
Theoretical Computer Science 243 (2000) 339–361
www.elsevier.com/locate/tcs

Composing leads-to properties

David Meier a, Beverly Sanders b;∗

a Pilgerweg 1, 8044 Zurich, Switzerland
bDepartment of Computer and Information Science and Engineering, University of Florida,

Gainesville, FL 32611-6120 USA

Received April 1996; revised June 1998
Communicated by M. Sintzo�

Abstract

Compositionality is of great practical importance when building systems from individual com-
ponents. Unfortunately, leads-to properties are not, in general, compositional, and theorems de-
scribing the special cases where they are, are needed. In this paper, we develop a general
theory of compositional leads-to properties, and use it to derive a composition theorem based
on the notion of progress sets, where progress sets can be de�ned in various ways. Appropri-
ate de�nitions of progress sets yield new results and generalized versions of known theorems.
c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: parallel composition; veri�cation; leads-to; commutativity

1. Introduction

Although leads-to properties are not compositional, in general, it is worthwhile to
identify the special cases where they are. Composition theorems for leads-to properties
have been proposed, for example, in [15, 16, 19]. In this paper, we develop a general
theory about composition of leads-to properties, then specialize the results to give a
composition theorem based on the notion of progress sets. A progress set for a program
F and target q is a set of predicates closed under taking conjunctions and disjunctions
and satisfying certain properties expressible by weakest preconditions. The theorem
essentially states that if for each predicate in the progress set, program G satis�es
a particular property, then any “leads-to q” property that holds for F , also holds in
the parallel composition of F and G. Several di�erent composition theorems can be
obtained by choosing particular ways of constructing progress sets.

∗ Corresponding author.
E-mail address: sanders@cise.u.edu (B. Sanders).

0304-3975/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(98)00233 -3

340 D. Meier, B. Sanders / Theoretical Computer Science 243 (2000) 339–361

First, we will introduce our program model, de�ne the necessary background infor-
mation, and develop a very general theorem for composing programs in a way that
preserves leads-to properties. This theorem is then specialized to obtain the main re-
sult of the paper – a composition theorem based on progress sets. Finally, we explore
di�erent choices for the way a progress set is constructed and give several useful
corollaries.

2. Preliminaries

2.1. Programs and properties

A program F is a pair (VF; SF) where V is a set of typed variables and S is a
set of predicate transformers that includes the identity transformer and represents the
weakest preconditions of a set of nonmiraculous, always terminating, and boundedly
nondeterministic commands. Thus each s∈ SF is universally conjunctive, strict w.r.t.
false, and or-continuous. Since the identity transformer corresponds to the command
skip, all programs in our model allow stuttering steps. The state space of F is a
Cartesian product with a coordinate for each variable of V . If VF is the empty set, the
state space is a single state representing the empty Cartesian product.
A computation of F is an initial state �0, and a sequence of pairs (si; �i); i¿0,

where si ∈ S is a command and �i is a program state, and execution of command si
can take the program from state �i−1 to state �i, for i¿0, and each command in the
program appears in�nitely often. This de�nition follows the one in [4] or may also be
viewed as a generalized version of UNITY [3] with no initially section. In contrast with
UNITY, our model does not explicitly restrict the initial condition of a program. Thus
we will not be able to use a rule such as the UNITY substitution axiom to eliminate
states unreachable from a speci�ed initial state from consideration. We will, however,
take into account that after any point in the computation, not just the initial one, some
states may be no longer reachable or are not reachable in some interval of interest.
Now we de�ne several predicate transformers and program properties. The square

brackets in the de�nitions are the everywhere operator from [7].

The predicate transformers awp:F and properties co and stable. The predicate trans-
former awp [4], is de�ned as

[awp:F:q≡ (∀s : s∈ SF : s:q)]: (1)

Using awp.F, we de�ne a property co.F [4, 17] that describes the next state relation
of the program F .

p coF q= [p⇒ q∧ awp:F:q]: (2)

Operationally, p coF q means that if p holds at some point during a computation, then
q holds and will still hold after executing any command of F .

