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Summary

Objective: To see how initial differences in subchondral bone phenotype influence the development of cartilage damage and changes in
subchondral bone architecture in an osteoarthritis (OA)-induced mouse model.

Method: Intra-articular collagenase injections (right knee joint) and saline controls (left knee joint) were applied in the knees of two mouse
strains known to have either a low or a high bone mass phenotype: the low bone mass C57BI/6 mice with a thin subchondral bone plate
and high bone mass C3H/HeJ mice with a thick subchondral bone plate. The ages of the mice were 16 and 30 weeks, with n= 8 per group.
The collagenase injection induced an osteoarthritic phenotype that was evaluated 4 weeks later in the tibia using histological analyses and
micro-computed tomography (micro-CT).

Results: Both strains developed cartilage damage in the collagenase-injected right knee joints to a comparable extent, however, the spatial
distribution of cartilage damage differed significantly: C57BI/6 mice had most damage at the postero-lateral side, whereas in C3H/HeJ mice
the postero-medial region was the most affected. Spontaneous cartilage damage was found in the saline-injected left control knees of C57BI/6
mice, but in C3H/HeJ mice spontaneous cartilage damage was virtually absent. In both strains the subchondral bone plate of collagenase-
injected joints became thinner, independent of the site of cartlage damage. TRAP-positive osteoclasts were observed underneath the
subchondral bone plate, in line with the observed decreased thickness. No link was found between subchondral bone plate thickness and
cartilage damage in the collagenase-injected joints. The subchondral trabecular architecture only changed in the high bone mass C3H/
Hed mice, with thinning of trabeculae and increased trabecular spacing.

Conclusion: Thinning of the subchondral bone plate was found as a common observation 4 weeks after OA had been induced in two strains of
mice having either a high or low bone phenotype, but no relation was found with the amount of cartilage damage. In addition, this study shows
that different strains of mice can react differently to instability-induced OA with respect to the spatial arrangement of cartilage damage and
changes in subchondral trabecular structure.

© 2007 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction initiation and progression?. The proposed idea was that stiff-
. . . . ness variations in the subchondral bone plate would lead to
Osteoarthritis (OA) is one among the leading causes of dis- the initiation of cartilage fibrillation. During the disease pro-
ability in the elderly and forms a major burden to health cess the bone plate would then become stiffer, causing a re-
care. About 30% of persons aged 65 and over are affected duced shock-absorbing capacity and leading to progression
with knee or hip OA'. A disease modifying treatment is not of these lesions. However, more recent work shows that the
yet available and treatment is focussed on reduction of stiffness of subchondral bone in OA is actually decreased,
symptoms. Therefore, more basal knowledge about its pos- because of an increased porosity and a reduced mineral
sible cause(s) is needed. content®7.
Located directly underneath the cartilage, the subchon- Apart from changes in composition, the amount of sub-
dral bone plate was initially thought to play a role in OA chondral bone also changes and subchondral sclerosis is

universally recognized as being a typical OA characteristic.
This is also seen in animals, for instance in macaques who
develop OA spontaneously®. Specifically, thickening of the
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A study by Bergink et al. even suggests that a high systemic
bone mineral density (BMD) before disease initiation is as-
%o:jgted with increased incidence and progression of knee

From these studies it is clear that changes in the sub-
chondral bone play a role in OA, and that bone phenotype
may influence disease onset and/or progression. However,
the relation between subchondral bone architecture, sub-
chondral bone plate thickness and the resulting pattern of
cartilage damage during OA development is not clear.
The aim of the current study was therefore to study these
issues in a murine model of collagenase-induced OA'®'°,
Specifically, to investigate the relation between subchondral
bone phenotype and development of OA, we compared two
mouse strains: the C57BI/6 strain that has a low bone mass
and a thin subchondral bone plate and the C3H/HedJ strain
that has a high bone mass as well as a thicker bone plate,
at two different ages.

Methods
ANIMALS

Following the approval of the local animal ethics committee, male C3H/
HeJCrIBR mice (Charles River, Sulzfeld, Germany) and C57BI/6 mice (Har-
lan, Zeist, The Netherlands) aged 16 and 30 weeks were used with eight
mice per group. The animals were maintained on a 12:12 h light:dark cycle,
housed in individually ventilated cages with three brother littermates per
cage and were fed ad libitum.

