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Influenza represents a serious threat to public health with

thousands of deaths each year. A deeper understanding of the

host–pathogen interactions is urgently needed to evaluate

individual and population risks for severe influenza disease and

to identify new therapeutic targets. Here, we review recent

progress in large scale omics technologies, systems genetics

as well as new mathematical and computational developments

that are now in place to apply a systems biology approach for a

comprehensive description of the multidimensional host

response to influenza infection. In addition, we describe how

results from experimental animal models can be translated to

humans, and we discuss some of the future challenges ahead.
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Introduction
Every year, about 500 million people worldwide are

infected with the influenza A virus (IAV), and about

0.5 million die from the infection. The most severe

pandemic in 1918 resulted in about 30–50 million deaths

worldwide. Newly emerging H5N1 and H7N9 avian IAV

cause lethal infections in humans but have not yet

acquired the potential to spread from human to human.

Our options for treatment of IAV infections are very

limited since only two drugs for therapeutic interventions

are available, and resistance to both has been observed.

Furthermore, no reliable biomarkers exist for early pre-
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diction of severe progression of disease, co-infection or

host risk factors. Classical virology has mostly investi-

gated molecular mechanisms at the cellular level, such as

adhesion, entry, replication and assembly of viruses.

However, not only viral but also many host factors, like

the quality and quantity of immune cell responses, bac-

terial co-infections, genetic predisposition and other

health risks are crucial determinants for the course of

an infection and potential lethal outcomes.

Thus, it is necessary to identify the host factors that are

required to successfully fight an infection or that cause

adverse responses. For this, a highly integrated research

strategy is needed to understand all aspects of the com-

plex interplay between the host and invading pathogen.

This systematic approach has to go way beyond in vitro
cell culture systems and needs to address all aspects of

host–virus interactions at the molecular, cellular, organ,

and organism level.

In this review, we summarize recent advances in omics

data collection and systems genetics that were used to

reveal crucial molecular interaction networks. In addition,

we describe how systems biology in experimental models

should be combined with analyses in patients to create

predictive in silico models for humans, and we address

some of the challenges that still need to be solved.

Omics data as the basis for systems biology
The first necessary step for a systems biology approach

(Figure 1) is the gathering of large amounts of data that

should be as comprehensive as possible. Analysis of the

transcriptome is presently one of the few omics technol-

ogies that can be easily performed, and that records all

changes for all annotated, transcribed regions.

Global gene expression changes using microarrays have

been investigated in lungs of mice, ferrets or macaques

after infection with different IAV subtypes and variants

[1–4,5�,6–12]. Also, the expression of miRNAs has been

studied [13–15]. Thus far, only few studies have used

high-throughput RNA sequencing (RNAseq) for anal-

yses of the host transcriptome after IAV infection

[9,11,12] but more may be expected in the near future,

because this new technology has several advantages, for

example the analysis of virus gene expression in parallel

with host genes. The overall conclusions from these

transcriptome analyses were that the induced host
Current Opinion in Virology 2014, 6:47–54

https://core.ac.uk/display/82211817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
Klaus.Schughart@helmholtz-hzi.de
Klaus.Schughart@helmholtz-hzi.de
http://www.sciencedirect.com/science/journal/18796257/6
http://dx.doi.org/10.1016/j.coviro.2014.05.002
http://dx.doi.org/10.1016/j.coviro.2014.03.008
http://www.sciencedirect.com/science/journal/18796257


48 Viral pathogenesis

Figure 1

Virus

Models of
host- pathogen interaction

Hypothesis

Novel diagnostics, protective and
therapeutic treatments in human

Systems
Genetics

Environment
Systems

perturbations

Data
acquisition

Clinical
application

In silico
modelling

Host
risk factors

Proteome

Phenotyping data

Validation

Refinement

Clinical
parameters

Transcriptome

Metabolome

Current Opinion in Virology

Systems analysis approach to study host–pathogen interactions during

influenza infection. Infection by influenza A virus causes massive

perturbation of the biological system (host). Here, infection dose and

virulence of the virus are the most important variables. In addition, other

influences, such as environment (diet, exposure) and host risk factors

(age, sex, life style, co-morbidities) also influence the systems response.