D. Meier, B. Sanders / Theoretical Computer Science 243 (2000) 339–361 341

The property stable.F.q is de�ned as

stable:F:q= [q⇒ awp:q]; (3)

which indicates that q will never be falsi�ed by any command of F .

Re�nement of awp:F . For two programs F and F ′, we say that F is re�ned by F ′, 1

denoted F6F ′ when the following formula holds.

(∀p : [awp:F:p⇒ awp:F ′:p]) (4)

For our purposes in this paper, we use the fact that if F is re�ned by F ′, every co
property of F is also a co property of F ′.

The predicate transformer wens:F:s, and properties ensures and leads-to (). The
weakest predicate that will hold until q does, and which will be taken to q by a single
s step is denoted wens.F.s.q. It is de�ned as

[wens:F:s:q≡ �x : [x≡ (s:q∧ awp:F:(q∨ x))∨ q]]: (5)

The predicate transformer wens.F.s is monotonic (i.e. [p⇒ q]⇒ [wens:F:s:p⇒wens:
F:s:q]) and weakening (i.e. [q⇒wens:F:s:q]).
From predicate calculus and the �xed point induction rule,

[p∧¬q⇒ (s:q∧ awp:F:(q∨p))]⇒ [p⇒wens:F:s:q]: (6)

From [4] we have a rule stating that if a predicate is stable, then its wens is also stable.

stable:F:q⇒ stable:F:(wens:F:s:q): (7)

If [t ∧¬q⇒ awp:F:t] holds, then operationally, we have that if t ∧¬q holds, at some
point, then t will continue to hold while ¬q does, and it will also hold after the step
that has established q. In this case, the states that satisfy both t and wens.F.s.q are the
same as those satisfying both t and wens:F:s:(q∧ t):

[t ∧¬q⇒ awp:F:t]⇒ [t ∧wens:F:s:q≡ t ∧wens:F:s:(t ∧ q)]: (8)

Proof of (8). The proof is by mutual induction.

true
= {With [p≡wens:F:s:q], from the de�nition of wens (5)}
[p≡ s:q∧ awp:F:(p∨ q)∨ q]

⇒ {predicate calculus}
[p∧¬q⇒ s:q∧ awp:F:(p∨ q)]

⇒ {hypothesis, [t ∧¬q⇒ awp:F:t]}

1 This de�nition of re�nement only considers safety properties. A more general notion, where progress
properties are taken into account is described in [21].

342 D. Meier, B. Sanders / Theoretical Computer Science 243 (2000) 339–361

[p∧ t ∧¬q⇒ s:q∧ awp:F:(p∨ q)∧ awp:F:t]
= { def awp; ∧ idempotent, thus [awp:F:t≡ awp:F:t ∧ s:t]}
[p∧ t ∧¬q⇒ s:q∧ s:t ∧ awp:F:(p∨ q)∧ awp:F:t]

= {s; awp:F conjunctive}
[p∧ t ∧¬q⇒ s:(q∧ t)∧ awp:F:((p∨ q)∧ t)]

= {predicate calculus}
[(p∧ t)∧¬(q∧ t)⇒ s:(q∧ t)∧ awp:F:((p∧ t)∨ (q∧ t))]

⇒ { (6), p := (p∧ t); q := (q∧ t)}
[(p∧ t)⇒wens:F:s:(q∧ t)]

= {predicate calculus, p :=wens.F.s.q}
[(t ∧wens:F:s:q)⇒ t ∧wens:F:s:(q∧ t)]

and
true

= {predicate calculus}
[(q∧ t)⇒ q]

⇒ {wens:F:s monotonic}
[wens:F:s:(q∧ t)⇒wens:F:s:q]

⇒ {∧ monotonic}
[t ∧wens:F:s:(q∧ t)⇒ t ∧wens:F:s:q]:

The ensures property p ensures q in F [3] can be de�ned as

p ensures q≡ (∃s : [p⇒wens:F:s:q]): (9)

Operationally, this means that if at some point p∧¬q holds, then eventually q will
hold, and furthermore, there is a single command that, when executed, will
establish q.
From (8), we easily obtain

t ∧¬q coF t ∧p ensures q⇒p∧ t ensures q∧ t: (10)

