1

ZOOM  IN

RRR11+RRR22

RRR11

CENTERENT RCENTER

PERIPHERYE P R

lb2

g, c, o



130   Nan Zheng and Nikolas Geroliminis  /  Procedia - Social and Behavioral Sciences   80  ( 2013 )  119 – 138 

 

 
 

     Since we apply a static space allocation which  has only one space variable to be optimized, we can simply  
enumerate all the possible values of space allocation and compare the results . Result of such an experiment is 
shown in Fig. 6a, where PHTs are plotted over percentage of space for bus lanes. The small “kink” fo r  3% is 
because of the behavior of captive users that choose bus even if car is a faster mode. The optimal space 
allocation can be found around 10%. The SQP optimization approach of the previous section provides identical 
results. From the figure, an interesting observation is that the resulting PHTs are similar for  10% to 15%. 
This means that small variations in the demand or errors in the parameters of the model will still produce close-
to-optimality results and PHTs will remain low.  

 
Fig. 5. An illustration of the performance of the system with two cases of space allocation to buses:  

(a) The car MFD in center region (cases 10%, 15% cars only, case 0% cars and buses mixed), (b) PHT for 
both modes over time 

  

  
Fig. 6. (a) (b) efficiency of bus lanes given difference space allocation (c) efficiency of the whole space with 
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Let us check more carefu lly the efficiency of the allocated space, which is defined as the ratio between the 
passenger trips completed during the total simulation time and the total lane kilometers of the space for buses. 
Space allocations of 10% and 15% cases are compared, where efficiency of bus lanes is shown in Fig. 6b and 
efficiency of space of the whole center region in Fig. 6c. If we look at  the space efficiency of the bus lanes, it is 
clear that with the increase of allocated space for buses, the trip completion rat e per ln-km actually  decreases. 
Note that for the whole region (Fig. 6c), the two cases are almost identical. The reason is that: More space for 
buses allows to transport more persons on bus lanes, but at the same time it constraints the capacity of car 
network and car users travel at a slower rate. Also, higher number of bus passengers increases the dwell t imes 
and the benefit of more space is smoothed off. Given the fact that the cost of operating dedicated bus lanes is 
high, the optimal solution should still hold at the lower value of 10%. 

4.2 Dynamic space allocation 

     It is clear in Fig. 6b that the utilization of bus lanes is higher during peak hour, while it is  much less during 
the onset and the offset of congestion. A dynamic space allocation strategy, where space is allocated in a time-
dependent way is expected to increase spatial efficiency and further minimize the total travel cost. Nevertheless, 
given the associated infrastructure, the change of space should not happen many times during the day as 
implementation will be d ifficu lt. In this section, we investigate the optimal solution for a four-variable, three-
period dynamic space allocation strategy. The three periods are the peak hour and the off-peak before and after 
the peak hour. The four optimized variables are: ( i) the starting time  and (ii) the ending t ime  of the high 
space allocation, (iii) space allocated to bus lane during the off-peak periods   and (iv) during the peak period  

.  

      We apply the algorithm described in Section 3.4. The iteration and the solution of 10 executions with 
different random init ial solutions out of the 1000 are shown in Fig. 7. The dotted line in both figures indicates 
the best solution among these 10 examples. We see that by apply ing a mult iple random init ial search, we are 
indeed able to avoid local minima, fo r example note a solution that gives 30% of the space to buses during the 
peak period.  

  

Fig. 7. (a) 10 executions of the SQP optimization algorithm for different starting points and (b) the 
corresponding optimal solutions after a number of iterations for each execution 

Fig. 8 shows the optimal solution for this dynamic space allocation strategy. The line “pi” is the resulting space 
share of bus lanes over time, while “demand” is the demand profile. Note that the optimal strategy allocates less 
space when demand is low, but three times more during the “identified” peak period. The starting time and the 
ending time of the identified peak period makes physical sense, as it starts earlier than demand rate reaches its 
maximum and fin ishes later than demand rate starts decreasing. In  such a way, the strategy “forces” travelers to 
choose to travel by bus proactively, before the beginning of peak hour, therefore all travelers avoid experiencing 
high travel cost. It also “tolerates” travelers to choose cars as the main mode of travel after the end of the peak 
hours. The optimal PHT is 19715 hours, better than the optimal PHT by a static space allocation , which is 20216 
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hours (10% further improvement from the  solution). Note that this improvement is succeeded with 15% 
less total space allocated for buses, as expressed by the total lane-km-hrs of individual bus lanes.   