These variables and influences can be standardized and modified in a

controlled fashion in animal models, whereas in humans they represent

unknown confounding factors. Host genetic variations represent another

host factor modifying the system response. It can be exploited in a

systems biology approach in animal models as an additional controlled

variable to systematically perturb the system. All perturbations result in

systems responses which can be recorded at the level of transcriptome,

proteome, metabolome and clinical parameters (body weight loss,

survival, viral load, or immune response). Based on these large data

sets, mathematical and computational methods are used to develop in

silico models of host–pathogen interactions. The in silico models then

allow for development of hypotheses about crucial networks, hubs,

bottlenecks which are validated in animal models and humans, and then

refined. The ultimate outcome of a systems biology approach is the

identification of new targets and strategies for prevention, diagnosis, risk

assessment and treatment of severe influenza disease in humans.
inflammatory response correlates with the severity of

disease and depends on viral subtype and strain, viral

dose and host genetic background. Severe and mild

infections do not differ much in the type of activated

genes, but rather in the magnitude of up-regulation of

host response genes. Infections with highly pathogenic

viruses resulted in an earlier and more sustained up-

regulation of inflammatory genes (reviewed in [16,17]).
Current Opinion in Virology 2014, 6:47–54 
Thus, in infections with a severe outcome, both virus

spread and a strong host immune response result in the

destruction of lung cells and eventually the failure of the

respiratory system [18].

The first studies in experimental models that use more

advanced mathematical and computational methods for

the analysis of host–pathogen interactions have just been

published. Integration of phenotypic and transcriptomic

data from H1N1-infected mice identified sets of tran-

script modules that correlate with body weight, clinical

score, viral load, histopathology, and weight loss at day 4

post infection [5�]. Another study used expression data

from pre-CC lines with extreme phenotypes, expression

quantitative trait loci (eQTL) mapping and structural

equation modeling. The authors identified three genes

that were highly connected with putative causal corre-

lations to many other genes in the lungs of H1N1 infected

mice [6]: Ifi27l2a related to downstream genes involved in

signal transduction and transportation, Sh3gl3 to cellular

growth and development genes, and Kcmf1 to genes

involved in metabolic processes. However, the role and

contribution of other loci is less clear and interpretation is

often limited because of poor annotations of the respect-

ive genes. Thus, a broad analysis of gene functions, for

example large scale phenotyping in mouse knock-out

mutants, is urgently needed to close this knowledge

gap [19,20]. Other studies related transcriptome analysis

with clinical, histopathological and viral parameters in

macaques [21,22]. Clinical signs were consistent with

those observed in humans and transcriptional changes

revealed activation of the interferon pathways and innate

immune responses as well as mediators for cell migration

that related to the activation of inflammatory cells, his-

topathological signs of inflammation and tissue damage

[22]. First transcriptional changes were observed after 6 h,

inflammatory, antiviral and apoptotic genes were up-

regulated after 12 h, and a shift to acquired immunity

was observed after day 6 post infection [22].

Almost all studies thus far have concentrated on the innate

phase of the host response. Only one publication presented

a long-term time series transcriptome analysis for up to 60

days post infection in lungs after a non-lethal H1N1 in-

fection in mice [23�]. In this publication, the different

phases of the host response to an influenza infection were

described as temporal changes in gene expression patterns.

Further analysis of the time-series data using dynamic and

time-varying gene regulatory network methodologies

revealed the role of cell cycle genes both in innate and

adaptive immunity. The pathogen–sensory pathways (e.g.

RIG-I, NOD-like) showed a long-lasting association with

other innate immune responses (e.g. NK cell cytotoxicity,

cytokine/chemokine signaling [24]).