From [3], p F q, read p leads-to q in F , is the unique strongest relation (on
predicates) satisfying

[p ensures q]⇒p F q; (11)

[p ensures r]∧ r F q⇒p F q; (12)

(∀w :w∈W :w F q)⇒ (∃w :w∈W :w) F q; (13)

where W is an arbitrary set of predicates on the state space of F .
A function from programs to predicate transformers wlt (weakest leads-to) has been

given in [10, 11] where

p F q= [p⇒wlt:F:q] (14)

We will give a new formulation of wlt below.

D. Meier, B. Sanders / Theoretical Computer Science 243 (2000) 339–361 343

Notation for theorems. We often write theorems in the following form: First we list
the preconditions, each beginning on a new line, then follows the implication arrow or
an equivalence sign, after it the conclusion of the theorem.

2.2. The weakest ensures set of q; E:F:q

Now, we introduce a new concept. For program F and predicate q, E.F.q is de�ned
as the minimal set of predicates satisfying

q∈E:F:q; (15)

p∈E:F:q⇒wens:F:s:p∈E:F:q; (16)

(∀w :w∈W :w∈E:F:q)⇒ (∃w :w∈W :w)∈E:F:q; (17)

where W is an arbitrary set of predicates on the state space of F .
Note that the two properties (15) and (16) are closely related to the base property

(11) and the transitivity property (12) of leads – to above, and that (17) corresponds
to (13) of the leads – to de�nition.
Some properties of E:F:q that will be used later are

p∈E:F:q⇒ [q⇒p] (18)

and

p F q=(∃r : r ∈E:F:q : [p⇒ r]) (19)

or alternatively,

wlt:F:q≡ (∃r : r ∈E:F:q : r): (20)

Induction on the structure of E:F:q. We will frequently need to show that all predicates
in the weakest ensures set E.F.q, have a certain property, for example that all are
stable.G for some program G. A look at the three conditions (15), (16) and (17)
shows that we can prove that all elements of E.F.q have a property by showing that
(1) the property holds for q,
(2) if the property holds for r then for all s, the property holds for wens.F.s.r,
(3) if the property holds for all ri with i∈ I then the property holds for (∃i : i∈ I : ri).

Several proofs in the sequel will use induction on the structure of E:F:q.

2.3. Parallel Composition

For two programs F =(VF; SF) and G=(VG; SG), their parallel composition or union,
denoted F‖G is de�ned as

F‖G=(VF ∪VG; SF ∪ SG): (21)

344 D. Meier, B. Sanders / Theoretical Computer Science 243 (2000) 339–361

Parallel composition is only de�ned when common elements of VF and VG have the
same type, however, we will assume that F‖G is de�ned whenever we write it. Pred-
icates on the state space of, say F , may be also be viewed as predicates on the state
space of F‖G since the union may only increase the number of variables.
The following theorems follow easily from the de�nitions:

[awp:F:q∧ awp:G:q≡ awp:F‖G:q]; (22)

[wens:F‖G:s:q⇒wens:F:s:q]; (23)

([p= t ∧wens:F:s:q]∧ [¬q∧ t⇒ awp:F:t]∧
[p∧¬q⇒ awpG(p∨ q)]) (24)

⇒
[p⇒wensF‖Gsq]

The asymmetry of (23) and (24) is due to the asymmetry of the problem we study.
We assume that we know that p F q and look for conditions for which this implies
p F‖G q.

3. Composing leads-to properties

While co and ensures admit simple composition theorems [3], simple composition
theorems do not hold, in general, for leads-to properties. We can, however, use the
relationship between leads-to properties and the elements of E.F.q to give a general
composition theorem that provides a starting point for more useful theorems.
Below, we give a union theorem for E.F.q. Intuitively, the theorem says that if for

every predicate r in E.F.q, if r ∧¬q holds at some point, then r continues to hold
until q is established, then r is also in E:F‖G:q. The theorem is actually more general,
introducing a predicate t satisfying [t ∧¬q⇒ awp:F:t]. This allows us, in essence, to
restrict attention to the parts of the state space satisfying t.

