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Abstract

This paper examines the relation between proportions correct responses and the number of items tracked in multiple object track-

ing (MOT). It analyses two of the principle methods used in MOT. The mark allmethod, where the participants have to mark all the

items, is shown to be equivalent to sampling without replacement. For the probe one method, where participants have to indicate

whether a particular item belongs to the target set, formulas are derived as well.

The paper shows that it is not possible to determine the tracked number of target items (m) and distractor items (v) from the

proportions correct answers when employing only one of these two methods. A combination of the mark all and probe one methods

does not yield a unique relation between the proportions correct and m and v either, because of the interchangeability between track-

ing targets and tracking distractors.

� 2005 Elsevier Ltd. All rights reserved.
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Multiple object tracking (MOT) was introduced by

Pylyshyn and Storm (1988). In a typical MOT-trial, par-
ticipants look at a display containing eight items ran-

domly positioned on the screen. During the definition

phase, a number of items (up to four) are flashed, indi-

cating that these are the items that the participants are

supposed to track during the subsequent period of mo-

tion. During this tracking phase, which can last up to

15 s, the items move randomly across the screen. In

some versions of the task, the items are prevented from
occluding each other (e.g. Pylyshyn & Storm, 1988), in

other versions the items are allowed to overlap (e.g.

Viswanathan & Mingolla, 2002). After the tracking

phase there is a test to determine to what extent the par-

ticipants have managed to follow the targets. This test
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phase can take two different forms. In the first, the mark

all method (used in Scholl, Pylyshyn, & Feldman, 2001;
vanMarle & Scholl, 2003), the participants are invited to

mark all the targets items that were flashed during the

definition phase. In the second, the probe one method

(used in Yantis, 1992), one of the items on the screen

is probed, and the participants have to indicate whether

the probed item was flashed at the start of the trial.

When repeated many times, both methods will yield a

proportion correct. In the mark all method, this propor-
tion will be the number of items that were correctly

marked divided by the total number of target items that

should be marked. In the probe one method, it is the

number of correct responses divided by the number of

trials. The proportion correct is subsequently used to

make inferences about how many target items have been

tracked successfully.

The mark all and probe one methods are not the only
ways of studying tracking behaviour. Recently, Tripathy
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1 Formula (1) actually does provide the expected proportion correct

for the Tripathy and Barrett method, with m representing the number

of items successfully tracked, and n the total number of items in the

display.
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and Barrett (2004) introduced a paradigm where partic-

ipants had to detect a deviation in the linear trajectory

of one of the items that were moving across the display.

Their task was to indicate whether the deviation was

clockwise or counter-clockwise. Tripathy and Barrett

(2004) found that the deviation necessary to correctly
identify the direction of the deviation increased dramat-

ically when the participants had to track more than one

item.

The crucial difference between the Tripathy and Bar-

rett method on the one hand and the mark all and probe

one methods on the other is that the former involves a

distinction within a set of target items, whereas the latter

involve a distinction between a subset of targets and a
subset of non-targets. In the mark all and probe one

methods, the participants have to be able to identify

all the targets, whereas in the Tripathy and Barrett

method they report an attribute (change in direction)

of only one of the target items.

In the Tripathy and Barrett method the participants

have to track all the items, because they all might be

the target, until the deviation in the trajectory of one
of the target items occurs. After this event, and after

they have reached their decision about the direction of

the deviation, they do not need to track any of the items

anymore. In the mark all and probe one on the other

hand, only a subset of the items on the screen needs to

be tracked, but it needs to be tracked throughout the en-

tire trial. So, the number of task-relevant items in the

Tripathy and Barrett method drops during the trial,
whereas it stays constant for the mark all and probe

one methods.

The formulas for the expected proportion correct de-

rived in this paper describe expected performance for

tasks that involve the distinction between targets and

non-targets. They are not valid for the case where an

attribute of one of the targets has to be reported. They

do therefore only apply to the mark all and probe one

methods. In these two methods, as will be shown later

in this paper, knowing which items are non-targets will

help the participants in correctly identifying the targets.

This is not the case in the Tripathy and Barrett method.

When the deviating item is not cued beforehand, know-

ing that the item(s) that were tracked did not undergo

the change in direction will not help the participants in

identifying the change of direction of the target item
they did not track.

Under the assumption that participants only track a

subset of items, what is the expected proportion correct

for the mark all method? For the case where the number

of targets nT equals the number of distractors nD Scholl

et al. (2001) derived the following formula, where m de-

notes the number of targets successfully tracked, p is the

proportion correct, and n is the number of targets (in to-
tal there are 2n items, because there are also n

distractors):
p ¼ 1

2

m
n
þ 1

� �
ð1Þ

rearrangement of (1) yields m, the number of targets suc-

cessfully tracked:

m ¼ nð2p � 1Þ ð2Þ
The line of reasoning behind (1) and (2) is the following:

participants are able to follow m target items. Whenever

m is smaller than the total number of target items, they
will have to guess the remainder. Because half of the

items on the screen are targets, the rate with which the

participants guess correctly will be 0.5.

