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By assuming that a dark component (dark energy) in the universe strictly obeys the holographic principle,
that is, its entropy is one fourth of the apparent horizon, we find that the existence of the other dark
component (dark matter) is compulsory, as a compensation of dark energy, based on the first law of
thermodynamics. By using the method of dynamical system analysis, we find that there exists a stable
dark energy-dark matter scaling solution at late time, which is helpful to solve the coincidence problem.
For reasonable parameters, the deceleration parameter is well consistent with current observations.

© 2010 Elsevier B.V. Open access under CC BY license. 
1. Introduction

The existence of dark energy is one of the most significant cos-
mological discoveries over the last century [1]. Various models of
dark energy have been proposed, such as a small positive cos-
mological constant, quintessence, k-essence, phantom, holographic
dark energy, etc., see [2] for a recent review. However, although
fundamental for our understanding of the universe, its nature, es-
pecially in the theoretical aspect, remains a completely open ques-
tion nowadays.

The holographic principle is a very important idea in high
energy physics and gets more and more attentions in different
branches of physics. t’ Hooft proposed the first version of the holo-
graphic principle and named it [3]. In this version, the holographic
principle declares that the true laws of inside any surface are ac-
tually a description of how its image evolves on that surface. He
guesses that the horizon of a black plays something as a computer,
where the entropy of a black hole is determined by its event hori-
zon area. That is to say, we can count the number of microstates
of a black hole on a surface. Generally speaking, people should
apply the quantum gravity to the system where the density and
curvature are large enough to the order of Planck scale, such as
a black hole and the initial cosmic singularity. More or less won-
derfully, in quantum field theory, the ultraviolet (UV) cut-off and
infrared (IR) cut-off are suggested to be related to each other [4].
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Therefore, we should not be surprised if the dark energy prob-
lem is finally proved to be a problem of quantum gravity, though
its characteristic energy scale is very low. However, when we ap-
ply the holographic principle to the universe, the first problem we
confront is which surface is the proper surface that the informa-
tion of the volume “holographying to”? In the case of black hole,
the event horizon is a proper holography of the black hole. In the
case of cosmology the result is not so evident. If we just take the
event horizon as the holography for naively mimicking the case
of black hole, we may be embarrassed in a decelerating universe,
since it has no event horizon at all. So, we should find some more
fundamental analogies between black hole physics and cosmology
to find the proper surface.

In the context of black hole physics we believe that the event
horizon of a black hole is the proper surface since every physi-
cal quantity of the black hole, especially the entropy, shows itself
properly on that surface. And they strictly obey the first law of the
thermodynamics. An interesting progress is that Einstein equation
can be reproduced from the proportionality of entropy and horizon
area together with the first law of thermal dynamics, δQ = T dS ,
jointing to heat, entropy, and temperature, where the tempera-
ture is the Unruh temperature to an observer just behind a causal
Rindler horizon [5]. This work pioneers the way how to find the
proper holography besides the case of black hole. In the case of
dynamical solution, a similar procedure reproduces the Friedmann
equation. One needs to apply only the first law of thermodynam-
ics to the trapped surface (apparent horizon) of an FRW universe
and assume the geometric entropy given by a quarter of the appar-
ent horizon area and the temperature given by the inverse of the
apparent horizon [6]. There are several arguments that the appar-
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ent horizon should be a causal horizon and is associated with the
gravitational entropy and Hawking temperature [7]. Hence it seems
that the apparent horizon is the right holography of the universe.1

Up to now, our arguments are at the level of sophistication.
Now we turn our sight to the realistic universe. There are several
different components including baryon matter, non-baryon dark
matter, and maybe dark energy etc., in our universe. We know the
properties of baryon matter well. But, sadly, its entropy obeys the
“volume law” rather than the “area law”. And its entropy is far
from saturating the holographic bound. Also the total entropy of
all the known matters is still much lower than the holographic
bound [8]. So it is interesting to see what will happen if a dark
component of the universe strictly obeys the holographic princi-
ple?