For induction of OA, we used the collagenase OA model as described
previously'®'. This model utilizes bacterial collagenase injected into the
knee joint space, thereby inducing damage to joint structures containing
type | collagen such as tendons, ligaments and menisci, and causes an in-
crease in knee joint laxity resulting in cartilage damage®*2'. The enzyme
has minimal direct effect on articular cartilage, which contains type Il colla-
gen that is resistant to digestion by the bacterial enzyme?®2. Test-injections
in cadavric mice using the dye toluidine blue confirmed the injected fluid to
be present in the knee joint space only. At 16 or 30 weeks of age, the
animals were anesthetized with a 5% isoflurane/N,O/O, mixture. A small in-
cision was made in the skin at the anterior side of the knee joint such that the
patellar tendon was exposed and an accurate injection could be applied. Six
microlitres containing 10 U of highly purified bacterial type VII collagenase
(Sigma, St Louis, MO) was injected into the right knee intra-articular space,
the left knee was injected with 6 ul saline.

As an analgesic the animals received one subcutaneous injection of
buprenorphine (Temgesic, 0.01 mg/kg body weight) directly after the collage-
nase injection. After 4 weeks the mice were euthanized and their knee joints
were excised and fixed in 4% formalin for 2 days.

MICRO-COMPUTED TOMOGRAPHIC (MICRO-CT) SCANNING
AND QUANTIFICATION OF BONE MORPHOMETRIC
PARAMETERS

The knee joints were scanned with a voxel size of 9 um using the Skyscan
1072 micro-CT scanner (Skyscan, Aartselaar, Belgium). In order to distin-
guish calcified tissue from noncalcified tissue, the reconstructed greyscale
images were segmented by an automated algotithm using local thresholds®®.
The epiphysis of the tibia was chosen as the region of interest to study sub-
chondral bone. The outline of the epiphysis was manually selected using 3D
data analysis software (CTAnalyzer, Skyscan) and care was taken not to
select outgrowing osteophytes (Fig. 1(a)).

Also, 1.0 mm of the proximal metaphyseal bone directly underneath the
growth plate was selected, as well as 0.3 mm of diaphyseal cortical bone
(Fig. 1(b)).

The subchondral bone plate and trabeculae of the epiphysis, and cortex
and trabeculae of the metaphysis were separated using in-house developed
automated software. Bone morphometric parameters of the thus obtained
bone structures were determined using the freely available software package
3D-Calculator (http://www2.eur.nl/fgg/orthopaedics/). The following 3D mor-
phometric parameters were calculated for the trabecular compartments:
bone volume fraction (Trab BV/TV), which is the ratio of trabecular bone vol-
ume (Trab BV) over endocortical total volume (TV), trabecular thickness
(Tb.Th.), trabecular spacing (Tb.Sp.), trabecular number (Tb.N.), connectivity
density (CD), which calculates the number of trabecular connections per unit
volume®* and structure model index (SMI), indicating whether trabeculae
have a rod-like or plate-like shape?®. The thickness of the medial and lateral
subchondral bone plate, as well as the diaphyseal cortex, was measured

Collagenase (right knee joint):

a Saline (left knee joint):

Epiphysis

Trabeculae
Metaphysis % s =
Diaphysis Cortex

Fig. 1. Selection procedure of the epiphysis, metaphysis and diaph-
ysis of the tibia for 3D morphometric analysis: (a) first, the epiphysis
(left, grey) was manually selected as representative of subchondral
bone, outgrowing osteophytes were excluded (right, arrow); (b)
epiphyseal and metaphyseal trabeculae were separated from the
subchondral bone plate and cortex, respectively. Each of the thus
obtained bone regions was analyzed separately.

using the same algorithm as used for determining Tb.Th. A subset (0.5
mm medio-lateral width, 1.0 mm ventro-dorsal length) of the load-bearing
region at the medial and lateral sides of the tibial plateau was taken as region
of interest.