 

Fig. 8. The optimal solution of a time-dependent bus lane space allocation strategy  

     Now let us compare the efficiency of allocated bus lanes and the bus occupancy during the peak hour between 
the static strategy and the dynamic strategy. The results are shown in Fig. 9. During the off-peak period, the 
dynamic strategy allocates less space to buses, dropping from 10% to 5%, which increases the efficiency of bus 
lanes (as expressed by passengers served per lane-kilometer of bus space). While during the peak period, the 
dynamic strategy has lower utilization rate when the allocated space increases from the constant 10% to 16%, 
nevertheless the dynamic strategy actually serves more demand for buses during the period (shown by the right 
figure). Note that two  sharp changes for the dynamic case are observed during the space changes at times  and 

 (off-peak to peak, and peak to off-peak). Nevertheless, the number of served passengers is smooth vs. time 
(see Fig. 9b). These changes represent the transition of operation between the two space allocation scenarios.  

  
Fig. 9. Comparison of static and dynamic allocation: (a) space efficiency vs. time and  

(b) Average bus occupancy  vs. time  

As a high utilization rate indicates that a large amount of demand chooses to travel by bus, one might question if 
this strategy will create cases of buses full of passengers (at capacity  ), which is neither comfortable nor 
realistic. Th is will not happen in the developed model, because Equation (11) ensures that mode choice of buses 
will reduce significantly when buses are crowded. If we check the occupancy of buses, as shown in Fig. 9b, we 
see for both the static strategy and the dynamic strategy that buses are occupied less than half of their capacity 
(40 persons/bus). In  fact, if more demand shifts from cars to buses , while buses are given enough space to travel 
with high speed, PHT could be further reduced. This is investigated in the next section. 
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4.3 Dynamic space allocation with congestion pricing 

     Following the discussion, we will investigate measures to improve the occupancy of buses. To trigger mode 
shift from cars to buses, we apply  an area-based pricing in the peak-hour, where car users have to pay when they 
drive in the center of the city. The cost of p ricing is added into Equation 10 and influences the mode choice. 
Since toll is in money units, we transform it to time by multiply ing with a value-of-t ime (VOT). In our 
application we ut ilize a value of 16 Swiss Franc (CHF) per hour, which  is estimated based on an analysis by 
Axhausen et al. [46] for Swiss travelers. The start and end of pricing is assumed to be the same as of the peak-
hour space allocation, between  and . The amount of toll charged  is an addit ional variable to be optimized  
(5 in  total). In our analysis we assume that toll will only affect the mode choice and not the departure time of the 
trip. While an analysis of the morn ing commute for mult iple modes is analyzed fo r a simpler system [24], 
departure time is not included in this current work as it will make the modeling part very tedious and  intractable.  

     We execute this five-variable optimization with the SQP algorithm with multiple initial searches. The total 
PHT is 18215hrs, which is about 12% s maller than the PHT without pricing and dynamic space allocation. The 
space allocation during the peak period decreases from 16% without pricing to 14%, while values fo r  and 

 are identical for the two cases. The savings in PHT are about the same with the total toll paid d ivided by VOT. 
While this is the case in the single bottleneck model [47], in systems governed by a variable capacity (like the 
MFD model of th is paper), savings can be much larger, because congested states are avoided [48]. But, the no 
toll case operates close to capacity, because of an efficient space allocation , while  the toll paid is similar to delay 
savings. Nevertheless, as we will show later, an increase in the demand of travel in a city can create additional 
congestion and given that a new design of space allocation is not an easy solution (due to high infrastructure 
cost), variations in pricing can significantly improve the state of the system and avoid congestion.   