This Letter is organized as follows: In the next section we will
study a model in which a component satisfies the holographic
principle. The dynamical analysis is left in Section 3. We find that
there exists a stable dark matter-dark energy solution at late time,
which is helpful to solve the coincidence problem. We present our
conclusion and some discussions in Section 4.

2. The model

There are decisive evidences that our observable universe
evolves adiabatically after inflation in a comoving volume, that is,
there is no energy–momentum flow between different patches of
the observable universe so that the universe keeps homogeneous
and isotropic after inflation. That is the reason why we can use
an FRW geometry to describe the evolution of the universe. In an
adiabatically evolving universe, the first law of thermodynamics
equals the continuity equation. In a comoving volume the first law
reads,

dU = T dS − p dV , (1)

where U = Ωkρa3 is the energy in this volume, T denotes tem-
perature, S represents the entropy of this volume, and V stands
for the physical volume V = Ωka3. Here, Ωk is a factor related to
the spatial curvature, for spatially flat case Ω0 = 4

3 π , in this Letter
we only consider the spatially flat model, ρ is the energy density
and a denotes the scale factor. For examples, in the case of radia-
tion p = 1/3ρ , then we derive ρ ∼ a−4; in the case of dust p = 0,
then we obtain ρ ∼ a−3; and in the case of vacuum p = −ρ , then
ρ = constant.

Since we know little about the properties of dark energy, es-
pecially in the theoretical side, it is reasonable to study the possi-
bility of a non-adiabatical dark energy. Next we consider the non-
adiabatical evolutions. When the term T dS does not equal zero,
the results are completely different. For instance, it is neither suf-
ficient nor necessary that ρ = constant implies p = −ρ . We will
show it is just the case if a dark component strictly obeys the
holographic principle. To our knowledge, this point scarcely gets
any attention in the literatures.

Based on the investigations in [7,6], the entropy in the apparent
horizon is

S = 8π2μ2

H2
, (2)

where H is the Hubble parameter, μ denotes the reduced Planck
mass. This equation implies that the entropy is exactly one-fourth

1 Note that in the case of a static black hole, the apparent horizon and the event
horizon coincide each other. Thus we also can say the right holography of a black
hole is the apparent horizon in that case.
of the area of the apparent horizon. So, in a comoving volume the
entropy becomes,

Sc = 8π2μ2

H2

a3

H−3
= 8π2μ2 Ha3. (3)

In the above equation we have used an assumption that the en-
tropy is homogeneous in the observable universe. This is not a
tough assumption for we have no good reason that the entropy
density in one region is larger than other regions. Evidently, the
entropy in a comoving volume is not constant. However, as we
discussed before, our observable universe evolves adiabatically af-
ter inflation in any comoving volumes. Thus, if a dark component,
which is called dark energy, satisfies the holographic principle,
it requires the other compensative dark component, which is as-
sumed to be dark matter, such that the total entropy in a comov-
ing volume keeps constant. In this sense, our universe only partly
obeys the holographic principle, which indicates the title: Semi-
Holographic Universe.

With the above supposition and conventions the entropy of the
dark energy satisfies (3),

Sde = 8π2μ2 Ha3. (4)

Correspondingly, the entropy of dark matter in this comoving vol-
ume should be

Sdm = C − Sde, (5)

where C is a constant, representing the total entropy of the co-
moving volume. The Hubble parameter H is determined by the
Friedmann equation,

H2 = 1

3μ2
(ρdm + ρde + Λ), (6)

where ρdm denotes the density of non-baryon dark matter, ρde
denotes the density of dark energy, and Λ is the cosmological con-
stant (or vacuum energy). In this preliminary research, we omit the
baryon matter since its partition is very small and does little work
in the late time universe. However we introduce the cosmologi-
cal constant because we want not only to consider a more general
case, but also to show that the holographic dark energy and dark
matter require each other even if there is a cosmological constant.
And furthermore, we will see that the cosmological constant plays
an important role in the final state of the universe.

3. Dynamical analysis

To investigate the evolution in a more detailed way, we take a
dynamical analysis of the universe.