Global gene expression profiles were also used to deter-

mine sets of signature genes that are indicative of an IAV
www.sciencedirect.com
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infection. One report has collected results from various

experimental studies in mice infected with either highly

pathogenic H5N1, reconstructed 1918 influenza A virus

or SARS, and has defined a set of influenza-specific

signature genes by meta-analysis [25]. Another study

described a set of 10 host signature genes that identified

the infecting IAV strain in ferrets [10]. Moreover, the

analysis of blood cell transcriptomes in experimentally

infected volunteers revealed a set of influenza-specific

signature genes in humans [26�,27,28]. Furthermore, a

clinical investigation in patients with severe pneumonia

has identified blood transcriptome signatures that dis-

tinguish IAV from other respiratory infections [29,30].

In addition, global gene expression profiles were used to

follow immune cell infiltration in an infected lung by

using cell-type specific gene expression profiles [23�,31].

These studies revealed that the infiltration of lymphoid

cells can be followed by signature genes whereas it is

more difficult to obtain profiles for myeloid cells. Recent

attempts to create a comprehensive set of specific signa-

ture genes for immune cell populations should facilitate

this approach in the future [32].

Proteomics or combined proteome and transcriptome

analyses in experimental IAV infections of macaques

demonstrated that in most cases changes at the transcrip-

tional and protein levels were highly correlated. Also,

some differences were found emphasizing the need for

complementary proteome analyses [33,34]. Studies in

H5N1-infected mice revealed that the host response,

after infection with viruses of different virulence, mainly

differed in the magnitude and velocity of the host

response kinetics, rather than specific sets of regulated

host genes [35].

Furthermore, bioactive lipid mediators have been ana-

lyzed by liquid chromatography/mass spectrometry and

the results were integrated with gene expression. Data

generated from animal studies as well as human patients,

showed an increase in 5-lipoxygenase metabolites that

correlated with the pathogenic phase, whereas 12/15-

lipoxygenase metabolites were increased during the

resolution phase [36].

The most advanced systems biology approach in which a

full circle of omics studies, modeling, prediction of inter-

actions, formulation of a hypothesis and finally exper-

imental testing of the hypothesis has been performed was

reported recently [37��]. The authors combined transcrip-

tome with imaging and flow cytometry studies in mice

and identified a chemokine-driven feed-forward circuit

that triggered strong neutrophil responses in lethally

infected mice. They then validated their findings by

showing that experimental attenuation of neutrophil

responses resulted in reduction of tissue damage and

increased survival.
www.sciencedirect.com 
In conclusion, systems biology for influenza host–pathogen

interactions in experimental animal models has just begun.

The first integrated studies and network analyses have

clearly demonstrated the advantage of a systems biology

approach to better understand the complexity and multi-

tude of host–pathogen interactions and to predict disease

outcome. Although major challenges lie ahead, systems

biology offers strong potential for new discoveries.

Systems genetics — an important new avenue
Systems genetics represents a new approach to evaluate

the contribution of host genetics to the outcome of

infectious diseases. Multiple phenotypes are collected

in a genetic reference population (GRP) and sub-

sequently associated with genetic variations. Using this

approach, genomic regions (quantitative trait loci, QTLs)

that regulate a given phenotypic trait can be identified.

Many traits, including molecular omics data such as

transcriptomes and proteomes can be collected on the

same GRP. In this way, systems genetics connects traits

with genes and gene networks, and will therefore become

an important element in systems biology. Furthermore,

systems genetics represents a hypothesis-free experimen-

tal approach in which completely new and previously

unknown associations can be discovered.

