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Abstract

We construct a functor from the category of oriented tangles inR3 to the category of Hermitian modules and
Lagrangian relations overZ[t, t−1]. This functor extends the Burau representations of the braid groups and its
generalization to string links due to Le Dimet.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The aim of this paper is to generalize the classical Burau representation of braid groups to tangles.
The Burau representation is a homomorphism from the group of braids onn strands to the group of
(n× n)-matrices over the ring�= Z[t, t−1], wheren is a positive integer. This representation has been
extensively studied by various authors since the foundational work of Burau[2]. In the last 15 years, new
important representations of braid groups came to light, specifically those associated with the Jones knot
polynomial,R-matrices, and ribbon categories. These latter representations do extend to tangles, so it is
natural to ask whether the Burau representation has a similar property.

An extension of the Burau representation to a certain class of tangles was first pointed out by Le
Dimet [5]. He considered so-called ‘string links’, which are tangles whose all components are intervals
going from the bottom to the top but not necessarily monotonically. The string links onn strands form a
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monoid with respect to the usual composition of tangles. Le Dimet’s work yields a homomorphism of this
monoid into the group of(n × n)-matrices over the quotient field of�. For braids, this gives the Burau
representation. The construction of Le Dimet also applies to colored string links, giving a generalization
of the Gassner representation of the pure braid group. These representations of Le Dimet were studied
by Kirk et al. [4] (see also[6,9]).

To extend the Burau representation to arbitrary oriented tangles, we first observe that oriented tangles do
not form a group or a monoid but rather a categoryTangleswhose objects are finite sequences of±1. An
extension of the Burau representation toTanglesshould be a functor fromTanglesto some algebraically
defined category. We show that the relevant algebraic category is the one of Hermitian�-modules and
Lagrangian relations. Our principal result is a construction of a functor fromTangles to this category.
For braids and string links, our constructions are equivalent to those of Burau and Le Dimet.

The appearance of Lagrangian relations rather than homomorphisms is parallel to the following well-
known observations concerning cobordisms. Generally speaking, a cobordism(W,M−,M+) does not
induce a homomorphism from the homology (with any coefficients) of the bottom baseM− to the homol-
ogy of the top baseM+. However, the kernel of the inclusion homomorphismH∗(M−) ⊕ H∗(M+) →
H∗(W) can be viewed as a morphism fromH∗(M−) to H∗(M+) determined byW. This kernel is La-
grangian with respect to the usual intersection form in homology. These observations suggest a definition
of a Lagrangian category over any integral domain with involution. Applying these ideas to the infinite
cyclic covering of the tangle exterior, we obtain our functor from the category of tangles to the category
of Lagrangian relations over�. Parallel constructions involving 2-fold coverings are studied in[7].

Note that recently, a most interesting representation of braid groups due to R. Lawrence was shown
to be faithful by S. Bigelow and D. Krammer. We do not know whether this representation extends to
tangles.

The organization of the paper is as follows. In Section 2, we introduce the categoryLagr� of Lagrangian
relations over the ring�. In Section 3, we define our functorTangles→ Lagr�. Section 4 deals with
the proof of three technical lemmas stated in the previous section. In Section 5, we discuss the case of
braids and string links. Finally, Section 6 outlines a multivariable generalization of the theory as well as
a high-dimensional version.

2. Category of Lagrangian relations

Fix throughout this section an integral domain� (i.e., a commutative ring with unit and without
zero-divisors) with ring involution� → �, � �→ �̃.

2.1. Hermitian modules

A skew-hermitian formon a�-moduleH is a form�:H ×H → � such that for allx, x′, y ∈ H and
all �, �′ ∈ �,

(i) �(�x + �′x′, y)= ��(x, y)+ �′�(x′, y),
(ii) �(x, y)=−�̃(y, x).
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Such a form is callednon-degeneratewhen it satisfies:

(iii) If �(x, y)= 0 for all y ∈ H , thenx = 0.

A Hermitian�-moduleis a finitely generated�-moduleH endowed with a non-degenerate skew-hermitian
form �. The same moduleH with the opposite form−� will be denoted by−H . Note that a Hermitian
�-module is always torsion-free.

For a submoduleA ⊂ H , denote by Ann(A) the annihilator ofA with respect to�, that is, the module
{x ∈ H | �(x, a) = 0 for all a ∈ A}. We say thatA is isotropic if A ⊂ Ann(A), andLagrangianif
A= Ann(A).

Given a submoduleA of H, set

A= {x ∈ H | �x ∈ A for a non-zero� ∈ �}.
ClearlyA ⊂ A andAnn(A)=Ann(A)=Ann(A). Note that for any LagrangianA ⊂ H , we haveA=A.

Lemma 2.1. For any submodule A of a Hermitian�-module H,

Ann(Ann(A))= A.

Proof. Let Q=Q(�) denote the field of fractions of�. Given a�-moduleF, denote byFQ the vector
spaceF⊗�Q. Note that the kernel of the natural homomorphismF → FQ is the�-torsion Tors�F ⊂ F .

The form� uniquely extends to a skew-hermitian formHQ×HQ → Q. Given a linear subspaceV of
HQ, let AnnQ(V ) be the annihilator ofV with respect to the latter form. Observe that AnnQ(AnnQ(V ))=
V . Indeed, one inclusion is trivial and the other one follows from dimension count, since dim(AnnQ(V ))=
dim(HQ)− dim(V ).

The inclusionA ↪→ H induces an inclusionAQ ↪→ HQ. SinceH is torsion-free,H ⊂ HQ (and
A ⊂ AQ). Clearly,A = AQ ∩ H and Ann(A)Q = AnnQ(AQ). Replacing in the latter formulaA with
Ann(A), we obtain

Ann(Ann(A))Q = AnnQ(Ann(A)Q)= AnnQ(AnnQ(AQ))= AQ.

Therefore

A= AQ ∩H = Ann(Ann(A))Q ∩H = Ann(Ann(A))= Ann(Ann(A)),

and the lemma is proved.�

Lemma 2.2. For any submodulesA,B ⊂ H ,

Ann(A+ B)= Ann(A) ∩ Ann(B) , Ann(A ∩ B)= Ann(A)+ Ann(B).

Proof. The first equality is obvious, and implies

Ann(Ann(A)+ Ann(B))= Ann(Ann(A)) ∩ Ann(Ann(B))

=A ∩ B = A ∩ B.
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Therefore

Ann(A ∩ B)= Ann(A ∩ B)= Ann(Ann(Ann(A)+ Ann(B))),

which is equal toAnn(A)+ Ann(B) by Lemma 2.1. �

Lemma 2.3. For any submodulesA ⊂ B ⊂ H , we haveB/A= B/A ⊂ H/A.