The holographic principle requires that the temperature [6]

T = H

2π
. (7)

By using (7), (6), and (4), the first law of thermal dynamics (1)
becomes the evolution equation of dark energy,

2

3
ρ ′

de = ρdm(1 − wdm) − ρde(1 + 3wde) + 2Λ, (8)

where a prime denotes the derivative with respect to ln a, wdm
indicates the equation of state (EOS) of dark matter, and wde rep-
resents the EOS of dark energy. Similarly, we derive the evolution
equation of dark matter,

2
ρ ′

dm = −ρdm(3 + wdm) + ρde(−1 + wde) − 2Λ. (9)

3
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For convenience we introduce two new dimensionless functions to
represent the densities,

u � ρdm

3μ2 H2
0

, (10)

v � ρde

3μ2 H2
0

, (11)

and a dimensionless cosmological constant

λ � Λ

3μ2 H2
0

, (12)

where H0 denotes the present Hubble parameter. Then the equa-
tion set (9), (8) becomes

2

3
u′ = −u(3 + wdm) + v(−1 + wde) − 2λ, (13)

2

3
v ′ = u(1 − wdm) − v(1 + 3wde) + 2λ, (14)

respectively. We note that the time variable does not appear in the
dynamical system (13) and (14) because time has been completely
replaced by scale factor.

Before presenting the numerical examples for special parame-
ters we study the analytical property of this system. The critical
points of dynamical system (13) and (14) are given by

u′
c = v ′

c = 0, (15)

which yields,

uc = −λ
wde + 1

2wde + wdm wde + 1
, (16)

vc = λ
wdm + 1

2wde + wdm wde + 1
. (17)

So, finally the universe enters a de Sitter phase, and the ratio of
dark matter over dark energy is

uc

vc
= − 1 + wde

1 + wdm
. (18)

We see that the final ratio is independent of the cosmological
constant. There are two reasonable cases: case I, wde < −1 and
wdm > −1; case II, wde > −1 and wdm < −1, since we should re-
quire both of the final densities of dark matter and dark energy are
positive. Physically, it is easy to understand. Since one of the dark
components flows out entropy (surely with energy) to the other
dark component, at the same time it keeps a constant density, its
apparent EOS should be less than −1, like phantom, for similar
mechanism, see [9].

Now we consider the degenerated case in which λ = 0. Under
this condition the equation set (13) and (14) become homoge-
neous. A non-trivial solution implies its determinate of coefficients
equals zero,

1 + 2wde + wdm wde = 0. (19)

Under this condition the ratio of dark matter over dark energy
reaches the same as in the case with a λ,

uc

vc
= − 1 + wde

1 + wdm
. (20)

But, this ratio of dark matter and dark energy will keep the same
value in the whole history of the universe, that is, dark matter
and dark energy always evolve in the same way: It is not a very
interesting case.
Fig. 1. The evolutions of q in semi-holographic universe (solid curve) and in �CDM
(dashed curve), respectively.

If the present dark energy dominated universe can be an at-
tractor of the dynamical evolution, it is helpful to overcome the
coincidence problem. To confirm the critical point of the system is
an attractor, we need the stability property of it. Imposing a per-
turbation to the critical points, we derive,

2

3
(δρdm)′ = −δρdm(3 + wdm) + δρde(−1 + wde), (21)

2

3
(δρde)

′ = δρdm(1 − wdm) − δρde(1 + 3wde). (22)

Note that we have assumed both wdm and wde are constant from
the beginning. The eigenvalues of this system read,

l1 = 1

2

(−wdm + wde

+
√

16 + w2
dm + 32wde + 14wdm wde + w2

de

)
, (23)

l2 = 1

2

(−wdm + wde

−
√

16 + w2
dm + 32wde + 14wdm wde + w2

de

)
. (24)

Stability implies all of real parts of the eigenvalues are less than
zero, which requires,

wde < Min

{
−1,− 1

2 + wdm

}
, (25)

when wdm > −2. The system will be unstable for any wde when
wdm � −2. Therefore, case I is stable while case II is unstable.