HISTOLOGICAL ANALYSIS

Following the scanning procedure, knee joints were embedded in methyl
methacrylate and frontal sections were made to verify the presence of OA
characteristics such as cartilage damage and osteophytes. Per knee joint
8—10 undecalcified sections of 6 um thickness were obtained, with 100 um
interspacing. Of the obtained sections six were analyzed per joint, three in
the anterior region and three in the posterior region in the load-bearing region
of the joint. Goldner staining was performed which gave excellent discrimina-
tion between noncalcified cartilage, calcified cartilage and subchondral bone.
Thicknesses of noncalcified and calcified cartilages were measured in one
anterior and one posterior section using Bioquant Osteo v7.20 (Bioquant,
Nashville, TN). This programme measures the thickness every 5 um over
a distance of 400 um, producing roughly 80 measurements, which were
then averaged.

Cartilage damage was quantified in the antero-medial, postero-medial,
antero-lateral and postero-lateral regions of the tibial plateau using the
semi-quantitative grading and staging system devised by the OARSI Work-
ing Group®®. In this system the grade—score, reflecting the sevetity of the
damage, ranges from 0 (no cartilage damage) to 4 (all cartilage lost, com-
plete disorganization and deformation of the joint). A separately assigned
stage score, reflecting the extent of damage, ranges from 0 (whole cartilage
surface intact) to 4 (>50% of cartilage surface affected). Grade and stage
scores are then multiplied, giving a maximum cartilage damage score of
24 for each of the four analyzed regions of the tibial plateau. We summed
the damage scores of the four regions to reflect the total cartilage degener-
ation in the tibia, with a maximum obtainable summed damage score of 96.

Osteophyte presence was scored as follows: each of the six sections
analyzed for cartilage damage was also analyzed for the presence of osteo-
phytes at the medial and lateral sides of the tibia. In case an osteophyte was
observed in any of these six sections, the knee joint was considered osteo-
phyte-bearing. The percentage of osteophyte-positive knee joints was calcu-
lated for each group.

TRAP stainings were performed to visualize osteoclastic activity. Bone
sections were deacrylated and stained using 1.1 mM Naphthol AS-BI phos-
phate (Sigma, St Louis, MO) as substrate, 5.2 mM pararosanilin as coupler,
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and 46.5 mM sodium L-tartrate as an inhibitor according to Scheven et al.?’.
Nuclei were stained with methylene green.

DATA ANALYSIS

Differences between left and right knee joints within strains were analyzed
with the Wilcoxon matched paired test. The Mann—Whitney U test was
applied for differences between age groups, both within strains and between
strains. In all cases, P < 0.05 was considered statistically significant. In all
graphs, the error bars depict standard error of the mean (sem).

Results
EFFECT OF THE OPERATION

Twelve hours after the operation, which corresponds to
the therapeutic effective time span of the used analgesic,
the animals were observed closely. Cage activity was nor-
mal apart from slight limping of the right leg and no further
analgesia was applied. After a few days normal walking pat-
terns returned. Although weight loss (2—6% of the original
body weight) was measured in the first week after the oper-
ation, all animals had normal weight gain thereafter.

BASAL TIBIAL BONE MORPHOMETRY

All basal tibial bone morphometric parameters were de-
rived from the control knee joints 4 weeks after the saline in-
jection. As reported previously, C3H/HeJ mice had a thicker
metaphyseal and diaphyseal cortex than C57BI/6 mice con-
firming the high bone mass phenotype of the C3H/HeJ mice
(Table I, metaphysis C3H/Hed approx. 155 vs 130 um C57BI/
6, diaphysis 260 vs 190 pm). In accordance, the subchondral
bone plate of the epiphysis was significantly thicker in C3H/
Hed than in C57BI/6 mice, both at the medial (C3H/HeJ: ap-
prox. 180 um, C57BI/6: 150 um) and at the lateral side (C3H/
Hed: approx. 150 um, C57BI/6: 110 um). In both mouse

Table |

strains and at both ages the medial side of the subchondral
bone plate was thicker than the lateral side. The morphomet-
ric parameters between the ages of 16 and 30 weeks con-
firmed aging effects in trabecular bone architecture in
C57BI/6 mice only. At 16 weeks of age the amount of trabec-
ularbone (Trab BV/TV) in either epiphysis (30%) or metaphy-
sis (15%) was not different between strains, but at 30 weeks
C57BI/6 mice had lost trabecular bone at both anatomical
sites. This was paralleled by a decrease in trabecular con-
nectivity and an increase in trabecular spacing, although
Tb.Th. remained the same. In contrast, C3H/HeJ mice did
not show a change in trabecular bone architecture between
16 and 30 weeks, neither in the epiphysis nor in the metaphy-
sis. However, in this strain the lateral side of the subchondral
bone plate became significantly thinner with age from 16
weeks (168 um) to 30 weeks (149 um) whereas the thick-
ness at the medial side remained unchanged. C57BI/6
mice did not show such a decrease in bone plate thickness.
Finally, the thickness of both the metaphyseal and diaphy-
seal cortices did not change due to aging in either strain.
Table | summarizes the examined bone morphometric
parameters.