Union Theorem for E:F:q:

[¬q∧ t⇒ awp:F:t] (25)

(∀r : r ∈E:F:q : [¬q∧ (r ∧ t)⇒ awpG(r ∧ t)]) (26)

⇒
(∀r : r ∈E:F:q : (∃r′ : r′ ∈E:F‖G:q : [r ∧ t≡ r′ ∧ t])): (27)

Proof of Union Theorem for E:F:q. We show a stronger result:

(∀r : r ∈E:F:q : (∃r′ : r′ ∈E:F‖G:q : [r′ ⇒ r]∧ [r ∧ t≡ r′ ∧ t])):

D. Meier, B. Sanders / Theoretical Computer Science 243 (2000) 339–361 345

The proof is by induction on the structure of the set E.F.q.
Base:

From (15), for r= q we have r′= q.
Induction with (16):

Let r=wens:F:s:x and r′=wens:F‖G:s:x′.
The induction hypothesis is [x∧ t≡ x′ ∧ t]∧ [x′ ⇒ x], x∈E:F:q

∗ wens:F:s:x∧ t
≡ {(8),(25)}
wens:F:s:(x∧ t)∧ t

⇒ {(24) with
p :=wens:F:s:(x∧ t)∧ t,
q := t ∧ x,
and using that p∧¬q⇒ awp:G:(p∨ q) follows
from (26) and [q⇒ x]}

wens:F‖G:s:(x∧ t)
≡ {induction hypothesis, [x∧ t≡ x′ ∧ t]}
wens:F‖G:s:(x′ ∧ t)

⇒ {wens:F‖G:s monotonic}
∗∗ wens:F‖G:s:(x′)

⇒ {wens:F‖G:s monotonic, induction hypothesis, [x′ ⇒ x]}
wens:F‖G:s:(x)

⇒ {(23)}
∗ ∗ ∗ wens:F:s:(x).

Thus we have, from the starred lines in the proof that
[r′ ⇒ r] and [r ∧ t≡ r′ ∧ t].

Induction with (17):
Follows from the predicate calculus.

As a simple consequence of the union theorem for E.F.q and (19), we obtain a
union theorem for leads-to.

Leads-to Union Theorem

[¬q∧ t⇒ awp:F:t]; (28)

(∀r : r ∈E:F:q : [¬q∧ (r ∧ t)⇒ awp:G:(r ∧ t)]); (29)

⇒

(wlt:F:q)∧ t F‖G q: (30)

Proof. From the union theorem for E.F.q and the fact that wlt:F:q∈E:F:q, we have
(∃r′ : r′ ∈E:F‖G:q : [wlt:F:q∧ t≡ r′ ∧ t]). Thus [(wlt:F:q)∧ t⇒ r′], which, together with
(19), imply (wlt:F:q)∧ t F‖G q.
A corollary of the above is the following.

346 D. Meier, B. Sanders / Theoretical Computer Science 243 (2000) 339–361

Corollary to the leads-to union theorem

p F q

[¬q∧ t⇒ awp:F:t]

(∀r : r ∈E:F:q : [¬q∧ (r ∧ t)⇒ awp:G:(r ∧ t)])
⇒

p∧ t F‖G q:

Note that if t is such that [p⇒ t], then the conclusion is p F‖G q.

Example. In the next example we explore the composition of two simple single state-
ment programs. The variable x is an integer.