     The occupancy of buses over time is compared in Fig. 10a where “dynamic with pricing” is the resulting bus 
occupancy of the pricing strategy. As expected, the buses are more occupied after pricing. Besides, it can be 
observed the occupancy goes to zero earlier when approaching the end of the simulation (interval 81), ind icating 
that passengers are able to finish their trips earlier. Th is shows that a faster travel speed is achieved for all users 
and it corresponds to a reduction in PHT. Fig. 9b shows the MFD states for cars in the center of the city. The two 
different maximum values for the dynamic case represents the two different space allocations. With pricing the 
system operates at a more reliable state as this is less than the critical accumulat ion that maximizes outflow 
(n=4000veh). As we will show later, in this case the system can absorb increase in demand or s mall stochastic 
fluctuations without entering the congested regime, while in the case without pricing, a demand increase will 
also be associated with higher congestion. 

      The pricing strategy also succeeds higher demand shift and utilization rates of the buses during peak hours 
(Fig. 9c). Fig. 9d shows how the utility of bus and car change over time for two different O-D pairs (center to 
center and periphery to center). Note that when bus share is min imum car utility (during the off-peak) is 
significantly higher, while during the other times the two utilities are about the same. Thus, Equation (12) 
succeeds in identifying a dynamic equilibrium of mode choice.  
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Fig. 10. Comparison of the dynamic allocation with and without pricing: (a) occupancy of buses vs. time; (b) 
MFDs of the center region for cars; (c) mode share of bus vs. time and (d) utilities of car and bus vs. time for 

trips from center to center (C-C) and periphery to center (P-C) for the “dynamic with pricing” case 
 

4.4 Sensitivity analysis 

      In  this section we discuss how sensitive is the resulting PHT, if parameters of mode choice  and  in  (12) 
and discomfort parameter  in Equation 11 are g iven different values. We also investigate how an increase in the 
demand will create additional congestion and if this can be resolved without a new re -distribution of the urban 
space. Table   

     Table 2 shows the results of a sensitivity test. The basic scenario is the one where the solution of section 4.2 
is applied. For each of the three parameters, values vary by percentages as shown in the first row of the table. 
When one parameter is changing, the other two remain constant and the correspo nding change of PHT is 
calculated.  

Table 2 sensitivity analysis on and   
 change of 

parameters 
-75% -50% -25% Base +25% +50% +75% +100% +200% 

change  0.7 -0.03 0.1 0 0.02 0.01 0.2 0.3 0.6 
of PHT  0.2 0.08 0.04 0 -0.09 0.1 -0.2 -0.2 -0.4 

(%)  -1.4 -1.5 -0.8 0 0.7 1.4 2 3 5 

      We see that the changes of  and  have small impact on the resulting PHT, while the change of  has 
relatively greater impact. This result shows a good property of  and . For  the result is consistent with 
reality. A higher value of  prevents users from using buses therefore worse off the whole system significantly, 
while a low  encourages users and consequently reduces PHT. But when  is too low, buses attract too much  
demand, the dwell t imes increase and reduce the speed of buses therefore PHT starts to increase again. Note that 
for  and , an extreme high  value will result to an  “all-or-nothing” mode choice: all users choose to travel 
with the better mode but then the travel cost of this mode becomes huge suddenly and result a complete choice 
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of the other mode in the next  time period, creating unrealistic instability and oscillations. For , a h igh value will 
prevent travelers from choosing buses, which not only underutilizes the bus space but also results in heavier 
congestion for cars. In  our model, we tune the parameters via trial-and-error, with objective of having a coherent 
and stable mode choice process. As mentioned already, these parameters need to be calib rated when the model is 
applied in a real city.  

     During the optimization process, perfect informat ion about the demand profile was assumed. In reality 
demand can experience stochastic fluctuations or erroneous measurements, as it might not be straightforward to 
accurately measure, even at the aggregate level. To investigate how the model reacts under demand uncertainty, 
the effect of unbiased and biased errors are introduced for the optimal solution, obtained by the trapezoidal 
demand. With respect to the unbiased demand, we consider fluctuations from the  deterministic trapezo idal 
demand as a standard normal distribution , mult iplied by a degree of error , i.e. 

. We perform mult iple runs for values of  and the predetermined space allocation 
and tolls. Even for large degrees of error, the total passenger hours travelled (PHT) do not change more than 5%, 
which highlights that the approach is robust and not very sensitive to random demand fluctuations.    