Proof. Consider the canonical projection�:H → H/A. Clearly,

�(B)= {� ∈ H/A | �� ∈ B/A for a non-zero� ∈ �} = B/A.

Also ker(�|B)= ker(�) ∩ B = A ∩ B = A. HenceB/A= B/A. �

2.2. Lagrangian contractions

The results above in hand, we can develop the theory of Lagrangian contractions and Lagrangian
relations over� by mimicking the well-known theory overR (see, for instance,[10, Section IV.3]).

Let (H,�) be a Hermitian�-module as above. LetA be an isotropic submodule ofH such thatA=A.
Denote byH |A the quotient module Ann(A)/A with the skew-hermitian form

(x modA, y modA)= �(x, y).

For a submoduleL ⊂ H , set

L|A= ((L+ A) ∩ Ann(A))/A ⊂ H |A.

We say thatL|A is obtained fromL by contraction along A.

Lemma 2.4. H |A is a Hermitian�-module. If L is a Lagrangian submodule of H, then L|A is a
Lagrangian submodule ofH |A.

Proof. To check that the form onH |A is non-degenerate, pickx ∈ Ann(A) such that�(x, y)= 0 for all
y ∈ Ann(A). Then,x ∈ Ann(Ann(A))= A= A so thatx modA= 0.

To prove the second claim of the lemma, setB= (L+A)∩Ann(A) ⊂ H . We claim that Ann(B)=B.
Since bothA andL are isotropic, it is easy to check thatB ⊂ Ann(B) and thereforeB ⊂ Ann(B). Let us
verify the opposite inclusion. Lemmas 2.1 and 2.2 imply that

Ann(B)= Ann((L+ A) ∩ Ann(A))= Ann(L+ A)+ Ann(Ann(A))

⊂Ann(L)+ A= L+ A.

SinceA ⊂ B, we have Ann(B) ⊂ Ann(A) and therefore

Ann(B) ⊂ L+ A ∩ Ann(A)= (L+ A) ∩ Ann(A)= B.

Thus Ann(B)=B. This implies that Ann(B/A)=B/A, which is equal toB/A by Lemma 2.3. SoB/A

is Lagrangian. �
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2.3. Category of Lagrangian relations

Let H1, H2 be Hermitian�-modules. ALagrangian relationbetweenH1 andH2 is a Lagrangian
submodule of(−H1) ⊕ H2 (the latter is a Hermitian�-module in the obvious way). For a Lagrangian
relationN ⊂ (−H1)⊕H2, we shall use the notationN :H1 ⇒ H2.

For a Hermitian�-moduleH, the submodule ofH ⊕H

diagH = {h⊕ h ∈ (−H)⊕H | h ∈ H }
is clearly a Lagrangian relationH ⇒ H . It is called thediagonal Lagrangian relation. Given two
Lagrangian relationsN1:H1 ⇒ H2 andN2:H2 ⇒ H3, their composition is defined byN2 ◦ N1 =
N2N1:H1 ⇒ H3, whereN2N1 denotes the following submodule of(−H1)⊕H3:

N2N1 = {h1 ⊕ h3 | h1 ⊕ h2 ∈ N1 andh2 ⊕ h3 ∈ N2 for a certainh2 ∈ H2}.
Lemma 2.5. The composition of two Lagrangian relations is a Lagrangian relation.

Proof. Given two Lagrangian relationsN1:H1 ⇒ H2 andN2:H2 ⇒ H3, consider the Hermitian�-
moduleH = (−H1)⊕H2 ⊕ (−H2)⊕H3 and its isotropic submodule

A= 0⊕ diagH2
⊕ 0= {0⊕ h⊕ h⊕ 0 | h ∈ H2}.

Note thatA=A. It follows from the non-degeneracy ofH2 that Ann(A)=(−H1)⊕diagH2
⊕H3. Therefore

H |A= (−H1)⊕H3. Observe thatN2N1= (N1⊕N2)|A. Lemma 2.4 implies thatN2 ◦N1=N2N1 is a
Lagrangian submodule of(−H1)⊕H3. �

Lemma 2.6. For any submodulesN1 ⊂ H1 ⊕H2 andN2 ⊂ H2 ⊕H3, we haveN2N1 =N2N1.

Proof. Consider an elementh1⊕ h3 of N2N1. By definition,h1⊕ h2 ∈ N1 andh2⊕ h3 ∈ N2 for some
h2 ∈ H2, so�1(h1⊕ h2) ∈ N1 and�2(h2⊕ h3) ∈ N2 for some�1, �2 �= 0. Then�1�2(h1⊕ h3) ∈ N2N1,

soh1⊕h3 ∈ N2N1. Hence,N2N1 ⊂ N2N1. Taking the closure on both sides, we getN2N1 ⊂ N2N1.The
opposite inclusion is obvious.�

Theorem 2.7. Hermitian�-modules, as objects, and Lagrangian relations, as morphisms, form a cate-
gory.

Proof. The composition law is well-defined by Lemma 2.5; let us check that it is associative. Consider
Lagrangian relationsN1:H1 ⇒ H2, N2:H2 ⇒ H3, andN3:H3 ⇒ H4. By Lemma 2.6,

N3 ◦ (N2 ◦N1)=N3N2N1 =N3N2N1 =N3(N2N1).

Similarly, (N3 ◦ N2) ◦ N1 = (N3N2)N1. It follows from the definitions thatN3(N2N1) = (N3N2)N1;
this implies the associativity. The role of the identity morphisms is played by the diagonal Lagrangian
relations. Indeed, for any Lagrangian relationN :H1 ⇒ H2,

diagH2
◦N = diagH2

N =N ,

which is equal toN sinceN is Lagrangian. Similarly,N ◦ diagH1
=N . �
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We shall call this category thecategory of Lagrangian relations over�. It will be denoted byLagr�.

2.4. Lagrangian relations from unitary isomorphisms

By thegraphof a homomorphismf :A → B of abelian groups, we mean the set

�f = {a ⊕ f (a)|a ∈ A} ⊂ A⊕ B.

Let H1, H2 be Hermitian�-modules. Consider the HermitianQ-modulesH1 ⊗Q andH2 ⊗Q, where
Q=Q(�) is the field of fractions of� and⊗=⊗�. For a unitaryQ-isomorphism�:H1⊗Q → H2⊗Q,
we define itsrestricted graph�0

� by

�0
� = �� ∩ (H1 ⊕H2)= {h⊕ �(h)|h ∈ H1,�(h) ∈ H2} ⊂ H1 ⊕H2.