HISTOLOGICAL CHANGES

Quantification of total cartilage thickness (i.e., calcified
plus noncalcified) on histology revealed no significant differ-
ence between the two strains at both ages, neither at the
medial nor at the lateral side of the tibial plateau (data not
shown). However, a difference in the ratio between calcified
and noncalcified cartilage thicknesses was noted: C57BI/6
mice had significantly thicker calcified cartilage, and signif-
icantly thinner noncalcified cartilage compared to C3H/HeJ
mice, primarily at the medial side (Fig. 2). In collagenase-
injected joints, no significant change was observed in the
thickness of calcified cartilage compared to saline-injected

Basal tibial bone morphometry in male C57Bl/6 and C3H/HeJ mice. All parameters were derived from the saline-injected left knee joints, four

weeks after injection. Values shown are averages + sem. Trab BV/TV =

trabecular bone volume fraction, Tb.Th. = trabecular thickness,

Tb.Sp. = trabecular spacing, CD = connectivity density, Ct.Th. = cortical thickness, Sb.Pl.Th. = subchondral plate thickness, med = medial,
lat= lateral, #P < 0.05 age within strain, &P < 0.05 med vs lat within strain, ns = not significant

Location Parameter Age C57BI/6 C3H/Hed Strain difference
Epiphysis Trab BV/TV (%) 16wks (+4) 30.3+0.6 30.7+1.1 ns
30wks (+4) 27.1 £ 0.5# 30.5+0.9 P<0.01
Tb.Th. (um) 16wks (+4) 66.2 +0.6 721 +1.8 P<0.01
30wks (+4) 68.3 + 0.6# 744+£12 P<0.01
Tb.Sp. (um) 16wks (+4) 195.7 + 3.6 205.9+5.2 ns
30wks (+4) 207.8 £ 3.1# 210.1+£5.2 ns
CD 16wks (+4) 189.6 +16.3 99.8+£21.0 P<0.01
30wks (+4) 88.6 + 6.8# 104.7 £ 18.2 ns
Sb.PL.Th., med (um) 16wks (+4) 144.0+5.3 188.8+6.5 P<0.01
30wks (+4) 157.8£6.3 179.2+ 4.6 P<0.05
Sb.PL.Th.,, lat (um) 16wks (+4) 113.6 +4.1& 168.6 + 5.5& P<0.01
30wks (+4) 112.6 + 3.0& 150.9 + 5.1&# P<0.01
Metaphysis Trab BV/TV (%) 16wks (+4) 14.0+0.7 152+1.6 ns
30wks (+4) 10.0 + 0.4# 148+0.8 P<0.01
Tb.Th. (um) 16wks (+4) 58.3+1.2 63.7+1.3 P <0.05
30wks (+4) 59.9+0.8 62.9+1.3 ns
Tb.Sp. (um) 16wks (+4) 264.9+8.6 329.3+35.2 ns
30wks (+4) 361.0 +7.9# 315.3+25.9 ns
CD 16wks (+4) 45.5+9.1 59.3+16.7 ns
30wks (+4) 16.2 + 4.44# 40.0+5.2 P<0.01
Ct.Th. (um) 16wks (+4) 1256.8+2.9 157.8+ 3.2 P<0.01
30wks (+4) 1332+15 154.1+35 P<0.01
Diaphysis Ct.Th. (um) 16wks (+4) 192.53 +2.4 263.19+5.9 P<0.01
30wks (+4) 188.36 £ 4.3 261.69+3.2 P<0.01
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Fig. 2. Thickness of the noncalcified and calcified layers of the articular cartilage at the medial and lateral side in saline-injected and collage-

nase-injected knee joints. Each bar represents the average (+sem) of two measurements, one made in anterior region of the knee, and one in

the posterior region. Please note the decreased values and increased standard error of the collagenase-injected joints of C3H/HeJ mice at the

medial side. In these mice it was sometimes not possible to obtain a thickness value in the postero-medial region due to the severe amount of

cartilage damage, in these cases ‘0’ was used as value. Significant differences between saline-injected joints and collagenase-injected joints
within strains are indicated by *, between strains of the same age by $. NCC = noncalcified cartilage, CC = calcified cartilage.

joints, whereas the noncalcified layer became thicker at the
lateral side, in both strains and at both ages (Fig. 2). At the
medial side, no changes were observed.