The BXD and the AXB/BXA mouse strain collections are

two GRPs that were created from two parental mouse

strains. BXD are a set of recombinant inbred strains from

C57BL/6J and DBA/2J as parents [38]. AXB/BXA

represents a collection of recombinant congenic strains

derived from A/J and C57BL/6J [39]. Analyses of these

GRPs identified several QTLs after infection with H1N1,

H3N2 or H5N1 [40–43]. Five QTLs on chromosomes 2,

7, 11, 15 and 17 associated with body weight loss and

survival after infection of BXD strains with H5N1 virus

[41], and the hemolytic complement gene (Hc) located in

the chromosome 2 QTL was subsequently shown to

influence viral titer at day 7 post infection. Infection of

53 BXD strains with H1N1 identified two significant

QTLs on chromosomes 5 and 19 that regulated body

weight loss, survival and mean time to death in a time-

dependent manner [42]. Infection of 29 AcB/BcA recom-

binant congenic strains with mouse-adapted H3N2 virus

revealed sex-specific clinical QTLs for survival on

chromosomes 2 and 17 [40]. Using cis-eQTLs as a means

to search for the most likely quantitative trait genes, the

authors identified also Hc as a candidate on chromosome

2, and Tnfrsf21 and Pla2g7 in the chromosome 17 QTL

intervals. Further studies with more mice and congenic

lines will be required in the future to identify additional

quantitative trait genes and to confirm their causal role. In

this context, it is important to note that the results from

these GRPs have been deposited in a publically available

database, GeneNetwork [44], that greatly facilitates the

correlation of influenza host responses to thousands of

other phenotypes and transcriptomes.
Current Opinion in Virology 2014, 6:47–54
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Figure 2

Funnel Code

A. A/J

Founder strains Funnel breeding CC lines

A

H

E F
G

D

B

C

B. C57BL/6J

C. 129S1/SvImJ

D. NOD/ShiLtJ

E. NZO/HILtJ

F. CAST/EiJ

G. PWK/PhJ

H. WSB/EiJ

CDGAFHEB

FACGBEHD

CEADHBFG

G1

G2

G2:
F1

G2:
F2

G2:

G2:
F19

G2:
F20

F3

15 more
generations

of inbreeding

G1

G2

G2:
F1

G2:
F2

G2:

G2:
F19

G2:
F20

F3

15 more
generations

of inbreeding

G1

G2

G2:
F1

G2:
F2

G2:

G2:
F19

G2:
F20

F3

15 more
generations

of inbreeding

1 2 3 4 5 6 7 8

Funnel Order

Current Opinion in Virology

Generation of the Collaborative Cross resource. The Collaborative Cross (CC) [45,67] is the result of a ten-year collaborative effort by the mouse

genetics community to create a large, genetically highly diverse population (CC lines) for phenotyping and mapping studies. The population has been

generated from eight founder strains, A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HlLtJ, WSB/EiJ, PWK/PhJ, and CAST/EiJ (Photo: Brynn H. Voy,

University of Tennessee). These strains represent the three major Mus musculus subspecies: M. m. domesticus, M. m. musculus, and M. m. castaneus.

Five of the founder strains are common laboratory strains, and three are wild-derived inbred strains. After inbreeding of the founder strains for two

generations, and subsequent inbreeding for more than 20 generations (breeding scheme: [45] with permission of the Genetics Society of America) has

resulted in the generation of CC lines (http://csbio.unc.edu/CCstatus/). The genetic diversity of the CC lines is similar to that of the human population

and thus represents an unprecedented and unique resource for genetic mapping and correlation studies [45,68].
The Collaborative Cross (CC [45]) is a novel mouse GRP

with unprecedented genotypic and phenotypic variation

generated from eight founder strains, including three

wild-derived strains (Figure 2). The CC population is

genetically as diverse as the human population. This

resource has just become available, and we can expect

the first results to appear within the next years. In the

meantime, several research groups have started to phe-

notype mice from emerging CC lines (pre-CC lines) that

were not yet fully inbred. Analysis of the host responses at

day 4 post infection with IAV , such as inflammation, viral

replication, body weight loss and survival studies ident-

ified several QTLs regulating body weight loss, viral titer,

pulmonary edema, neutrophil recruitment and expression

levels of host genes [5�]. A highly significant QTL on

chromosome 16 that explained most of the phenotypic

variance for body weight loss contained the well-known

Mx1 resistance gene representing the most likely candi-

date. A surprising finding was that the wild-derived

CAST/EiJ founder strain carrying a presumably func-
Current Opinion in Virology 2014, 6:47–54 
tional Mx1 allele showed reduced ability to inhibit viral