Using (2), Scholl et al. (2001), were able to convert

the proportions correct that they observed in their

experiments into the effective number of items tracked

(p. 174). Moreover, by using (1) and solving it for

m = 1, they determined which proportion correct corre-
sponds with the situation where the participants have

lost the ability to track multiple items, and are only able

to follow a single target item. This method of estimating

the proportion where participants have lost the ability to

track more than one item has been used elsewhere as

well (e.g. vanMarle & Scholl, 2003).

Unfortunately, (1) and (2) are only valid when the

chance of picking a target item remains constant, as in
sampling with replacement.1 However, this is not typi-

cally the case when participants have to mark all the tar-

gets. Whenever they have marked an item, they do not

get the opportunity to mark that same item again.

Rather, they will always have to mark n different items.

This is equivalent to sampling without replacement. To

see how this influences the estimate of m, we will take a

closer look at what happens when the participants are
prompted for a response in a mark all trial where the

number of targets nT equals the number of distractors

nD.

Suppose that the participant has not managed to

track a single target. It is as if the participant was not

in the room during the definition phase, but is asked

to mark the target items nonetheless. In this case, the

participant does not possess any knowledge whatsoever
about the test display, and will have to guess which

items are the targets. Clearly, because half of the items

are targets, the expected proportion correct will be 0.5.

A more circuitous way of arriving at this proportion

correct is by following the formal route of combinator-

ics. The participant has to pick the nT targets out of the

(nT + nD) items on the screen. The expected proportion

correct depends on the probability of marking
0,1, . . . ,nT � 1, nT target items when nT items are picked
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Fig. 1. Expected proportion correct for the mark all method, as a

function of the number of target items (m) and distractor items (v)

tracked. Number of targets (nT): 4; number of distractors (nD): 4.
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from the total of (nT + nD) items on the screen. The

probability of picking b target items is given by

p ¼

nT
b

� �
nD

nT � b

� �
nT þ nD

nT

� � ð3Þ

because there are

nT
b

� �
ways of picking b target items from the total

of nT target items,

nD
nT � b

� �
ways of picking the remaining items from

the nD distractor items,

nT þ nD
nT

� �
ways of picking nT items out of a total of

nT + nD items on the screen.

Sampling without replacement (as embodied in (3))

follows the hypergeometric distribution. The mean num-

ber of target items that will be marked when picking
randomly is therefore given by the mean of this

distribution:

n2T
ðnT þ nDÞ

ð4Þ

Consequently, the expected proportion correct, in an
experiment where participants are marking targets ran-

domly is

p ¼ n2T
ðnT þ nDÞ

� ��
nT ¼ nT

ðnT þ nDÞ
ð5Þ

For the special case where nT = nD = n we can see that

the expected proportion correct will be 0.5.
When participants have only managed to follow a

single target item, they will mark this target and guess

the nT � 1 remaining target items. More generally, when

the participants have followed m target items, they will

only have to guess nT � m target items. So the expected

proportion correct when they have successfully tracked

m target items will be

p ¼ mþ ðnT � mÞ2

ðnT � mþ nDÞ

 !,
nT ð6Þ

There is one more issue to consider. It might be the case
that the participants also have knowledge about the dis-

tractor items. For instance, they might know that one of

the items in the test display is in fact a distractor. If this

would be the case, they could bring this knowledge to

bear and increase their chances of correctly marking

the target items that they have to guess. When partici-

pants know that v items on the screen are distractor

items, this means that they will not pick from among
these. In effect, they are reducing the number of distrac-

tor items that could be picked by v. In this case, the ex-

pected proportion correctly marked target items is given

by

p ¼ mþ ðnT � mÞ2

ðnT � mþ nD � vÞ

 !,
nT ð7Þ

In the numerator of (7), m counts the amount of

information that participants have over the target items

in the test display. The other part of the numerator of
(7) provides an estimate for the expected number of cor-

rectly marked targets for the part of the display that the

participants know nothing about. This is the part of the

display where the participants are guessing. This is iden-

tical to the state of affairs described by (5), except that

now, the number of target items that are still present

in this part of the test display is (nT � m), rather than

nT and the total number of items to be taken into con-
sideration is (nT + nD � m � v), rather than (nT + nD).

Fig. 1 shows the proportions correct for the case

where nT = nD = 4. The curves for other values of nT
and nD look similar and can easily be drawn by using

(7). There are two interesting aspects about the curves.

The first is that the expected proportion correct for the

case where the participants only managed to track a sin-

gle target, and know nothing about the rest of the test
display (m = 1 and v = 0), is 0.57. Using (1), provided

by Scholl et al. (2001), the computed value would be

0.625. In general, for test displays where the number

of targets equals the number of distractors, (1) would

yield:



0

1

2

3

4

5

6

7

8

0.5 0.6 0.7 0.8 0.9 1
Proportion Correct in Mark All

N
um

be
r o

f I
te

m
s 

Tr
ac

ke
d 
(m
+v
)

(m+v)max

(m+v)min

Fig. 2. The minimum and maximum values of m + v as a function of

the proportion correct in the mark all method. Number of targets: 4;

number of distractors: 4.