All C57BI/6 mice developed spontaneous cartilage dam-
age in the saline-injected joints, with a summed damage
score of approx. 10 out of a maximum of 96 at 16 weeks
of age (Fig. 3(a), top) that increased to approx. 15 at 30
weeks of age. In contrast, in C3H/HedJ mice spontaneous
cartilage damage was virtually absent in all but one mouse
at 30 weeks of age. We tested the possibility that the sub-
chondral bone plate thickness of the saline-injected joints
was related to the amount of spontaneous cartilage dam-
age, but no relation was found.

In collagenase-injected joints the summed cartilage dam-
age of the whole tibial plateau did not differ significantly
between the two strains at either 16 or 30 weeks of age.
However, the damage scores of the four separate examined
anatomical regions (antero-medial, antero-lateral, postero-
medial and postero-lateral) revealed that C57BI/6 mice had
most damage at the lateral side, whereas in C3H/Hed mice
the medial side was the most degenerated (Fig. 3(a), bot-
tom). Besides these differences in spatial arrangement, we
also observed a difference in the type of cartilage damage:
in C57BI/6 mice the top layer of the noncalcified cartilage
became fibrillated and was loosened in some sections,
whereas in C3H/HeJ mice vertical clefts were observed
more often. Specifically for C3H/Hed mice, the postero-
medial region showed severe cartilage degeneration with
damage scores of 20 or higher out of a maximum of 24. In
this region the subchondral bone plate was worn away and
the trabecular bone became exposed (Fig. 3(b)). This was
not seen in any of the C57BI/6 mice.

In addition to cartilage damage, osteophytes were ob-
served in all collagenase-injected joints of both mouse strains
at both ages. Specifically, at the medial side of the tibia the
incidence was 100%. At the lateral side of the tibia the inci-
dence was the same, except for the 30-week-old C57BI/6

mice in which only five out of eight animals (62.5%) were
osteophyte-bearing. In saline-injected joints osteophytes
were observed as well, although its sizes were significantly
smaller compared to the collagenase-injected joints (data
not shown). At 16 weeks of age, these small osteophytes
were seen in two out of eight (25%) C57BI/6 mice atthe medial
tibia, whereas C3H/HeJ mice of the same age did not have
any osteophytes. At the lateral tibia no osteophytes were
seen in both strains. At 30 weeks of age, the incidence of small
osteophytes became larger with five out of eight (62.5%)
C57BI/6 mice and eight out of eight (100%) C3H/HeJ mice
positive at the medial tibia, and one out of eight C57BI/6
(12.5%) vs two out of eight C3H/HeJ (25%) at the lateral tibia.
The mineralized parts of these osteophytes became visible on
the micro-CT images as bony outgrowths (see Fig. 1(a), right).

BONE CHANGES IN THE PROXIMAL TIBIA DUE TO
INTRA-ARTICULAR COLLAGENASE INJECTION

The subchondral bone plate was significantly thinner in
collagenase-injected joints compared to the contralateral
saline-injected joints in both strains and at both ages
(Fig. 4(a)). The lateral side of the bone plate seemed to
be the most affected with a thickness reduction of 12%
(16 weeks old) to 18% (30 weeks old) in C57BI/6 and 20%
(16 weeks old) to 24% (30 weeks old) in C3H/HeJ mice.
In addition, in 30-week-old C3H/HeJ mice the medial side
of the bone plate also became significantly thinner.