F : x := x + 1;

G : x := 2x:

Let q=(x¿k), for some k. First, we determine E.F.q. For a program with a single
command s, wens:F:s:q= q∨ s:q. Using now s:(x¿i)= (x + 1¿i), we get

E:F:q= {i : i6k : (x¿i)}∪ {true}

and [wlt:F:(x¿k)≡ true]. The union theorem can be applied, provided

(∀r : r ∈E:F:q : [¬(x¿k)∧ r ∧ t⇒ (awp:G:(r ∧ t)]); (31)

where [awp:G:(r ∧ t)≡ (x := 2x)(r ∧ t)]. It is easy to see that (31) does not hold for
any k if t is true, however, it does hold for all k if t is x¿0. In addition, this choice
of t satis�es (28). Thus we can conclude from the analysis that

x¿0 F‖G x¿k:

The example indicates the importance of being able to restrict the state space under
consideration. The condition on t essentially says that once t holds in F‖G then it
will continue to hold at least until q, the target, does. We use this to weaken the
requirements on G at the price of having t on the left side of the leads-to properties
of the composed program.
In most cases, one is concerned that a particular progress property of F , say (x¿3)

 (x¿10) is preserved in a composition, and the corollary is applicable. In this case
(x¿3)∧ (x¿0) is just (x¿3). Even though the restriction of the state space to states
satisfying (x¿0) has not impacted the conclusion, it was still needed to apply the
theorem.
The above example shows the usefulness of the predicate t. Because the theorems

are considerably simpler with [t≡ true], we rewrite two of them below.

D. Meier, B. Sanders / Theoretical Computer Science 243 (2000) 339–361 347

Union Theorem for E:F:q for [t≡ true]
(∀r : r ∈E:F:q : [¬q∧ r⇒ awp:G:r])

⇒
E:F:q⊆E:F‖G:q:

Corollary to the leads-to union theorem for [t≡ true]
p F q

(∀r : r ∈E:F:q : [¬q∧ r⇒ awp:G:r])

⇒
p F‖G q:

A generalization of Misra’s �xed point union theorem Directly applying the union
theorem for leads-to is usually not practical. However, we show below how it can be
specialized to yield Misra’s �xed point union theorem.
A predicate q is a �xed point if the state no longer changes once q holds. Formally,

q is a �xed point of G= (∀p : stable:G:(p∧ q)):
Once a program has reached a �xed point, its state no longer changes. The following
theorem follows is a simple corollary of the leads-to union theorem since, from the
de�nition of �xed point, (29) holds for all predicates.

Generalized �xed point union theorem

p F q

[¬q∧ t⇒ awp:F:t]

¬q∧ t is a �xed point of G
⇒

p∧ t F‖G q:

(32)

Misra’s version [15] is obtained from the above with [t≡ true] and the observation
that in this case [¬q∧ t⇒ awp:F:t] hold trivially.

4. A composition theorem using progress sets

In this section, we give conditions under which a set C.F.q of predicates is guaran-
teed to contain E.F.q. The idea is that this set of predicates is easier to describe than
E.F.q.
First, we require that C.F.q is closed under arbitrary conjunction and disjunction.

For arbitrary R:

(∀r : r ∈R : r ∈C)⇒ (∀r : r ∈R : r)∈C; (33)

348 D. Meier, B. Sanders / Theoretical Computer Science 243 (2000) 339–361

(∀r : r ∈R : r ∈C)⇒ (∃r : r ∈R : r)∈C: (34)

Since R may be empty, the above formulae imply that true∈C and false∈C.

The predicate transformer cl:C. Given the set C, we de�ne a predicate transformer
cl.C, where cl.C.r is the strongest predicate in C weaker than r:

cl:C:r≡ �x : x∈C ∧ [r⇒ x]: (35)

The postulated properties of C are su�cient to guarantee the existence of cl.C.r. In
addition, cl.C.r is monotonic, weakening, and universally disjunctive. Also,

[cl:C:r≡ r] = r ∈C: (36)

Progress sets. For a program F , and predicates t and q, we say that C is a progress
set for the triple (F; t; q) if

C is closed under arbitrary conjunction and disjunction (33; 34) (37)

q∈C; (38)

t ∈C ∧ stable:F:t; (39)

(∀m; s : [q⇒m]; s∈F : (t ∧m)∈C⇒ (t ∧ (q∨ s:m))∈C): (40)

As in the previous section the predicate t allows us to restrict attention to the parts of
the state space satisfying t. Conditions (38) and (40) say that q belongs to the progress
set for (F; t; q) and that, in a generalized form, the progress set is closed under taking
weakest preconditions in F .
The following lemma says that if C is a progress set for (F; t; q), then for all

predicates r ∈E:F:q; (r ∧ t)∈C. The lemma will allow us to reformulate the leads-
to union theorem in terms of a progress set instead of E.F.q.