J. Hulleman / Vision Research 45 (2005) 2298–2309 2301
p ¼ nþ 1

2n
ð1aÞ

whereas (7) would yield:

p ¼ n
ð2n� 1Þ ð7aÞ

whenever n > 1, the value from (7a) will be smaller than

the value from (1a). This is the difference between sam-

pling with and without replacement. It means that (1a)

overestimates the proportion correct where participants

have only succeeded in following a single target item.
This in turn leads to concluding that participants have

been reduced to following only a single item (e.g. van-

Marle & Scholl, 2003, who call this chance level),

whereas performance actually implies that the partici-

pants have been following more than a single item. This

would mean the difference between an inability to track

multiple items and a diminished ability to track multiple

items, with its accompanying theoretical implications.
The second interesting characteristic is that a certain

proportion correct in the mark all method can be de-

rived with a number of different combinations of m

and v. For instance, when participants get 0.67 correct

in the mark all method (for nT = nD = 4) this could sug-

gest that they know that 2 items in the test display are

targets, and are guessing the rest (m = 2, v = 0). How-

ever it could also suggest that they know that 1 item is
a target, and know as well that 1.6 of the remaining

items certainly are distractors (m = 1, v = 1.6).

It is important to realize that what is tested in a test

display is knowledge about the items it contains, that

is, knowledge about which of the items are the targets

that were flashed during the definition phase and knowl-

edge about which of the items are the distractors. What

is not tested is the way in which the participants man-
aged to hold on to that knowledge over the tracking

phase. That is something that will have to be provided

by a psychological theory like FINST (Pylyshyn,

1989), or the grouping account proposed by Yantis

(1992).

So, even if we were to accept that the m in (7) repre-

sents the number of target items successfully tracked, we

see that a certain proportion correct is consistent with a
continuum of values of m. By assuming that v = 0, it be-

comes possible to compute a unique value of m for all

observed proportions correct. However, assuming that

v = 1 would also yield a unique value of m for most pro-

portions correct (some proportions correct—e.g. 0.5—

are impossible when assuming v = 1).

In the same way that m could be considered the num-

ber of targets tracked, v could be considered the number
of distractors tracked. Accepting these interpretations of

m and v we are able to compute a minimum and a max-

imum of the total number of items tracked, by adding m

and v. A certain proportion correct is compatible with

any number of tracked items lying between these limits.
The upper limit is given by (see 1 in Appendix A)

ðmþ vÞmax ¼ 4nT p � 3

4

� �
þ nD ð8Þ

Because the most efficient way (i.e. the smallest num-

ber of items needed to achieve a particular proportion

correct) of tracking is to concentrate on the items of

the kind of which there are the fewest (see A.1), the low-

er limit depends on whether there are more target items
or more distractor items. In most MOT studies, nD P nT
so (using v = 0 in (7) and solving for m)

ðmþ vÞmin ¼
nTðnTp þ nDp � nTÞ
ðnTp þ nD � nTÞ

ð9Þ

However, as can be seen from Fig. 2 (for the case

where nT = nD = 4), these limits start to diverge quite

quickly, and even for reasonably modest levels of per-
formance the difference between minimum and maxi-

mum is more than 1.

The proportions correct in the probe one method are

underdetermined as well. This is the result of two fac-

tors. First, it is the result of the freedom that the partic-

ipants have when they are guessing. The strategy that

will yield the highest proportion correct (best guessing

strategy), depending on the number of targets and dis-
tractors tracked is

p ¼ 1

b
m
nT

þ 1� 1

b

� �
v
nD

þmax
1

b
1� m

nT

� �
; 1� 1

b

� �
1� v

nD

� �� �
ð10Þ

In (10), 1/b is the probability that a target item will be

probed (i.e. the probability that �target� is the correct
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Fig. 3. (A) Expected proportion correct as a function of the number of

tracked target (m) and distractor items (v) in the probe one method,

when the participants are using the best guessing strategy. (B)

Expected proportion correct as a function of the number of tracked

target (m) and distractor items (v) in the probe one method, when the

participants are using the pure guessing strategy.
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answer, the per category probability). Together with nT
and nD, 1/b determines the probability that a particular

item will be probed.

In the best guessing strategy, the participants will re-

spond �target� for the m items they know to be targets,

and they will respond �distractor� for the v items they
know to be distractors. Whenever an item is probed

of which the status is unknown, the participants will

base their answer on what they do know. If there are

more targets than distractors amongst the known items,

then there will be more distractors than targets amongst

the unknown items (for nT 6 nD). Participants will

therefore guess �distractor� for the unknown item, be-

cause it is more likely to come from that category. Sim-
ilarly, if there are more distractors amongst the known

items, this makes it more likely that the probed item is a

target. In this way, the participants maximize their

chances of getting it right. Depending on the values

of 1/b, nT and nD this can involve some complicated

mental arithmetic, because their combination can pro-

duce unequal weighting factors, preventing a simple

decision based on the difference between m and v.
Moreover, the participants will base their decision on

the perceived probabilities, rather than on the real

probabilities. This provides an extra source of errors,

because participants might use the best guessing strat-

egy, but use the incorrect probabilities. For instance,

they might assume that the per item probability (the

chance that a particular item will be probed) is identical

for targets and distractors, whereas in fact the per item
probabilities are different for targets and distractors, be-

cause it is actually the per category probabilities (the

chance that the correct answer is either �target� or �dis-
tractor�) that are identical.

Choosing 0.5 as the value for 1/b and giving nT and

nD equal values would eliminate this source of error.