replication at day 4 post infection [5�]. Additional

significant QTLs were identified on chromosome 7 after

controlling for the Mx1 QTL and on chromosome 1 by

performing a mapping analysis only in the subpopulation

that carried a non-functional Mx1 allele. Furthermore,

immunophenotyping of 66 pre-CC lines and the CC

founder strains revealed highly significant QTLs control-

ling B/T cell ratio, CD8 T-cell numbers, and expression

of CD11c and CD23. The CD23 regulating QTL

represented a cis-QTL containing the CD23 encoding

gene Fcer2a [46]. Thus, it should soon be possible to

correlate the genetically controlled variations in immune

cells and other phenotypic traits in CC mice with influ-

enza-associated host responses.

In conclusion, systems genetics has collected first sets of

omics data and correlated them with clinical phenotypes.

In the future, we can expect that many more phenotypic

traits will be accumulated from the CC population and
www.sciencedirect.com
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thereby contribute significantly to a systems analysis of

host–pathogen interactions.

From animal models to human patients
The next step will be to translate the knowledge from

systems biology into systems medicine to predict disease

outcome in humans. First omics results from the blood of

humans have been obtained from experimentally

infected volunteers [26�,27,28] and from infected

patients [29,30,47]. These studies revealed a pronounced

activation of granulocytes and increase in chemokines

and cytokines. However, studies in human patients are

compromised because they have an uncertain history and

are often confounded by many unknown intrinsic and

extrinsic factors. Furthermore, controlled experimental

infection in human volunteers can only be performed to a

very limited extend for obvious ethical reasons. Therefore,

experimental animal models must lead the way. Initial in
silico models will have to be generated from extensive

datasets obtained in animal models because they allow

collection of large datasets from infected organs and body

fluids simultaneously and at a very high spatial and

temporal resolution. Crucial pathways and players can then

be identified, tested experimentally and finally integrated

with data obtained from human patients.

It should be noted that the value of the mouse as model

system for studying inflammatory responses in humans has

recently been debated [48]. However, in the case of

influenza, the responses in mice are very similar to those

in human and non-human primates, results are very repro-

ducible, and the kinetics of pathological symptoms are

identical. Environmental factors like nutrition, age, sex,

among others and even genetics can be easily controlled in

murine models. A comparative analysis of the transcrip-

tional regulatory networks in human cell culture and

experimental mouse and macaque model systems after

H5N1 infections observed conserved host responses [49�].
Similar clinical signs were observed in mouse, macaque

and swine after pH1N1 infection, whereas differences

were detected for the kinetics of expression of inflamma-

tory genes. In addition genes associated with the retinoid X

receptor signaling pathway were found to be differentially

regulated between species [50].

There is an urgent clinical need for biomarkers that allow

predicting the severe course of disease in humans. A

study in patients with severe and mild infections found

elevated levels of MCP-3 and IFNa2 in nasal lavage, and

increased IL-10 levels in plasma, that were correlated

with progression to severe disease [51]. Plasma appeared

to provide a poor reflection of the immune profile in the

lung [51]. Until now, only few omics studies in exper-

imental animal models have been performed from per-

ipheral blood [11], and only a limited number of

chemokines and cytokines have been measured in

broncho-alveolar lavages (BAL). It will now be important
www.sciencedirect.com 
to relate and complement these findings by including a

systems approach in animal models where proteome,

transcriptome and metabolome markers in the blood,

broncho-alveolar lavages or nasal washes are measured.