If � is induced by a unitary�-isomorphismf :H1 → H2, then clearly�0
� = �f .

Lemma 2.8. Given any unitary isomorphism�:H1 ⊗ Q → H2 ⊗ Q, the restricted graph�0
� is a

Lagrangian relationH1 ⇒ H2.

Proof. Denote by�1 (resp.�2, �) the skew-hermitian form onH1 (resp.H2, (−H1) ⊕ H2), and pick
h, h′ ∈ H1 such that�(h),�(h′) ∈ H2. Then,

�(h⊕ �(h), h′ ⊕ �(h′))=−�1(h, h
′)+ �2(�(h),�(h

′))= 0.

Therefore,�0
� is isotropic. To check that it is Lagrangian, consider an elementx= x1⊕ x2 of Ann(�0

�) ⊂
(−H1)⊕H2. For allh in H1 such that�(h) ∈ H2,

0= �(x, h⊕ �(h))=−�1(x1, h)+ �2(x2,�(h))

= − �2(�(x1),�(h))+ �2(x2,�(h))= �2(x2 − �(x1),�(h)).

Since� is an isomorphism, we haveH2 ⊂ {�(h)|h ∈ H1,�(h) ∈ H2}. Therefore,�2(x2−�(x1), h2)=0
for all h2 ∈ H2. Since�2 is non-degenerate, it follows thatx2 = �(x1) sox = x1 ⊕ �(x1) ∈ �0

� and the
lemma is proved. �

Therefore, Lagrangian relations can be understood as a generalization of unitary isomorphisms. More
precisely, letU� be the category of Hermitian�-modules and unitary�-isomorphisms. Also, letU0

�
be the category of Hermitian�-modules, where the morphisms betweenH1 andH2 are the unitary
Q-isomorphisms betweenH1 ⊗Q andH2 ⊗Q.

Theorem 2.9. The mapsf �→ f ⊗ idQ, � �→ �0
� and f �→ �f define embeddings of categories

U� ⊂ U0
� ⊂ Lagr� andU� ⊂ Lagr� which fit in the commutative diagram
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Proof. The first embedding being clear, we check the second one. By Lemma 2.8,�0
� is a Lagrangian

relation. Also, note that�0
� ⊗Q= ��. Therefore, given two unitaryQ-isomorphisms�1 and�2,

�0
�2◦�1

= ��2◦�1 ∩ (H1 ⊕H3)= ��2��1 ∩ (H1 ⊕H3)

= (�0
�2
⊗Q)(�0

�1
⊗Q) ∩ (H1 ⊕H3)= (�0

�2
�0

�1
⊗Q) ∩ (H1 ⊕H3)

=�0
�2

�0
�1
= �0

�2
◦ �0

�1
.

It is clear that aQ-isomorphism� is entirely determined by its restricted graph�0
�. Finally, the graph

�f of a unitary�-isomorphismf is equal to the restricted graph of the induced unitaryQ-isomorphism
f ⊗ idQ. Therefore, the diagram commutes. The theorem follows.�

3. The Lagrangian representation

3.1. The category of oriented tangles

LetD2 be the closed unit disk inR2. Given a positive integern, denote byxi the point((2i−n−1)/n,0)
in D2, for i = 1, . . . , n. Let � and�′ be sequences of±1 of respective lengthn andn′. An (�, �′)-tangleis
the pair consisting of the cylinderD2 × [0,1] and its oriented piecewise linear 1-submanifold	 whose
oriented boundary�	 is

∑n′
j=1 �′j (x′j ,1) −∑n

i=1 �i(xi,0). Note that for such a tangle to exist, we must
have

∑
i �i =∑j �′j .

Two (�, �′)-tangles(D2 × [0,1], 	1) and(D2 × [0,1], 	2) areisotopicif there exists an auto-homeo-
morphismhofD2×[0,1], keepingD2×{0,1} fixed, such thath(	1)=	2 andh|	1: 	1 � 	2 is orientation-
preserving. We shall denote byT (�, �′) the set of isotopy classes of(�, �′)-tangles, and by id� the isotopy
class of the trivial(�, �)-tangle(D2, {x1, . . . , xn})× [0,1].

Given an(�, �′)-tangle	1 and an(�′, �′′)-tangle	2, theircompositionis the(�, �′′)-tangle	2◦	1 obtained
by gluing the two cylinders along the disk corresponding to�′ and shrinking the length of the resulting
cylinder by a factor 2 (seeFig. 1). Clearly, the composition of tangles induces a composition

T (�, �′)× T (�′, �′′) −→ T (�, �′′)

on the isotopy classes of tangles.
Thecategory of oriented tanglesTanglesis defined as follows: the objects are the finite sequences�

of ±1, and the morphisms are given by Hom(�, �′) = T (�, �′). The composition is clearly associative,
and the trivial tangle id� plays the role of the identity endomorphism of�. The aim of this section is to
construct a functorTangles→ Lagr�.

3.2. Objects

Denote byN({x1, . . . , xn}) an open tubular neighborhood of{x1, . . . , xn} in D2 ⊂ R2, and byS2 the
2-sphereR2 ∪ {∞}. Given a sequence�= (�1, . . . , �n) of ±1, let�� be the sum

∑n
i=1�i . We shall denote
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Fig. 1. A tangle composition.
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Fig. 2. The spaceD� for �= (+1,+1,−1,+1).

by D� the compact surface

D� =
{
D2\N({x1, . . . , xn}) if �� �= 0,
S2\N({x1, . . . , xn}) if �� = 0,

endowed with the counterclockwise orientation, a base pointz, and the generating family{e1, . . . , en} of
�1(D�, z), whereei is a simple loop turning once aroundxi counterclockwise if�i = +1, clockwise if
�i =−1 (seeFig. 2). The same space with the clockwise orientation will be denoted by−D�.

The natural epimorphism�1(D�) → Z, ei �→ 1 gives an infinite cyclic coverinĝD� → D�. Choosing
a generatort of the group of the covering transformations endows the homologyH1(D̂�) with a structure
of module over� = Z[t, t−1]. If �� �= 0, thenD� retracts by deformation on the wedge ofn circles
representinge1, . . . , en, and one easily checks thatH1(D̂�) is a free�-module with basisv1 = ê1 −
ê2, . . . , vn−1 = ên−1 − ên, whereêi is the path inD̂� lifting ei starting at some fixed lift̂z ∈ D̂� of z. If
�� = 0, thenH1(D̂�)=⊕i �vi/�
̂, where
̂ is a lift of 
= e

�1
1 · · · e�n

n to D̂�. Note that in any case,H1(D̂�)

is a free�-module.
Let 〈 , 〉:H1(D̂�) × H1(D̂�) → Z be the (Z-bilinear, skew-symmetric) intersection form induced by

the orientation ofD� lifted to D̂�. Consider the pairing��:H1(D̂�)×H1(D̂�) → � given by

��(x, y)=
∑
k

〈tkx, y〉t−k.
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Fig. 3. Computation of�� for �= (+1,+1).