With these values, using the per item probability and

using the per category probability to maximize the pro-
portion correct will yield identical results. In this case,

(10) reverts to

p ¼ m
2n

þ v
2n

þmax
1

2
� m
2n

;
1

2
� v
2n

� �
ð11Þ

When v = 0, (11) is the sophisticated guessing strategy

discussed in Yantis (1992).

A different strategy—the pure guessing strategy—

that participants could employ in the probe one method

is to answer randomly, whenever they do not know

whether the probed item is a target or a distractor.
For the case where nT equals nD and targets and distrac-

tors are probed equally often the expected proportion

correct for the pure guessing strategy is given by

p ¼ 1

2

m
n
þ 1

2

ðn� mÞ
n

� �
þ 1

2

v
n
þ 1

2

ðn� vÞ
n

� �
ð12Þ
This reverts to

p ¼ 1

2
þ m
4n

þ v
4n

ð13Þ

In Fig. 3, the curves for the best guessing (11) and the

pure guessing (13) strategies are shown for nT = nD = 4,

and several values of m and v. The curve for the best

guessing strategy shows that the value of the expected

proportion correct only depends on the maximum of m

and v. Because participants who use the best guessing

strategy will always guess that the probed item will be

of the category most likely to be left amongst the un-
known items, the expected proportion correct, when par-

ticipants have tracked a category to a certain level, will

be identical for the cases where they have not tracked
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Fig. 4. (A) Curves for fixed values of the number of tracked distractor

items (v) plotted for combinations of proportions correct in the mark

all method (pm) and in the probe one method with pure guessing

strategy (pp), assuming equal performance for both methods. (B)

Curves for fixed values of the number of tracked distractor items (v)

plotted for combinations of proportions correct in the mark allmethod

(pm) and in the probe one method with best guessing strategy (pp),

assuming equal performance for both methods. Note that the

assumption that participants are only tracking target items would

result in a combination of proportions correct that would fall

somewhere on the curve v = 0.
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the other category at all, and when they have tracked the

other category up to the same level. For instance, track-

ing 2 target items and 2 distractor items yields the same

expected proportion correct as tracking only 2 target

items. From an experimental perspective this is a very

unwelcome property of the best guessing strategy. As be-
fore for themark allmethod, it is impossible to arrive at a

unique combination of m and v from an observed pro-

portion correct. Moreover, the sum of m and v varies

for different combinations ofm and v that are compatible

with an observed proportion correct. When nT = nD, the

minimum value of the sum ofm and v for any proportion

correct under the best guessing strategy will be the value

ofm that is compatible with that proportion (14), and the
maximum will be twice this value ((15), see A.3):

ðmþ vÞmin ¼ nð2p � 1Þ ð14Þ

ðmþ vÞmax ¼ 2nð2p � 1Þ ð15Þ

For the higher proportions correct this means a large

difference between the minimum and the maximum

number of items tracked when participants use the best

guessing strategy.

The curves for the pure guessing strategy look rather

different. Instead of all terminating at a proportion cor-
rect of 1, the pure guessing strategy produces parallel

lines. Again, multiple combinations of m and v are com-

patible with an observed proportion correct. This time

however, the sum of m and v is a constant for all those

combinations (see A.4):

mþ v ¼ 2nð2p � 1Þ ð16Þ
This means that for the pure guessing strategy, we would

be able to pinpoint the total number of items that were

tracked. The particular values of m and v are unknown,

but we do know their sum. If the participants were to

use the pure guessing strategy, then we would be able

to estimate the total number of items tracked, be they

targets or distractors. It is important to realize that this

property of constant value for m and v only holds when
nT and nD are equal.

In order to further pin down the way the tracked

items are distributed over target and distractor items,

the mark all method and the probe one method could

be combined.

To ensure that the behavior of the participants during

the definition and tracking phase is identical for the two

methods, they should be randomly interspersed. A nec-
essary assumption is that performance of the partici-

pants in the test phase is equal for both methods.

Because the probe one method only requires a single re-

sponse, and the mark all method requires nT responses,

there might be more of a memory burden in the mark

all task. If this were to be the case, both tasks need to

be equated. This probably could be accomplished by

slightly increasing the mean duration of the tracking
phase for the probe one trials. It will also be necessary

to introduce some variability in the duration of the

tracking phase for both the mark all trials and probe

one trials. This variability would mask the increased

duration of the probe one trials, which otherwise might

be used as a cue by the participants.
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Assuming equal performance, Fig. 4A and B show

(for nT = nD = 4) the combinations of proportions cor-

rect for the mark all method and probe one method with

pure guessing strategy and best guessing strategy, respec-

tively. If the participants really would concentrate all

their resources on tracking the target items as assumed
by FINST (Pylyshyn, 1989), the observed proportions

correct should fall somewhere along the curves v = 0.

Whenever the observed proportions correct deviate sig-

nificantly from this curve we would have to conclude that

the participants do not only have knowledge about the

target items, but also about the distractor items in

the displays. It would be up to theorists to explain how

the participants could be able to accumulate this kind
of knowledge. If the participants are using the pure

guessing strategy, their performance should fall on or

below the line where the proportions correct in the mark

all and the probe one methods are identical (see A.5). If

the participants are using the best guessing strategy, their

performance should fall on or above this line (see A.6).