Separate analysis at the antero-medial, antero-lateral,
postero-medial and postero-lateral regions as done for the
assessment of cartilage damage revealed the bone plate
thinning to be present throughout the tibial plateau (data
not shown). Histological analysis showed TRAP-positive
osteoclasts directly underneath the bone plate up to the
noncalcified cartilage in collagenase-injected knee joints
(Fig. 5). In epiphyses of saline-injected joints osteoclasts
were only scarcely observed.
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Fig. 3. Cartilage damage in saline-injected knee joints and collagenase-injected knee joints; (a) top: summed cartilage damage score of the
antero-lateral, antero-medial, postero-lateral and postero-medial region of the tibial plateau. For each region a maximum score of 24 could be
obtained, the maximum obtainable summed score was therefore 96. Significant differences between saline- and collagenase injected joints
within strains are indicated by *, between ages within strains by #, between strains of the same age by $; (a) bottom: schematic view of
cartilage damage in the four separate regions. For each region the cartilage damage scores (average + sem) are depicted in colour-code;
(b) histology of the posterior region in knee joints of control and osteoarthritic knee joints. Note the exposure of the subchondral bone at
the medial side in collagenase-injected joints of C3H/HeJ mice. The blue boxes indicate a magnification of the lateral (C57BI/6) and medial
(C3H/HeJ) sides, shown on the right.
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medial and lateral subchondral bone plates (Sb.PI.Th.), with below two examples of thinning of the lateral subchondral bone plate (indicated by

arrow) in epiphyses of a saline-injected and collagenase-injected joint from a 30-week-old C57BI/6 mouse; (b) changes in the epiphyseal tra-

beculae, the following parameters were measured: trabecular BV (Trab BV), endocortical TV of which the ratio (Trab BV/TV) determines the

volumetric amount of bone. Trabecular thickness (Tb.Th.), trabecular spacing (Tb.Sp.), and SMI, indicating the degree of rod-like structure,
were also calculated; (c) changes in metaphyseal trabeculae. *P < 0.05.

The epiphyseal trabecular architecture was not altered in
C57BI/6 mice after OA induction, since trabecular BV, thick-
ness, SMI and spacing did not change significantly in either
age group (Fig. 4(b), left). However, a small increase of
about 5% in endocortical TV was measured compared to
the contralateral saline-injected joints, but this did not lead
to a significant decrease in Trab BV/TV. An increase in

endocortical TV was also observed in collagenase-injected
joints of C3H/HeJ mice, lowering the Trab BV/TV ratio to
about 10% in both age groups (Fig. 4(b), right). Further-
more, trabeculae in the epiphysis of collagenase-injected
C3H/Hed knee joints were thinner and had increased spac-
ing. Despite these changes in trabecular structure, no sig-
nificant changes were seen in either connectivity density




512 S. M. Botter et al.: Subchondral bone changes in osteoarthritis

C57Bl/6
Saline [ - »
ncc AS
PG asim
SBP

BM

Collagenase

C3H/HelJ

AS

AS

Fig. 5. TRAP staining in histological sections of saline-injected and collagenase-injected knee joints. In saline-injected joints, osteoclasts

(arrowheads) were observed occasionally. At some locations in collagenase-injected joints osteoclasts resorbed the subchondral bone plate

up to the noncalcified cartilage. The division between the calcified cartilage and the subchondral bone plate is indicated by a dotted

line. AS = articular surface, NCC = noncalcified cartilage, CC = calcified cartilage, SBP = subchondral bone plate, TM = tidemark. Original
magnification 200x.

or trabecular number (data not shown). Periosteal expan-
sion of the epiphysis other than osteophyte formation was
not observed.

In the metaphysis of C57BI/6 mice the only noticeable
change was a small decrease in BV fraction in collage-
nase-injected joints of the 16-week-old mice caused by an
increase in endocortical TV (Endocort TV, Fig. 4(c)). In
the metaphysis of C3H/Hed mice the Endocort TV was
also increased in collagenase-injected joints, which to-
gether with a reduced Trab BV resulted in a decreased
Trab BV/TV of about 20%. In addition, SMI increased, indi-
cating that the metaphyseal trabeculae became more rod-
like. In both strains and at both ages the metaphyseal cortex
of collagenase-injected joints contained small cavities with
TRAP-positive osteoclasts, which were not observed in sa-
line-injected joints. However, the presence of these cavities
did not lead to a significant decrease in cortical thickness
(data not shown).