Note that this form is well-defined since, for any givenx, y ∈ H1(D̂�), the intersection〈tkx, y〉 vanishes
for all but a finite number of integersk. The multiplication byt being an isometry with respect to the
intersection form, it is easy to check that�� is skew-hermitian with respect to the involution� → �
induced byt �→ t−1.

Example 3.1. Consider� of length 2. If�1+ �2=0, thenD̂� is contractible soH1(D̂�)=0. If �1+ �2 �= 0,
thenH1(D̂�)= �v with v = ê1 − ê2, and��(v, v)= �1+�2

2 (t − t−1), cf. Fig. 3.

We shall give a proof of the following result in Section 4.

Lemma 3.2. For any�, the form��:H1(D̂�)×H1(D̂�) → � is non-degenerate.

3.3. Morphisms

Given an(�, �′)-tangle	 ⊂ D2× [0,1], denote byN(	) an open tubular neighborhood of	 and byX	

its exterior

X	 =
{
(D2 × [0,1])\N(	) if �� �= 0,
(S2 × [0,1])\N(	) if �� = 0.

Note that�� = ��′ . We shall orientX	 so that the induced orientation on�X	 extends the orientation on
(−D�) D�′ . If �� �= 0, then the exact sequence of the pair(D2×[0,1], X	) and the excision isomorphism
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give

H1(X	)=H2(D
2 × [0,1], X	)=H2(N(	),N(	) ∩X	),

=
�⊕

j=1

H2(N(	j ),N(	j ) ∩X	),

where	1, . . . , 	� are the connected components of	. Since(N(	j ),N(	j ) ∩ X	) is homeomorphic to
(	j×D2, 	j×S1), we haveH2(N(	j ),N(	j )∩X	)=Zmj , wheremj is a meridian of	j oriented so that its
linking number with	j is 1. Hence,H1(X	)=⊕�

j=1 Zmj . If ��=0, thenH1(X	)=⊕�
j=1 Zmj/

∑n
i=1�iei .

The composition of the Hurewicz homomorphism and the homomorphismH1(X	) → Z,mj �→ 1
gives an epimorphism�1(X	) → Z which extends the previously defined homomorphisms�1(D�) → Z

and�1(D�′) → Z. As before, it determines an infinite cyclic coverinĝX	 → X	, so the homology of̂X	

is endowed with a natural structure of module over�= Z[t, t−1].
Let i	:H1(D̂�) → H1(X̂	) andi′	:H1(D̂�′) → H1(X̂	) be the homomorphisms induced by the obvious

inclusionD̂�  D̂�′ ⊂ X̂	. Denote byj	 the homomorphismH1(D̂�) ⊕ H1(D̂�′) → H1(X̂	) given by
j	(x, x

′)= i′	(x′)− i	(x). Finally, set

N(	)= ker(j	) ⊂ H1(D̂�)⊕H1(D̂�′).

Note that if	 and	′ are two isotopic(�, �′)-tangles, thenN(	)=N(	′).

Lemma 3.3. N(	) is a Lagrangian submodule of(−H1(D̂�))⊕H1(D̂�′).

Lemma 3.4. If 	1 ∈ T (�, �′) and	2 ∈ T (�′, �′′), thenN(	2 ◦ 	1)=N(	2) ◦N(	1).

We postpone the proof of these lemmas to the next section, and summarize our results in the following
theorem.

Theorem 3.5. Given a sequence� of±1, denote byF(�) the Hermitian�-module(H1(D̂�),��). For 	 ∈
T (�, �′), letF(	) be the Lagrangian relationN(	):H1(D̂�) ⇒ H1(D̂�′). Then, F is a functorTangles→
Lagr�.

The usual notions of cobordism andI-equivalence for links generalize to tangles in the obvious way.
(The surface inD2 × [0,1] × [0,1] interpolating between two tangles	1, 	2 ⊂ D2 × [0,1] should be
standard onD2× {0,1} × [0,1] and homeomorphic to	1× [0,1].) It is easy to see (cf.[4, Theorem 5.1
and the proof of Proposition 5.3]) that the Lagrangian relationN(	) is anI-equivalence invariant of	.

The usual computation of the Alexander module of a linkL from a diagram ofL extends to our setting.

This gives a computation ofH1(D̂�)⊕H1(D̂�′)
j	→H1(X̂	) (cf. [4, Proposition 4.4]). Hence, it is possible

to computeN(	) from a diagram of	.
Finally, given an(�, �)-tangle	, one can construct an oriented link	̂ ⊂ S3 by ‘closing’	 in the obvious

way. Although we shall not discuss it here, note that the Lagrangian submoduleN(	) is closely related
to the Alexander polynomial of̂	.
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3.4. Freeness ofN(	)

As pointed out in Section 3.2, the functorF:Tangles→ Lagr� maps the objects to free modules over
the ring� = Z[t, t−1]. What about the morphisms? Given an oriented tangle	, is the�-moduleN(	)
free? The following theorem answers this question.

Theorem 3.6. Given any tangle	 ∈ T (�, �′), the�-moduleN(	) is free. Its rank is given by

rk�N(	)=


0 if n= n′ = 0,
n+ n′

2
− 1 if �� �= 0 or nn′ = 0 and (n, n′) �= (0,0),

n+ n′

2
− 2 if �� = 0 andnn′>0,

where n andn′ denote the length of� and�′.

In order to prove this result, we shall need several notions of homological algebra, that we recall now.
Let � be a commutative ring with unit. Theprojective dimensionpd(A) of a�-moduleA is the minimum
integern (if it exists) such that there is a projective resolution of lengthn of A, that is, an exact sequence

0 → Pn → · · · → P1 → P0 → A → 0,

where all thePi ’s are projective modules. It is a well-known fact that if 0→ Kn → Pn−1 → · · · →
P1 → P0 → A → 0 is any resolution ofAwith pd(A)�n and all thePi ’s projective, thenKn is projective
as well (see, for instance,[11, Lemma 4.1.6]). Theglobal dimensionof a ring� is the (possibly infinite)
number sup{pd(A) |A is a �-module}. For example, the global dimension of� is zero if� is a field, and
at most one if� is a principal ideal domain.

Lemma 3.7. Let�= Z[t, t−1]. Consider an exact sequence of�-modules

0 −→ K −→ P −→ F ,

where P and F are free�-modules. Then K is free.