The combination of the probe one method with a pure

guessing strategy and the mark all method would nar-
row down the possible combinations of m and v to

two, rather than one (see A.7). For nT = nD = n, these

two possible combinations are (with pp and pm the pro-

portions correct from the probe one and the mark all

method, respectively):

m1 ¼ n 2pp � 1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpm � ppÞð1� ppÞ

q� �
ð17Þ

v1 ¼ n 2pp � 1� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpm � ppÞð1� ppÞ

q� �
ð18Þ

m2 ¼ n 2pp � 1� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpm � ppÞð1� ppÞ

q� �
ð19Þ

v2 ¼ n 2pp � 1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpm � ppÞð1� ppÞ

q� �
ð20Þ

Similarly, the combination of the probe one method

with a best guessing strategy and the mark all method

would also yield two possible combinations of m and v

(see A.8). For nT = nD = n, these two possible combina-

tions are (with pp and pm the proportions correct from

the probe one and the mark all method, respectively):

m1 ¼ nð2pp � 1Þ ð21Þ

v1 ¼
nðpmð2pp � 3Þ þ 1Þ
ð2pp � pm � 1Þ ð22Þ

m2 ¼
nðpmð2pp � 3Þ þ 1Þ
ð2pp � pm � 1Þ ð23Þ

v2 ¼ nð2pp � 1Þ ð24Þ

The reason for this remaining uncertainty is the inter-

changeability of tracking target items and distractor

items. Decreasing the number of tracked target items
and increasing the number of tracked distractor items

by the right amounts will yield a combination of propor-

tions correct that is indistinguishable from the original

number of tracked targets and distractors. However,

combinations of m and v are only interchangeable with

a single other combination of m and v. As can been seen
from (17) to (20) and from (21) to (24), in the case where

the number of targets is identical to the number of dis-

tractors, the values of m and v are interchangeable with

each other (see also A.9). That is, the value of m in the

first combination will be identical to the value of v in the

second and vice versa. So, were it to be the case that per-

formance in a certain experiment is compatible with

m = 2 and v = 0, the performance is also compatible
with m = 0 and v = 2. This means that the number of

tracked items of a single category is fixed, when the

number of targets equals the number of distractors.

However, the label of the category (either �targets� or
�distractors�) can still be chosen freely.
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Appendix A

A.1. For the mark all method, the maximum value of

m + v is given by 4nT(p � 3/4) + nD

From (7) we can find the following expression for m

m ¼ nTðnTp þ nDp � vp � nTÞ
ðnTp þ nD � v� nTÞ

ðA:1Þ

adding v gives an equation for the total number of items

tracked (m + v) as a function of p and v

mþ v ¼ nTðnTp þ nDp � vp � nTÞ
ðnTp þ nD � v� nTÞ

þ v ðA:2Þ

By taking the derivative for v and equating to 0 we can

find the maximum of this function

0¼�nTpðnTpþnD� v�nTÞþnTðnTpþnDp� vp�nTÞ
ðnTpþnD� v�nTÞ2

þ1

ðA:3Þ

The roots of (A.3) are nD and 2nT(p � 1) + nD. Substi-

tuting these values of v into (A.3) yields:

ðnT þ nDÞ ðA:4Þ

4nTðp � 3=4Þ þ nD ðA:5Þ

(A.5) gives the maximum of m + v still compatible with a

certain value of p in the mark all method.
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A.2. The minimum value of m + v in the mark all

method will be observed for v = 0, when nD P nT

Assume two sets of values for m and v lead to the

same expected percentage correct such that (m1 = m,

v1 = 0) and (m2 = m � a, v1 = v). If (m1,v1) is the mini-
mum for m + v, then m1 + v1 6 m2 + v2 for all allowable

values of a. Consequently, m 6 m � a + v and therefore

0 6 v � a.

First of all, an expression for v � a is needed. To this

end, the values for m1 and v1 and m2 and v2 are substi-

tuted into (7), yielding the following equality (a P 0, be-

cause otherwise v would become negative, a 6 m,

because otherwise m would become negative):

mþ ðnT � mÞ2

ðnT þ nD � mÞ ¼ ðm� aÞ þ ðnT � ðm� aÞÞ2

ðnT þ nD � ðm� aÞ � vÞ
0 P a P m ðA:6Þ

The relation between v and a is therefore given by

v ¼ �an2D
aðm� nT � nDÞ � ðnT � mÞ2

0 P a P m ðA:7Þ

Consequently, the function for v � a is

v� a ¼ �an2D
aðm� nT � nDÞ � ðnT � mÞ2

� a 0 P a P m

ðA:8Þ
(A.8) has two zero crossings:

a ¼ 0 and a ¼ ðn2D � ðnT � mÞ2Þ
ðnT þ nD � mÞ 0 P a P m ðA:9Þ

We now need to show that (i) (A.8) is always positive be-

tween these two zero crossings and (ii) that the allowable

values of a will always be between the two zero cross-
ings. First, we will start with (i).