The most significant parameter from the viewpoint of obser-
vations is the deceleration parameter q, which carries the total
effects of cosmic fluids. Using (6), (8), and (9) we obtain the decel-
eration parameter in this model

q = − ä

a

1

H2
= 1

2

ρdm(1 + 3wdm) + ρde(1 + 3wde) − 2λ

ρdm + ρde + λ
. (26)

For a numerical example, we take the terminal ratio of dark energy
to dark matter 1:1, the present dark matter partition u0 = 0.25, the
present holographic dark energy partition v0 = 0.01, correspond-
ingly λ = 0.74.

Fig. 1 illuminates the evolution of deceleration parameter. As a
simple example we just set wdm = −0.4, wde = −1.4. From the
figure one see that current q ∼ −0.75 and at the high redshift
region it goes to 0.5, which is well consistent with current ob-
servations [2,10]. As a comparison, we plot the evolution of the
deceleration parameter in a spatially flat �CDM, in which we set
Ωdm = 0.25. One sees that the deceleration parameter more swiftly



180 H. Zhang et al. / Physics Letters B 694 (2010) 177–180
Fig. 2. The effective EOS of dark matter wdme as a function of − ln a.

approaches 0.5 (standard dark matter model, SCDM for short) in
this semi-holographic model than that of �CDM.

One may be confused why we can endow a negative EOS to the
dark matter. In fact, its evolution do not depend on this apparent
EOS, but the effective EOS. We define the effective EOS as the fol-
lowing procedure. Supposing the dark matter evolves adiabatically
itself, we obtain its evolution from (1),

dρdm + 3(ρdm + peff)
da

a
= 0, (27)

where peff denotes the effective pressure of dark matter. Then we
obtain

wdme � peff

ρdm
= 1

2
+ 1

2
wdm + v

2u
(1 − wde) + λ

u
, (28)

which is a variable in the evolution history of the universe. Fig. 2
displays wdme as a function of ln a, in which we set the same pa-
rameters as in Fig. 1. This figure shows that the dark matter is
effectively very stiff in the current time, but quickly gets softer
and becomes ordinary dust in a higher redshift region. The corre-
sponding effective EOS of dark energy wdee is illuminated in Fig. 3.
From this figure we know that the dark energy currently evolves
as phantom and becomes a cosmological constant in some high
redshift region.

Associating Fig. 1 with Figs. 2 and 3, we conclude that the uni-
verse is dominated by dark matter, whose effective EOS weff = 0,
in some high redshift region, such as z > 1.5 (− ln a > 0.92) and
hence essentially SCDM recovers.

The other point deserves to note is that we only introduce a lit-
tle bit of holographic dark energy (in the above example 1%), the
final state changes heavily. It evolves into a dark energy-dark mat-
ter scaling solution, which shed light on the coincidence problem.
The dark matter will be diluted rapidly if we do not introduce it,
which yields coincidence.

4. Conclusion and discussion

We present a cosmological model inspired by holographic prin-
ciple, especially the previous studies of the relation between ther-
mal dynamics and general relativity, in which the entropy of the
dark energy is one-fourth of the area of the apparent horizon. We
find that under this condition the dark energy must evolve non-
Fig. 3. The effective EOS of dark energy wdee as a function of − ln a.

adiabatically. But the total matter in a comoving volume should
evolve adiabatically. Hence a compensating component should ex-
ist, which we called dark matter.

We find a future attractor solution, which is a stable scaling
solution for the dark matter-dark energy system in some proper
region of the parameters wdm, wde. The final ratio of dark matter
to dark energy only depends wdm, wde, which is independent on
the initial values of the densities of dark matter and dark energy.
This result is helpful to solve the coincidence problem.

In a numerical example, we find that the deceleration parame-
ter can be well consistent with observations.

In this Letter only a spatially flat universe is discussed. The
model with a non-vanishing spatial curvature need to be investi-
gated further. Also, as a phenomenological model, the parameters
should be constrained by observation data further.

The derivation of Friedmann equation from the assumption that
the entropy is a quarter of its apparent horizon is strict and does
not depend on the energy scale. Hence, we expect that the holo-
graphic component may have remarkable effects in the early uni-
verse.
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