Proof. Note that the ring� has global dimension 2 (see e.g.[11, Theorem 4.3.7]). We shall also need
the fact that all projective�-modules are free[8, Chapter 3.3]. LetA be the image of the homomorphism
P → F . We claim that the projective dimension ofA is at most 1. Indeed, since the global dimension

of � is at most two, there is a projective resolution 0→ P2
�→P1 → P0 → A → 0 of A. Splicing this

resolution with the exact sequence 0→ A ↪→ F → F/A → 0, we get a resolution ofF/A

0 → P1/�P2 → P0 → F → F/A → 0,

whereP0 andF are projective. Since the global dimension of� is 2, we have pd(F/A)�2. Hence,P1/�P2
is projective as well. Therefore, the resolution ofA

0 → P1/�P2 → P0 → A → 0

is projective, so pd(A)�1. Now, the exact sequence 0→ K → P → A → 0 together with the fact that
P is free and pd(A)�1, implies thatK is projective. Therefore, it is free.�
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Proof of Theorem 3.6. Consider the exact sequence

0 → N(	) ↪→ H1(D̂�)⊕H1(D̂�′) → (H1(D̂�)⊕H1(D̂�′))/N(	) → 0.

Clearly, the latter module is finitely generated and torsion free. Since� is a noetherian ring, such a module
embeds in a free�-moduleF, giving an exact sequence

0 → N(	) ↪→ H1(D̂�)⊕H1(D̂�′) → F .

By Lemma 3.7,N(	) is free. SinceN(	) is a Lagrangian submodule ofH1(D̂�) ⊕ H1(D̂�′), we have
rk�N(	)= 1

2rk�(H1(D̂�)⊕H1(D̂�′)). If � has lengthn, we know from Section 3.2 that

rk�H1(D̂�)=
{0 if n= 0,
n− 1 if �� �= 0,
n− 2 if �� = 0 andn>0.

The result follows. �

4. Proof of the lemmas

The proof of Lemmas 3.2 and 3.3 rely on theBlanchfield duality theorem. We recall this fundamental
result referring for a proof and further details to[3, Appendix E].

LetM be a piecewise linear compact connected orientedm-dimensional manifold possibly with bound-
ary. Consider an epimorphism of�1(M) onto a finitely generated free abelian groupG. It induces a
G-coveringM̂ → M, so the homology modules of̂M are modules over� = ZG. For any integerq, let
〈 , 〉:Hq(M̂)×Hm−q(M̂, �M̂) → Z be theZ-bilinear intersection form induced by the orientation ofM
lifted to M̂. TheBlanchfield pairingis the formS:Hq(M̂)×Hm−q(M̂, �M̂) → � given by

S(x, y)=
∑
g∈G

〈gx, y〉g−1.

Note thatS is �-sesquilinear with respect to the involution of� given by
∑

g∈G ngg �→ ∑
g∈G ngg

−1.
The formS induces a�-sesquilinear form

Hq(M̂)/Tors�Hq(M̂) × Hm−q(M̂, �M̂)/Tors�Hm−q(M̂, �M̂) −→ �.

Theorem 4.1(Blanchfield). The latter form is non-degenerate.

Let us now prove the lemmas stated in the previous section.

Proof of Lemma 3.2. Consider the Blanchfield pairing

S�:H1(D̂�)×H1(D̂�, �D̂�) −→ �.

It follows from the definitions that��(x, y) = S�(x, j�(y)), wherej�:H1(D̂�) → H1(D̂�, �D̂�) is the
inclusion homomorphism. Note that�D̂� consists of a finite number of copies ofR, soH1(�D̂�)= 0 and
j� is injective. Picky ∈ H1(D̂�) and assume that for allx ∈ H1(D̂�), 0= ��(x, y) = S�(x, j�(y)). By
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the Blanchfield duality theorem,j�(y) ∈ Tors�(H1(D̂�, �D̂�)), so 0= �j�(y)= j�(�y) for some� ∈ �,
� �= 0. Sincej� is injective,�y = 0. AsH1(D̂�) is torsion-free,y = 0, so�� is non-degenerate.�

Proof of Lemma 3.3. Let H1(D̂�)⊕H1(D̂�′)
i→H1(�X̂	) be the inclusion homomorphism, and denote

by

H2(X̂	, �X̂	)
�−→H1(�X̂	)

j−→H1(X̂	)

the homomorphisms appearing in the exact sequence of the pair(X̂	, �X̂	). Also, denote by� the pairing
(−��)⊕ ��′ on (−H1(D̂�))⊕H1(D̂�′) and by

S�X:H1(�X̂	)×H1(�X̂	) → �, SX:H1(X̂	)×H2(X̂	, �X̂	) → �

the Blanchfield pairings. Clearly,N(	)= ((−1)id⊕ id′)(L), whereL= ker(j ◦ i) and id (resp. id′) is the
identity endomorphism ofH1(D̂�) (resp.H1(D̂�′)). Then, Ann(N(	))= ((−1)id ⊕ id′)Ann(L) and we
just need to check that Ann(L)= L.

First, we check thatK=ker(j)= Im(�) satisfies Ann�X(K)=K, where Ann�X denotes the annihilator
with respect to the formS�X. Observe that for anyx ∈ H1(�X̂	) and Y ∈ H2(X̂	, �X̂	), we have
S�X(x, �(Y ))= SX(j (x), Y ). Therefore

Ann�X(K)= {x ∈ H1(�X̂	) | S�X(x,K)= 0}
= {x ∈ H1(�X̂	) | SX(j (x),H2(X̂	, �X̂	))= 0}.

By the Blanchfield duality, the latter set is justj−1(Tors�(H1(X̂	)))=K.
Clearly,i(L) ⊂ K. The exact sequence of the pair(�X̂	, D̂�  D̂�′) gives

H1(D̂�)⊕H1(D̂�′)
i−→H1(�X̂	) −→ T ,

whereT is a torsion�-module. This implies thatK ⊂ i(L) and thereforei(L) = K. Since the forms�
andS�X are compatible underi,

Ann(L)= i−1(Ann�X(i(L)))= i−1(Ann�X(i(L)))= i−1(Ann�X(K))

= i−1(Ann�X(K))= i−1(K)= L,

and the lemma is proved.�

Proof of Lemma 3.4. Denote by	 the composition	2 ◦ 	1. Note that it is sufficient to check the equality
ker(j	)= ker(j	2) ker(j	1). Indeed, Lemma 2.6 then implies

N(	)= ker(j	)= ker(j	2) ker(j	1)

= ker(j	2) ker(j	1)=N(	2)N(	1)=N(	2) ◦N(	1).