(A.8) has two extreme values, a local minimum:

a ¼ �ðnT � mÞ ðA:10Þ
and a local maximum:

a ¼ ðnT � m� nDÞðnT � mÞ
ðm� nT � nDÞ

ðA:11Þ

because 0 P a P m, we only have to look at (A.11). We

now need to show that (A.11) is always positive. Substi-

tuting (A.11) into (A.8) yields:

�ðnT � m� nDÞðnT � mÞ
ðm� nT � nDÞ

n2D

ðnT � m� nDÞðnT � mÞ � ðnT � mÞ2

� ðnT � m� nDÞðnT � mÞ
ðm� nT � nDÞ

ðA:12Þ

after some rearranging, (A.12) results in

ðnT � m� nDÞðnD � nT þ mÞ
ðm� nT � nDÞ

ðA:13Þ
whenever nD P nT, (A.13) will be a positive value. Max-

imum (A.11) is always located between the two zero

crossings because

a ¼ nDðnT � mÞ � ðnT � mÞ2

ðnT þ nD � mÞ ðA:11; rearrangedÞ

will be larger than or equal to 0 whenever nD P nT and

it will be smaller than or equal to

a ¼ ðn2D � ðnT � mÞ2Þ
ðnT þ nD � mÞ ðA:9; repeatedÞ

Because (A.8) has a positive maximum between its zero

crossings, it is positive between its zero crossings.

We will now show that the value of a in (A.8) will al-

ways be between its two zero-crossings. By definition,

0 P a P m, so the only thing that we need to show is
that a can not become larger than the second zero

crossing:

a ¼ ðn2D � ðnT � mÞ2Þ
ðnT þ nD � mÞ ðA:9; repeatedÞ

(A.9) will always be equal to or larger than m, the max-

imally allowable value of a, when nD P nT:

ðn2D � ðnT � mÞ2Þ
ðnT þ nD � mÞ P m ðA:14Þ

rearranging yields:

ðn2D � n2T þ mnTÞ
ðnT þ nD � mÞ P

mnD
ðnT þ nD � mÞ ðA:15Þ

Substituting nD = nT + i in (A.15) gives

ð2nTiþ i2 þ mnTÞ
ðnT þ nD � mÞ P

mnT þ mi
ðnT þ nD � mÞ ðA:16Þ

when i = 0 this is an equality, whenever i is larger than 0,
the left hand side will be larger than the right hand side.

There is one special case that has to be taken care of:

(A.8) is undefined for:

a ¼ ðnT � mÞ2

ðm� nT � nDÞ
ðA:17Þ

(A.17) will always be smaller than or equal to zero. Be-

cause 0 P a P m, only the case where a = 0 is impor-

tant. In (A.17) a will only be 0 when nT = m. If we

substitute this value for m into (A.6), the two solutions

are

a ¼ 0 and v ¼ nD ðA:18Þ
When a = 0, only targets are tracked. So, we only have

to look at v = nD. This equality shows that, when

nT = m, the only way to achieve the same percentage

correct is to track nD distractors. Because nD P nT,

m + v will always be equal or larger when nD distractors

are tracked than when only nT targets are tracked.
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A.3. For the best guessing strategy, with a value of 0.5

for 1/b, and nT = nD = n the maximum of m + v will be

twice the minimal value of m + v compatible with a

certain percentage

p ¼ m
2n

þ v
2n

þmax
1

2
� m
2n

;
1

2
� v
2n

� �
ð11; repeatedÞ

if m P v

p ¼ 1

2

m
n
þ 1

� �
ðA:19Þ

Thus, p does not depend on v, due to the application of

the max-rule. The value of m, compatible with a value p
will be

m ¼ nð2p � 1Þ ðA:20Þ
Because the minimum of m + v will occur for v = 0,

(A.20) also gives the minimum for m + v:

ðmþ vÞmin ¼ nð2p � 1Þ ðA:21Þ
The maximum of the sum of m + v still consistent with a

certain value of p will be at the point where m = m and

v = m. Applying the max-rule in this case will still yield

(A.20). Because (A.20) gives the value of m, and because
v = m, the expression for (m + v)max becomes:

ðmþ vÞmax ¼ nð2p � 1Þ þ nð2p � 1Þ ¼ 2nð2p � 1Þ
ðA:22Þ

if m 6 v

p ¼ 1

2

v
n
þ 1

� �
ðA:23Þ

Here, p does not depend on m. Following the same logic

as above, the expression for (m + v)min becomes:

ðmþ vÞmin ¼ nð2p � 1Þ ðA:24Þ

The maximum of the sum of m + v still consistent with a

certain value of p will be at the point where m = v and

v = v. Applying the max-rule in this case will still yield

(A.23). Because (A.23) gives the value of v, and because
m = v, the expression for (m + v)max becomes:

ðmþ vÞmax ¼ nð2p � 1Þ þ nð2p � 1Þ ¼ 2nð2p � 1Þ
ðA:25Þ

So, the maximum of the sum of m + v is two times the
minimum in the best guessing strategy, when nT =

nD = n.

A.4. For the pure guessing strategy, with nT = nD = n and

1/b = 0.5 m + v will be constant for an observed

proportion correct

The observed proportion correct:

p ¼ 1

2
þ m
4n

þ v
4n

ð13; repeatedÞ
rearranging yields:

m ¼ 4n p � 1

2
� v
4n

� �
ðA:26Þ

the expression for m + v will therefore be

mþ v ¼ 4n p � 1

2
� v
4n

� �
þ v ðA:27Þ

this simplifies to

mþ v ¼ 2nð2p � 1Þ ð16; repeatedÞ
Clearly, m + v only depends on the value of p, making

the sum of m and v independent of the values of m

and v when the participants are applying the pure guess-

ing strategy.