      In  the case of biased error, for example because of a demand increase the analysis is more complicated as 
PHT can significantly increase. The reason is that the base cas e represents a high demand case, which without 
efficient space allocation creates significant congestion, while the optimized solution operat es at the network 
capacity in the center region for the roads devoted to cars. Thus, this demand increase will create states in the 
congested part of the MFD and increase the PHT. Nevertheless, a new redistribution of the urban space might 
not be a feasible solution due to high infrastructure costs and it should not be performed frequently. Instead, a 
change in the price of toll is easy to be implemented and for some range of demand increase can still lead the 
system to an efficient state and avoid states in the congested part of the MFD, which results in network capacity 
loss. To quantitatively analyze the above, we estimate the total PHT of the two -region model as demand 
increases for the optimal space allocation and tolls of the base scenario. Afterwards, we keep the space allocation 
identical and optimize the system with respect to the value of the toll in the peak hour for different demand 
levels.        

 

                   

Fig. 11. Comparison of system performances under different pricing scenarios for different levels of demand 
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The results are summarized in Fig. 11, where PHT for d ifferent demand increase is estimated fo r (i) the dynamic 
allocation without toll, (ii) the dynamic allocation with fixed toll of the base scenario and (iii) the dynamic 
allocation with toll re-optimization for each demand level. We also show the average bus occupancy (in 
passengers/bus) during the peak hour for the three scenarios and the price o f the optimal toll. Note that with price 
re-optimization, bus utilizat ion is much higher while congested states are avoided for demand increase up to 25% 
(see the associated MFDs for cars in the city center). For h igher increase (>25%) buses become fu ll an d 
congestion is unavoidable. The price of toll stabilizes for h igher demand as buses are full and cannot attract more 
passengers. A solution in this case is to introduce more frequent buses in the system, which will allow for lower 
bus occupancy, but it might decrease the efficiency of the bus network. 

5 DISCUSSION  

       In this paper, we present a macroscopic approach for allocating road space among modes of transport with 
the objective of minimizing the total travel time of travelers, PHT. We extend the s ingle-mode MFD to 
multimodal cases, and utilize it to reproduce the traffic dynamics  of a multimodal multi-region urban transport 
system. The extended model also considers the effect of scheduled stops on the operation of public transport, as 
it quantifies their effect on the average speed of the mode. Th is traffic model is consist ent with the physics of 
traffic and the operational characteristics  of a multimodal system. It can be analytically estimated and it can be 
practically observed with fewer requirements or data. Furthermore, we propose a dynamic mode choice model in  
order to investigate how the change of road space influences mode choice behavior and traffic performance. 
Given relevant informat ion of a city (its road space allocation strategy and an aggregated O-D profile), the 
performance of the city can be evaluated and optimal space strategy can be provided with our approach.   

      We apply the approach on a two-region bi-modal city case study, and investigate the performance of two 
space allocation strategies for the center region of the city where demand is high and heavy congestion exists for 
static and dynamic case. Comparing the two  optimal solutions, we find that the dynamic allocation strategy 
manages to minimize the PHT in  a more efficient way as it utilizes the bus lane space better during the off -peak 
period and serves a higher amount of passengers during peak period. In practice policy makers may need to 
make trade-off between the operation cost of bus lanes and the savings in PHT, as it is not always efficient to 
give space to bus lanes. By implementing pricing during the peak period, more demand shift from cars to buses 
is succeeded increasing the occupancy of buses and further reducing the PHT . The result of a sensitivity analysis 
shows the robustness of our approach towards the fluctuations in the inputs and model parameters.  

      The results of the proposed approach are promising. Ongoing work focu ses on testing the space allocation 
strategies in microscopic traffic models and investigates if the findings by macroscopic models are consistent 
with the outputs by traditional microscopic models. Further research direction is to investigate (i) deeper analysis 
of multiple reg ions, where regional route choice might change (ii) incorporate parking space in the developed 
framework and consider the effect of limited parking space into account for mode choice, (iii) combine space 
allocation with perimeter control of traffic signals and bus priority (iv) integrate additional modes like taxis, tram 
and metro lines. Another future direction is how the output of this macroscopic optimizat ion framework can be 
implemented in reality (i.e. how to choose which roads s hould be devoted to public transport). The mult imodal 
urban modeling should be also investigated by considering additional heterogeneity (i) among users, with respect 
to their mode choices and the trip length and (ii) among different regions of a city. 
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