SinceX	 = X	1 ∪ X	2 andX	1 ∩ X	2 = D�′ , we get the following Mayer–Vietoris exact sequence of
�-modules:

H1(D̂�′)
�→H1(X̂	1)⊕H1(X̂	2)

→H1(X̂	) → H0(D̂�′)
�0→H0(X̂	1)⊕H0(X̂	2).
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The homomorphism�0 is clearly injective, so is onto and we get a short exact sequence which fits in
the following commutative diagram

whereH• denotesH1(D̂•), i is the natural inclusion,� the canonical projection, and�(x, x′, x′′) =
(j	1(x, x

′), j	2(x
′, x′′)). Clearly,

�(ker(�))= {x ⊕ x′′ | �(x, x′, x′′)= 0 for somex′ ∈ H�′ } = ker(j	2) ker(j	1).

Therefore, we just need to check that�(ker(�)) = ker(j	), which is an easy diagram chasing exercise
using the surjectivity of�:H�′ → ker(). �

5. Examples

5.1. Braids

An (�, �′)-tangle	= 	1 ∪ · · · ∪ 	n ⊂ D2 × [0,1] is called anoriented braidif every component	j of
	 is strictly increasing or strictly decreasing with respect to the projection to[0,1]. Note that for such an
oriented braid to exist, we must have-{i | �i = 1} = -{j | �′j = 1} and-{i | �i =−1} = -{j | �′j =−1}.
The finite sequences of±1, as objects, and the isotopy classes of oriented braids, as morphisms, form
a subcategoryBraids of the category of oriented tangles. We shall now investigate the restriction of the
functorF to this subcategory.

Consider an oriented braid= 1∪ · · · ∪ n ⊂ D2× [0,1]. Clearly, there exists an isotopyH:D2×
[0,1] → D2×[0,1]withH(x, t)=(x, t) for (x, t) ∈ (D2×{0})∪(�D2×[0,1]), such thatt �→ H(xi, t)

is a homeomorphism of[0,1] onto the arci for i= 1, . . . , n. Leth:D� → D�′ be the homeomorphism
given byx �→ H(x,1), and by the identity onS2\D2 if �1+ · · · + �n = 0. It is a standard result that the
isotopy class(rel �D2) of h only depends on the isotopy class of. Consider the liftĥ: D̂� → D̂�′ of
h fixing �D̂2 pointwise, and denote byf the induced unitary isomorphism(ĥ)∗:H1(D̂�) → H1(D̂�′).

The isotopyH provides a deformation retraction ofX toD�′ : let us identifyH1(X̂) andH1(D̂�′) via
this deformation. Clearly, the homomorphismj:H1(D̂�)⊕H1(D̂�′) → H1(X̂) is given byj(x, y)=
y − f(x). Therefore,

N()= ker(j)= ker(j)= {x ⊕ f(x) | x ∈ H1(D̂�)} = �f ,

the graph of the unitary isomorphismf. We have proved:

Proposition 5.1. The restriction ofF to the subcategory of oriented braids gives a functorBraids→ U�.

Consider an(�, �′)-tangle	= 	1 ∪ · · · ∪ 	n ⊂ D2 × [0,1] such that every component	i of 	 is strictly
increasing with respect to the projection to[0,1]. Here,�= �′ = (1, . . . ,1). We will simply call	 abraid,
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Dε Dε 

ei −1 ei ei+1 ei+2

z

hi 

z

Fig. 4. The action ofhi on the loopsei−1, . . . , ei+2.

or ann-strand braid. As usual, we will denote byBn the group of isotopy classes ofn-strand braids,
and by�1, . . . , �n−1 its standard set of generators (seeFig. 5). Recall that theBurau representation
Bn → GLn(�) maps the generator�i to the matrix

Ii−1 ⊕
(

1− t t

1 0

)
⊕ In−i−1,

whereIk denotes the identity(k× k)-matrix. This representation is reducible: it splits into the direct sum
of an(n− 1)-dimensional representation� and the trivial one-dimensional representation (see e.g.[1]).
Using the Artin presentation ofBn, one easily checks that the map�i �→ �(�i)

T, where T denotes the
transposition, also defines a representation�T:Bn → GLn−1(�).

Proposition5.2. The restriction of the functorF toBn gives a linear anti-representationBn → GLn−1(�)
which is the dual of�T.

Proof. Consider two braids�,  ∈ Bn. By Proposition 5.1,N(�) (resp.N(), N(�)) is the graph of
a unitary automorphismf� (resp.f, f�) of H1(D̂�). Note that the product� ∈ Bn represents the
composition ◦ � in the category of tangles. Clearly,f� = f ◦ f�. Therefore,F restricted toBn is an
anti-representation. In order to check that it corresponds to the dual of�T, we just need to verify that
these anti-representations coincide on the generators�i of Bn.

Denote byfi the unitary isomorphism corresponding to�i . We shall now compute the matrix offi
with respect to the basisv1, . . . , vn−1 of H1(D̂�). Consider the homeomorphismhi of D� associated with
�i . As shown inFig. 4, its action on the loopsej is given by

hi(ej )=
{
eiei+1e

−1
i if j = i,

ei if j = i + 1,
ej else.

Therefore, the liftĥi of hi satisfies

ĥi(êj )=
{
êi − t (êi − êi+1) if j = i,

êi if j = i + 1,
êj else,
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and the matrix offi = (ĥi)∗ with respect to the basisvj = êj − êj+1 is

Mf1 =
(−t 1

0 1

)
⊕ In−3, Mfn−1 = In−3 ⊕

(
1 0
t −t

)
,

Mfi = Ii−2 ⊕
(1 0 0
t −t 1
0 0 1

)
⊕ In−i−2 for 2�i�n− 2.

This is exactly�(�i) (see, for instance,[1, p. 121]). �

5.2. String links

An (�, �′)-tangle	= 	1∪ · · · ∪ 	n ⊂ D2× [0,1] is called anoriented string linkif every component	j
of 	 joinsD2 × {0} andD2 × {1}. Oriented string links clearly form a categoryStringswhich satisfies

Braids ⊂ Strings⊂ Tangles,

where all the inclusions denote embeddings of categories.

Proposition 5.3. The restriction ofF to the subcategory of oriented string links gives a functorStrings→
U0

�.

Proof. Since 	 is an oriented string link, the inclusionsD� ⊂ X	 and D�′ ⊂ X	 induce isomor-

phisms in integral homology. Therefore, the induced homomorphismsH1(D̂�;Q)
i	→H1(X̂	;Q) and

H1(D̂�′ ;Q)
i′	→H1(X̂	;Q) are isomorphisms (see e.g.[4, Proposition 2.3]). SinceQ = Q(�) is a flat

�-module, ker(j	)⊗Q is the kernel of

H1(D̂�;Q)⊕H1(D̂�′ ;Q)
i′	−i	−→H1(X̂	;Q).