This property does not hold for the case where nT and

nD are unequal. Here (16) becomes:

mþ v ¼ 2nTð2p � 1Þ � v
nT
nD

� 1

� �
: ðA:28Þ
A.5. The proportion correct of mark all (pm) will

always be larger or equal to the proportion correct of

probe one (pp), when the participants use the pure

guessing strategy during probe trials and nT = nD = n

Assuming that m and v are constant across mark all

and probe one trials, from (7) and (13), the difference be-

tween pp and pm will be

pp � pm ¼ 1

2
þ m
4n

þ v
4n

� mþ ðn� mÞ2

ð2n� m� vÞ

 !,
n

ðA:29Þ
rearranging yields:

pp � pm ¼ �ðm� vÞ2

4nð2n� m� vÞ ðA:30Þ

The expression in (A.30) will always be negative, except

when m equals v and pp � pm will be 0. (A.30) is not de-

fined for m = v = n. However this is the case where the

expected proportions correct are 1 for both the mark

all trials and the probe one trials. Hence the difference

will be 0 here as well.

A.6. The proportion correct of mark all (pm) will

always be smaller than or equal to the proportion

correct of probe one (pp), when the participants use

the best guessing strategy during probe trials and

1/b = 0.5 and nT = nD = n

There are two cases to consider: v P m and v < m.
For v P m:

Assuming that m and v are constant across mark all

and probe one trials, from (7) and (A.19), the difference

between pp and pm will be
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pp � pm ¼ v
2n

þ 1

2
� mþ ðn� mÞ2

ð2n� m� vÞ

 !,
n ðA:31Þ

Rearranging yields:

pp � pm ¼ ðn� vÞðv� mÞ
2nð2n� m� vÞ ðA:32Þ

This result will always be positive or zero, because n will

always be larger than or equal to v, v is larger than or
equal to m, and 2n will always be larger than or equal

to (m + v). For the special case where 2n equals

(m + v), (A.32) is undefined. However, this is the case

where the expected proportion for both pp and pm is 1.

For v < m, from (7) and (A.23):

pp � pm ¼ m
2n

þ 1

2
� mþ ðn� mÞ2

ð2n� m� vÞ

 !,
n ðA:33Þ

Rearranging yields:

pp � pm ¼ ðn� mÞ
n

1

2
� 1

1þ ðn�vÞ
ðn�mÞ

 !
ðA:34Þ

Because v < m and n P m, this result will always be po-

sitive. For the case where m = n, (A.34) is not defined.

However, this is the case where the expected proportion

correct is 1 for both pp and pm.

A.7. The combination of the percentage correct from a

mark all experiment (pm) and a probe one experiment

(pp) with pure guessing yields two estimates for m and v,

when nD = nT = n, under the assumption that m and v are

constant across the two types of experiment

The expected proportion correct in a probe one exper-
iment is given by

pp ¼
1

2
þ m
4n

þ v
4n

ð13; repeatedÞ
2 4nT

m1 ¼
�ðnDð4pp � 3þ pmÞ þ ðnTð1� pmÞÞÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnDð4pp � 3þ pmÞ þ nTð1� pmÞÞ

2 þ 4nDðnTpm þ 3nDpm � 4nDpmpp � nTÞ
q

�2nD
nT

m2 ¼
�ðnDð4pp � 3þ pmÞ þ ðnTð1� pmÞÞÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnDð4pp � 3þ pmÞ þ nTð1� pmÞÞ

2 þ 4nDðnTpm þ 3nDpm � 4nDpmpp � nTÞ
q

�2nD
nT
The expected proportion correct in a mark all experi-

ment is given by

pm ¼ mþ ðn� mÞ2

ð2n� m� vÞ

 !,
n ðA:35Þ

((A.35) is (7) repeated, with nD = nT = n).
Substitution for v from (13) in (A.32) yields:

pm ¼ mþ ðn� mÞ2

ð2n� m� ð4npp � 2n� mÞÞ

 !,
n ðA:36Þ

Solving (A.36) for m and substituting this value in (13)

results in the following two combinations of m and v:

m1 ¼ n 2pp � 1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpm � ppÞð1� ppÞ

q� �
ð17; repeatedÞ

v1 ¼ n 2pp � 1� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpm � ppÞð1� ppÞ

q� �
ð18; repeatedÞ

m2 ¼ n 2pp � 1� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpm � ppÞð1� ppÞ

q� �
ð19; repeatedÞ

v2 ¼ n 2pp � 1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpm � ppÞð1� ppÞ

q� �
ð20; repeatedÞ

As expected, the value of m computed with (17) is iden-

tical to the value of v computed with (20), as are the val-

ues of v and m computed with (18) and (19), respectively.

There is only a single solution when pm and pp are
identical, and there are no solutions when pp is larger

than pm. This is consistent with the previously observed

property that the value of pm is always equal to or larger

than pp, when the participants are using a pure guessing

strategy.