BONE CHANGES IN THE DISTAL TIBIA DUE TO
INTRA-ARTICULAR COLLAGENASE INJECTION

To verify whether changes in bone also occurred at more
remote sites in the joint, e.g., due to differences in limb load-
ing, we measured which changes had occurred in a more
distal region of the tibia, the diaphyseal cortex. Although in
16-week-old C57BI/6 mice the thickness of the diaphyseal
cortex in collagenase-injected joints was lower compared to
contralateral saline-injected joints (saline-injected: 192 +
2.4 ym, collagenase-injected: 184 2.1 ym, P=0.02), in all
other groups of mice cortical thickness did not differ
between saline-injected and collagenase-injected joints. An
increase in osteoclastic activity as seen in the subchondral
bone plate and the metaphyseal cortex was not observed.

Discussion

This study showed both common findings as well as
specific and consistent differences in subchondral bone ad-
aptation and spatial arrangement of cartilage damage be-
tween C57BI/6 mice having an initial thin subchondral
bone plate and C3H/HeJ mice having an initial thick sub-
chondral bone plate. In both strains at both ages thinning
of the subchondral bone plate was found in collagenase-
injected knee joints, but subchondral trabecular changes
were only found in C3H/Hed mice. Both strains developed
cartilage damage to a comparable extent, but the spatial
arrangement of cartilage damage differed significantly be-
tween the two strains: In C57BI/6 mice the cartilage damage
was located mainly at the lateral side of the tibial plateau,
both in saline-injected (spontaneous damage) and in colla-
genase-injected (instability-induced damage) knee joints.
In contrast, in C3H/Hed mice the damage was principally
located at the medial side. In these mice spontaneous
damage was virtually absent in the saline-injected left
control knee joints, so compared to these saline-injected
controls the additional damage in the collagenase-injected
joints was higher in C3H/HeJ mice.

The reason why we have chosen these two mouse strains
was because of their well-described phenotypic difference in
bone and subsequent subchondral bone phenotype, a con-
sequence of their different genetic backgrounds®®~32. Since
we know bone to be involved in OA, our initial hypothesis was
that a difference in subchondral bone phenotype, and specif-
ically subchondral bone plate thickness, might have an influ-
ence on cartilage damage, thereby linking the two. However,
when we tested whether the thickness of the subchondral
bone plate was related to the amount of cartilage damage,
neither in saline-injected nor in collagenase-injected knee
joints a relation was found. Besides bone structure, the
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mice likely differ in other phenotypical aspects as well such
as joint loading and joint alignment. We found a difference
in the amount of spontaneous cartilage damage between
the two mouse strains and it is tempting to speculate that
this might be caused by a difference in joint loading. How-
ever, although intuitively logical, there are as yet no literature
data available for each of the strains which would substanti-
ate this theory.

Furthermore, differences in joint alignment might explain
why there was such a pronounced difference in medial
and lateral cartilage damage development. In this view,
C57BI/6 mice place a relative large amount of mechanical
load on their lateral tibial plateau, which would increase in
the instable collagenase-injected knee joints. This is further
supported by the fact that the spatial arrangement of carti-
lage damage in the saline-injected joints (i.e., spontaneous
damage) was the same as in the collagenase-injected joints
(i.e., instability-induced damage) within each strain. In C3H/
HedJ mice the highest amount of load would be more focal
and present on the postero-medial side, explaining the
rather drastic amount of cartilage damage seen at the post-
ero-medial region of the tibial plateau in the C3H/HeJ mice.

The composition of the cartilage layer and extracellular
matrix might also differ between the two strains. Reports
concerning cartilage biology or cartilage mechanical proper-
ties in C3H/Hed mice are scarce and papers comparing
these properties between C3H/HeJ and C57BIl/6 are, to
our knowledge, non-existing. We demonstrate for the first
time a difference in the calcified/noncalcified ratio of the ar-
ticular cartilage between these two strains. This might influ-
ence the stresses in the cartilage resulting from load
bearing. Finally, the mechanical properties of joint tendons
between the two strains were also found to be different: a re-
cent publication described that joint tendons of C3H/Hed
mice are of inferior quality, although a significant difference
in joint laxity between C57BI/6 and C3H/HeJ mice was not
found®.