Hence,

F(	)= ker(j	)= (ker(j	)⊗Q) ∩ (H1(D̂�)⊕H1(D̂�′))= �0
�,

the restricted graph of the unitaryQ-isomorphism�= (i′	)−1 ◦ i	. �

If all the components of an oriented string link	 are oriented from bottom to top, we will simply speak
of 	 as astring link. By Proposition 5.3, the restriction ofF to the category of string links gives a functor
to the categoryU0

�. This functor is due to Le Dimet[5] and was studied further in[4].

5.3. Elementary tangles

Every tangle	 ∈ T (�, �′) can be expressed as a composition of theelementary tanglesgiven inFig. 5,
where the orientation of the strands is determined by the signs� and�′. We shall now compute explicitly
the functorF on these tangles, assuming that�� �= 0.

Let us start with the tangleu ∈ T (�, �′). Here,H1(D̂�)=⊕n−3
i=1 �vi andH1(D̂�′)=⊕n−1

i=1 �v′i where
vi=êi−êi+1 andv′i=ê′i−ê′i+1. Moreover,Xu is homeomorphic to the exterior of the trivial(�′′, �′′)-tangle,
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Fig. 5. The elementary tangles.

where�′′ = (−�′1, �1, . . . , �n−2) = (�′2, . . . , �′n). Hence,H1(X̂u) =⊕n−2
i=1 �v′′i with v′′i = ê′′i − ê′′i+1 and

the homomorphismju:H1(D̂�)⊕H1(D̂�′) → H1(X̂u) is given byju(vi)=−v′′i+1 for i = 1, . . . , n− 3,
ju(v

′
1)= 0 andju(v′i)= v′′i−1 for i = 2, . . . , n− 1. Therefore,

N(u)= ker(ju)= ker(ju)= �v′1 ⊕
n−3⊕
i=1

�(vi ⊕ v′i+2).

Similarly, we easily compute

N(�)= �v1 ⊕
n−3⊕
i=1

�(vi+2 ⊕ v′i).

Now, consider the oriented braid�i ∈ T (�, �′) given inFig. 5. Then,N(�i) is equal to the graph�fi of
a unitary isomorphismfi :H1(D̂�) → H1(D̂�′). As in the proof of Proposition 5.2, we can compute the
matrixMfi of fi with respect to the basesv1, . . . , vn−1 of H1(D̂�) andv′1, . . . , v′n−1 of H1(D̂�′):

Mf1 =
(−t �2 1

0 1

)
⊕ In−3, Mfn−1 = In−3 ⊕

(
1 0
t �n −t �n,

)
,

Mfi = Ii−2 ⊕
( 1 0 0
t �i+1 −t �i+1 1

0 0 1

)
⊕ In−i−2 for 2�i�n− 2.
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Finally, consider the tangle�−1
i given inFig. 5. Since it is an oriented braid,N(�−1

i ) is equal to the graph
of a unitary isomorphismgi :H1(D̂�′) → H1(D̂�). Furthermore, we have

diagH1(D̂�)
=N(id�)=N(�−1

i ◦ �i)=N(�−1
i ) ◦N(�i)= �gi ◦ �fi = �gi◦fi .

Therefore,gi ◦ fi is the identity endomorphism ofH1(D̂�), so the matrix ofgi with respect to the basis
given above is equal toMgi =M−1

fi
.

With these elementary tangles, we can sketch an alternative proof of Lemma 3.3 which does not make
use of the Blanchfield duality. Indeed, any tangle	 ∈ T (�, �′) can be written as a composition of�i ,
�−1
i , u and�. By Lemmas 2.5 and 3.4, we just need to check thatN(�i), N(�−1

i ), N(u) andN(�) are
Lagrangian. ForN(�i) andN(�−1

i ), this follows from Proposition 5.1, Lemma 3.2 and Lemma 2.8. For
N(u) andN(�), it can be verified by a direct computation of��.

Using the results above, it is possible to computeN(	2◦	1) fromN(	1) for any elementary tangle	2 and
a tangle	1. This leads to a recursive computation ofN(	) for (�, �′)-tangles with no closed components
and at least one strand joiningD� with D�′ .

6. Generalizations

6.1. The category of m-colored tangles

Fix throughout this section a positive integerm. An m-colored tangleis an oriented tangle	 together
with a mapc assigning to each component	j of 	 a color c(j) ∈ {1, . . . , m}. The composition of two
m-colored tangles is defined if and only if it is compatible with the coloring of each component. Finally,
we say that anm-colored tangle is anoriented m-colored braid(resp. anoriented m-colored string link)
if the underlying tangle is a braid (resp. a string link).

More formally,m-colored tangles can be understood as morphisms of a category in the following way.
Consider two maps�: {1, . . . , n} → {±1, . . . ,±m} and�′: {1, . . . , n′} → {±1, . . . ,±m}, wheren and
n′ are non-negative integers. We will say that anm-colored tangle(	, c) is a(�,�′)-tangleif the following
conditions hold:

• 	 is an(�, �′)-tangle, where�= �/|�| and�′ = �′/|�′|;
• if xi ∈ D2×{0} (resp.x′i ∈ D2×{1}) is an endpoint of a component	j of 	, then|�(i)| = c(j) (resp.
|�′(i)| = c(j)).

Two(�,�′)-tangles are isotopic if they are isotopic as(�, �′)-tangles under an isotopy that respects the color
of each component. We denote byT (�,�′) the set of isotopy classes of(�,�′)-tangles. The composition
of oriented tangles induces a compositionT (�,�′)× T (�′,�′′) → T (�,�′′) for any�,�′ and�′′.

This allows us to define thecategory of m-colored tanglesTanglesm. Its objects are the maps
�: {1, . . . , n} → {±1, . . . ,±m} with n�0, and its morphisms are given by Hom(�,�′) = T (�,�′).
Clearly, orientedm-colored braids and orientedm-colored string links form categoriesBraidsm and
Stringsm such that

Braidsm ⊂ Stringsm ⊂ Tanglesm.
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6.2. The multivariable Lagrangian representation

We now define a functorFm:Tanglesm → Lagr�m
, where�m denotes the ringZ[t±1

1 , . . . , t±1
m ]. This

construction generalizes the functor of Theorem 3.5, which corresponds to the casem=1. It also extends
the works of Gassner for pure braids and Le Dimet for pure string links.