It is also possible to give more general versions of (17)

and (19) because it is not necessary to use equal values

for nT and nD when the guesses are not made by the par-
ticipants, because the possibility of a misunderstanding

of the per item probabilities are irrelevant. They are

however, quite unwieldy:
The corresponding values v1 and v2 can be found by

entering the values of m1 and m2 into:
v ¼ 4nD pp �
1� m

� �
ðA:37Þ
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A.8. The combination of the percentage correct from a

mark all experiment (pm) and a probe one experiment

(pp) with best guessing yields two estimates for m and v,

when 1/b = 0.5 and nD = nT = n, under the assumption

that m and v are constant across the two types of

experiment

The expected proportion correct in a mark all exper-

iment is given by

pm ¼ mþ ðn� mÞ2

ð2n� m� vÞ

 !,
n ðA:35; repeatedÞ

For the expected proportion correct in the probe one

experiment with best guessing strategy, there are two

cases that need to be considered: mP v and m < v.

For m P v the expected proportion correct is

pp ¼
1

2

m
n
þ 1

� �
ðA:19; repeatedÞ

(A.19) yields the following expression for m:

m ¼ nð2pp � 1Þ ð21; repeatedÞ

Substituting (21) into (A.35) and solving for v yields:

v ¼
nðpmð2pp � 3Þ þ 1Þ
ð2pp � pm � 1Þ ð22; repeatedÞ

(22) is not defined for pm = 2pp � 1. This is the case
where m = n:

Substitution of (A.35) and (A.19) into pm = 2pp � 1

yields

mþ ðn� mÞ2

ð2n� m� vÞ

 !,
n ¼ m

n
ðA:38Þ

rearranging terms we get

ðn� mÞ2 ¼ 0 ðA:39Þ
The only solution for (A.39) is m = n. This is the case

where we would expect pm = pp = 1. When m = n, v

can adopt any value between 0 and n.

When m < v:

pp ¼
1

2

v
n
þ 1

� �
ðA:23; repeatedÞ

(A.23) yields the following expression for v:

v ¼ nð2pp � 1Þ ð24; repeatedÞ

Substituting (24) into (A.35) and solving for m yields:

m ¼
nðpmð2pp � 3Þ þ 1Þ
ð2pp � pm � 1Þ ð23; repeatedÞ

(23) is not defined for pm = 2pp � 1. This is the case

where v = n:

Substitution of (A.35) and (A.23) into pm = 2pp � 1

mþ ðn� mÞ2

ð2n� m� vÞ

 !,
n ¼ v

n
ðA:40Þ
rearranging terms we get

ðv� nÞ2 ¼ 0 ðA:41Þ
The only solution for (A.41) is v = n. This is the case

where we would expect pm = pp = 1. When v = n, m

can adopt any value between 0 and n.

Because we do not know whether m is larger or smal-

ler than v for a given participant, each combination of pp
and pm has two solutions, given by (21) and (22) and by

(23) and (24).
If we allow different values for nT and nD (but still

1/b = 0), the formulas become more unwieldy again:

m P v:

m1 ¼ pp�
1

2

� �
ðnDþnTÞ

v1 ¼
n2D pp� 1

2

� �
þn2T

3
2
� 3

2
pm�ppþpppm

� �
þnTnD pppm� 3

2
pm

� �
nD pp� 1

2

� �
þnT pp�pm� 1

2

� �
m 6 v:

m2 ¼
n2T pppm � 3

2
pm þ 1

� �
þ nTnD pppm � 3

2
pm

� �
nD pp � 3

2

� �
þ nT pp � pm þ 1

2

� �
v2 ¼ pp �

1

2

� �
ðnD þ nTÞ
A.9. In mark all trials, with nT = nD = n, the number of

target items tracked m and the number of distractor items

tracked v are interchangeable

The expected proportion correct as a function of m

and v:

p ¼ mþ ðnT � mÞ2

ðnT � mþ nD � vÞ

 !,
nT ð7; repeatedÞ

Rearranging (7) yields m as a function of p and v:

m ¼ nTðnTp þ nDp � vp � nTÞ
ðnTp þ nD � v� nTÞ

ðA:42Þ

Another rearrangement of (7) gives v as a function of p

and m:

v ¼ ðnT � mþ nDÞ �
ðnT � mÞ2

ðnTp � mÞ ðA:43Þ

If we assume that v takes the arbitrary value a and sub-

stitute this in (A.42):

m ¼ nTðnTp þ nDp � ap � nTÞ
ðnTp þ nD � a� nTÞ

ðA:44Þ

in the special case where nT = nD we get:

m ¼ nð2np � ap � nÞ
ðnp � aÞ ðA:45Þ
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If we assume that m takes the same arbitrary value a and

substitute this in (A.43):

v ¼ ðnT � aþ nDÞ �
ðnT � aÞ2

ðnTp � aÞ ðA:46Þ

after some rearranging we get

v ¼ nTðnTp � ap þ nDp � nTÞ þ aðnT � nDÞ
ðnTp � aÞ ðA:47Þ

in the special case where nT = nD this yields:

v ¼ nð2np � ap � nÞ
ðnp � aÞ ðA:48Þ

So, interchanging the values of m and v will result in ex-

actly the same expected proportions correct, if, and only

if, nT = nD.
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