These changes have to be correlated with clinical

parameters as well as with pathology and viral load in

the infected lung. In the future it will be necessary to

address clinical needs more precisely by designing even

more advanced experimental models that offer better

transferability to humans.

The development of more efficient vaccines, especially

for the elderly or very young, is another important goal in

preventing influenza disease in humans. Several studies

systematically profiled host responses to vaccination in

humans [52�,53,54]. One report identified early molecular

signatures in the transcriptomes of peripheral blood

monocytes that correlated with induction of hemaggluti-

nin-neutralizing antibody responses [52�]. Their theor-

etical model predicted CAMK4 as a negative regulator,

and its function could subsequently be confirmed in

Camk4 knock-out mice. Future systems biology studies

in animal models may contribute substantially to the

development of more efficient vaccines by studying

the host response at the interface of innate and adaptive

immunity in more detail.

In conclusion, the mouse and other experimental animal

models represent excellent systems to use systems

biology for a comprehensive description of host–pathogen

interactions during IAV infections, leading the way to

systems medicine in humans.

Challenges ahead
Clearly, systems biology has entered the field of influenza

virology but there are still major challenges ahead.

Proteomics is as important as transcriptomics for systems

analysis because many signaling pathways are activated

by posttranslational modifications or by protein degra-

dation [55]. However, proteomics (especially at the organ

and tissue level) still has major limitations to overcome,

such as detection of low-abundant species, incomplete

proteome coverage, and narrow dynamic range.

Thus far, we record omics changes at the level of the whole

lung, but we need to understand in which cell types these

changes occur. If we want to understand the cross-talk

between gene signaling pathways and identify crucial

points of connectivity in the network, it will be essential

to know the expression profiles of individual cells and the

quantitative changes of immune cell populations over time

in the infected organ. For this, future developments in

single cell transcriptome, metabolome and proteomics

analysis (reviewed by [56]) (e.g. cells isolated by laser

capture from tissue sections or cell sorting) should provide

a higher resolution that is required for improved modeling.
Current Opinion in Virology 2014, 6:47–54
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Various computational approaches have been used to

identify relevant host–pathogen-interaction networks in

cell cultures [4,57–63]. These studies represent a highly

valuable knowledge base that will have to be integrated

into in silico models from whole organisms. Thus, a future

challenge will be to develop the appropriate compu-

tational models that enable this integration into a single

model.

Systems genetics builds on the integration of large data

sets which should be easily accessible. The value of meta-

analyses of different studies has recently been demon-

strated by comparing transcriptome results from mice

infected with four different respiratory viruses [25].

There is an urgent need to establish publically available

comprehensive databases. First initiatives for transcrip-

tome data have started [64], and the NIH-funded ‘Sys-

tems Biology Program for Infectious Disease Research’

consortium represents an essential step in this direction

[65]. However, existing resources need to be expanded in

the future to also include results from phenotypic studies

from experimental model systems and humans.

Furthermore, it will be necessary to have a knowledge

base that describes all known interactions at the molecu-

lar and cellular level, and that is constantly updated and

validated by the scientific community. A first influenza

map has been created for host–pathogen interactions at

the level of an infected cell [66��]. In the future, it will be

essential to expand these interaction maps to also include

host responses at the level of the whole organism, such as

cross talk between infected epithelial cells and immune

cells, immune cell activation, tissue destruction and tissue

remodeling.

Conclusion
Systems biology of influenza host–pathogen interactions

has just begun. Large data sets have been collected, and

more sophisticated mathematical and computational

approaches are being used to provide a holistic view of

the many molecular and cellular interactions involved,

and to correlate them with clinical outcomes. The ulti-

mate goal is to generate in silico models where crucial

pathways, hubs and bottlenecks can be identified, leading

to new targets and strategies for prevention, diagnosis,

risk assessment and treatment of severe influenza disease

in human. Although there is still a long way to go, exciting

times in this emerging field of systems virology are lying

ahead.
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