In this study we observed that in both strains the sub-
chondral bone plate became thinner in collagenase-injected
joints. This was caused by osteoclastic resorption of the
subchondral bone plate, at some locations even up to the
noncalcified cartilage. Newly formed cavities were observed
in the subchondral bone plate, occupied by invading osteo-
clasts. These cavities might be analogous to the subchon-
dral resorption pits observed in human OA3*. Whether the
mice were 16 or 30 weeks of age at the start of the exper-
iment did not seem to be of influence in either strain, since
the direction and magnitude of changes in both bone and
cartilage were similar in both age groups. We measured cal-
cified cartilage thickness which, because of its high mineral
content®®, cannot be discriminated from bone in micro-CT
analysis and found no thickness differences between saline-
injected and collagenase-injected joints. Thus, the thickness
changes we observed are caused solely by changes in the
subchondral bone plate.

There are several explanations for the increased osteo-
clastic activity in the osteoarthritic joints. One possibility
might be a regional acceleratory phenomenon (RAP) due
to noxious stimuli such as the stress of surgery or increased
amount of inflammation®®. However, the differences we
observed were compared with the saline-injected joints
that underwent the same surgical procedure. In addition, al-
though after the collagenase-injection a small inflammatory
response is known to occur, this response is only short-
lived and is markedly reduced already 3 days after the injec-
tion'8. Therefore, it seems unlikely that RAP plays a role in
this process.

Another possibility for increased osteoclastic activity is
that the destabilized joint was unloaded, which is known
to induce bone resorption®”. Male C3H/HeJ mice have
been shown to lose epiphyseal trabecular bone in response
to unloading®, however, in these models complete unload-
ing is established by hindlimb suspension whereas in our
model the mice still had the ability to load their limbs. It is
unlikely that a few days of lameness would induce exten-
sive resorptive activity. In addition, the C57BI/6 strain is
known to be more responsive to unloading compared to
C3H/Hed mice®**°, but in our study the amount of trabecu-
lar bone in both the epiphysis and the metaphysis of C57BI/
6 mice was not decreased, and no major changes were
found in the thickness of the diaphyseal cortex. We there-
fore think that unloading does not play an important role
and that the bone changes that we have observed are truly
part of the disease process.

The fact that we observed subchondral bone plate thin-
ning and increased osteoclastic activity in both strains might
be contra-intuitive since subchondral sclerosis is consid-
ered as an OA hallmark, but is in fact observed in other
animal models of OA as well. Bailey and Mansell identified
the formation of subchondral cysts in an early disease stage
in guinea pigs*!, which might indicate initial weakening of
the subchondral bone. They stated that subchondral bone
thickening might be a compensatory response observed
later on in the disease process. This theory was confirmed
in a rat model in which anterior cruciate ligament transection
(ACLT) was performed*? and in a canine model using the
same approach*®*4, Interestingly, these studies also found
sclerosis of the subchondral bone to occur eventually. Re-
covery of initial loss of subchondral bone was seen in
a post-traumatic OA model in rabbits as well*®, with initial
bone loss followed by bone accrual and subsequent sclero-
sis later on. Lastly, a feline study also showed subchondral
plate thinning*® at 16 weeks following ACLT.

These beforementioned studies suggest that the OA
disease process in our study is likely to be in an early
phase, whereas in human studies the disease has already
progressed further. Other lines of evidence from our study
further confirm this hypothesis: first, even though the insta-
bility-induced cartilage damage was clearly present in both
strains and C3H/HedJ mice had severe amounts of cartilage
damage locally, the summed cartilage damage was still
quite low, approximately 25 whereas a maximum score of
96 could be obtained. Second, the process of cartilage
wear and tear was still in an early phase, as indicated by
the swelling of the noncalcified cartilage layer in collage-
nase-injected joints (see Fig. 2), a known feature of early
OA*"*8_ Finally, the osteophytes that were formed in the
collagenase-injected joints were not yet fully mineralized,
indicating an immature stage of osteophyte development.

In summary, we evaluated changes in bone and cartilage
4 weeks after OA induction in two strains of mice having
a different subchondral bone phenotype. The subchondral
bone plate was found to become thinner in both strains,
but the spatial distribution of cartilage damage after OA
induction was found to differ significantly. The observed
thinning was not linked to the location and severity of carti-
lage damage in either strain, but seemed to be a diffuse
event taking place across the whole tibial plateau.
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