Consider an object ofTanglesm, that is, a map�: {1, . . . , n} → {±1, . . . ,±m} with n�0. Set�� =
(�

(1)
� , . . . , �

(m)
� ) ∈ Zm, where�(j)� =∑

{i|�(i)=±j}sign(�(i)) for j = 1, . . . , m. Using the notation of
Section 3.2, we define

D� =
{
D2\N({x1, . . . , xn}) if �� �= (0, . . . ,0),
S2\N({x1, . . . , xn}) if �� = (0, . . . ,0).

As in the case of oriented tangles, we endowD� with the counterclockwise orientation, a base pointz,
and generatorse1, . . . , en of �1(D�, z). Consider the homomorphism from�1(D�) to the free abelian
groupG�Zm with basist1, . . . , tm given byei �→ t|�(i)|. It defines a regularG-coveringD̂� → D�, so
the homologyH1(D̂�) is a module overZG = �m. Finally, let ��:H1(D̂�) × H1(D̂�) → �m be the
skew-hermitian pairing given by

��(x, y)=
∑
g∈G

〈gx, y〉g−1,

where〈 , 〉:H1(D̂�) × H1(D̂�) → Z is the intersection form induced by the orientation ofD� lifted
to D̂�.

Consider now a(�,�′)-tangle(	, c). Note that�� = ��′ . LetX	 be the compact manifold

X	 =
{
(D2 × [0,1])\N(	) if �� �= (0, . . . ,0),
(S2 × [0,1])\N(	) if �� = (0, . . . ,0),

oriented so that the induced orientation on�X	 extends the orientation on(−D�)  D�′ . We know from
Section 3.3 thatH1(X	)=⊕�

j=1 Zmj if �� �= (0, . . . ,0), andH1(X	)=⊕�
j=1 Zmj/

∑n
i=1 sign(�(i))ei

otherwise. Hence, the coloring of	 defines a homomorphismH1(X	) → G,mj �→ tc(j) which induces a
homomorphism�1(X	) → G extending the homomorphisms�1(D�) → G and�1(D�′) → G. It gives
aG-coveringX̂	 → X	.

Consider the inclusion homomorphismsi	:H1(D̂�) → H1(X̂	) andi′	:H1(D̂�′) → H1(X̂	). Denote
by j	 the homomorphismH1(D̂�)⊕H1(D̂�′) → H1(X̂	) given byj	(x, x

′)= i′	(x′)− i	(x). Set

Fm(	)= ker(j	) ⊂ H1(D̂�)⊕H1(D̂�′).

Theorem 6.1. Let Fm assign to each map�: {1, . . . , n} → {±1, . . . ,±m} the pair (H1(D̂�),��)

and to each	 ∈ T (�,�′) the submoduleFm(	) of H1(D̂�) ⊕ H1(D̂�′). Then, Fm is a functor
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Tanglesm → Lagr�m
which fits in the diagram

where the horizontal arrows denote embeddings of categories.

Proof. Lemmas 3.2, 3.3, 3.4, Proposition 5.1, Proposition 5.3 and their proofs extend to our setting with
obvious changes. The only ‘topological’ facts required are the following:

(i) H1(�D̂�)= 0,
(ii) the �m-moduleH1(D̂�) is torsion-free,

(iii) H1(�X̂	, D̂�  D̂�′) is a torsion�m-module.

The definition of̂D� easily implies that�D̂� consists of copies ofR, so the first claim is checked. SinceD�

has the homotopy type of a 1-dimensional CW-complexY�, the�m-moduleH1(D̂�)=H1(Ŷ�)=Z1(Ŷ�)

is a submodule of the free�m-moduleC1(Ŷ�). Therefore,H1(D̂�) is torsion-free. Finally, the third claim
follows easily from the definitions and the excision theorem.�

6.3. High-dimensional Lagrangian representations

The Lagrangian representation of Theorem 3.5 can be generalized in another direction by considering
high-dimensional manifolds. We conclude the paper with a brief sketch of this construction.

Fix throughout this section an integern�1. In the sequel, all the manifolds are assumed piecewise linear,
compact and oriented. Consider a homology 2n-sphereD. To this manifold, we associate a categoryCD as
follows. Its objects are codimension-2 submanifoldsM of D such thatHn(M)=0. The morphisms between
M ⊂ D andM ′ ⊂ D are given by properly embedded codimension-2 submanifoldsT of D×[0,1] such
that the oriented boundary�T of T satisfies�T ∩ (D×{0})=−M and�T ∩ (D×{1})=M ′, where−M

denotesM with the opposite orientation. The composition is defined in the obvious way.
If DM is the complement of an open tubular neighborhood ofM in D, we easily check thatH1(DM)�

H0(M). Therefore, the epimorphismH0(M) → Z which sends every generator to 1 determines aZ-
coveringD̂M → DM . The lift of the orientation ofDM to D̂M defines aZ-bilinear intersection form on
Hn(D̂M). This gives a�-sesquilinear form onHn(D̂M), which in turn induces a�-sesquilinear form�M

on BHn(D̂M), whereBH= H/Tors�H for a �-moduleH. (Note that�M is skew-hermitian ifn is odd,
and Hermitian ifn is even.) Using the fact thatHn(M) = 0, the proof of Lemma 3.2 can be applied to
this setting, showing that�M is non-degenerate. LetFD(M) denote the�-moduleBHn(D̂M) endowed
with the non-degenerate�-sesquilinear form�M .

Given a codimension-2 submanifoldT of D×[0,1], denote byXT the complement of an open tubular
neighborhood ofT in D × [0,1]. SinceH1(XT )�H0(T ), we have aZ-coveringX̂T → XT given
by the homomorphismH0(T ) → Z which sends every generator to 1. There are obvious inclusions
D̂M ⊂ X̂T and D̂M ′ ⊂ X̂T which induce homomorphismsi and i′ in n-dimensional homology. Let
j :Hn(D̂M)⊕Hn(D̂M ′) → Hn(X̂T ) be the homomorphism given byj (x, x′)= i′(x′)− i(x). It induces
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a homomorphism

BHn(D̂M)⊕ BHn(D̂M ′)
jT−→BHn(X̂T ).

SetFD(T ) = ker(jT ). The proof of Lemma 3.3 can be applied to check thatFD(T ) is a Lagrangian
submodule of(−BHn(D̂M)) ⊕ BHn(D̂M ′). Lemma 3.4 can also be adapted to our setting to show that
FD(T2 ◦ T1)=FD(T2) ◦FD(T1). Therefore,FD is a functor fromCD to the Lagrangian categoryLagr�
amended as follows: the non-degenerate form is Hermitian ifn is even, skew-hermitian ifn is odd.
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