Lemma.

C is closed under arbitrary conjunction and disjunction

q∈C
t ∈C ∧ stable:F:t
(∀m; s : [q⇒m]; s∈ SF : (t ∧m)∈C⇒ (t ∧ (q∨ s:m))∈C)

⇒
(∀r : r ∈E:F:q : (r ∧ t)∈C):

The proof is by induction on the structure of E.F.q. The base case follows from the
hypothesis (i.e. q∈C; t ∈C) and the fact that C is closed under conjunction (33). The
induction step with disjunction follows from the fact that C is closed under disjunction
(34). The remaining induction requires us to show that:

(t ∧m)∈C⇒ (t ∧wens:F:s:m)∈C: (41)

D. Meier, B. Sanders / Theoretical Computer Science 243 (2000) 339–361 349

Let r=wens:F:s:m,
true

= {de�nition of wens:s, (5)}
[r⇒ (s:m∧ awp:F:(m∨ r))∨m]

⇒ {predicate calculus}
[r ∧ t⇒ t ∧ ((s:m∧ awp:F:(m∨ r))∨m)]

= {stable:F:t thus [t≡ awp:t]}
[t ∧ r⇒ t ∧ ((s:m∧ awp:F:(m∨ r)∧ awp:F:t)∨m)]

= {awp:F: conjunctive}
[t ∧ r⇒ t ∧ (s:m∧ awp:F:((m∨ r)∧ t)∨m)]

⇒ {awp monotonic, [((m∨ r)∧ t)⇒ (m∨ (r ∧ t)], weaken right side}
[t ∧ r⇒ t ∧ (s:m∧ awp:F:(m∨ (r ∧ t))∨m)]

⇒ {cl::C: weakening, awp:F: monotonic, weaken right side}
[t ∧ r⇒ t ∧ (s:m∧ awp:F:(m∨ cl:C:(r ∧ t))∨m)]

⇒ {cl:C: monotonic}
[cl:C:(t ∧ r)⇒ cl:C:(t ∧ (s:m∧ awp:F:(m∨ cl:C:(r ∧ t))∨m))]

= {(t ∧ (s:m∧ awp:F:(m∨ cl:C:(r ∧ t))∨m))∈C, see below}
[cl:C:(t ∧ r)⇒ t ∧ (s:m∧ awp:F:(m∨ cl:C:(r ∧ t))∨m)]

⇒ {weaken right side}
[cl:C:(t ∧ r)⇒ s:m∧ awp:F:(m∨ cl:C:(r ∧ t))∨m]

⇒ {�xed point, (6)}
[cl:C:(t ∧ r)⇒wens:F:s:m]

= {de�nition of r}
[cl:C:(t ∧ r)⇒ r]

⇒ [t≡ cl:C:t]; cl:C: monotonic, thus [cl:C:(t ∧ r⇒ t]
[cl:C:(t ∧ r)⇒ t ∧ r]

⇒ {cl:C: weakening, thus [t ∧ r⇒ cl:C:(t ∧ r)]}
[t ∧ r≡ cl:C:(t ∧ r)]

= {de�nition of r, property of cl:C:, (36)}
t ∧wens:F:s:m∈C:

Now we show

(t ∧ (s:m∧ awp:F:(m∨ cl:C:(r ∧ t))∨m))∈C
that was assumed above. By the induction hypotheses t ∧m∈C.

true
= {induction hypothesis}
(t ∧m)∈C

⇒ {C closed under disjunction}
((t ∧m)∨ cl:C:(r ∧ t))∈C

⇒ {predicate calculus, using [cl:C:(r ∧ t)⇒ t]}
(t ∧ (m∨ cl:C:(r ∧ t))

⇒ {hypothesis}
(t ∧ (q∨ s:(m∨ cl:C:(r ∧ t))))∈C

350 D. Meier, B. Sanders / Theoretical Computer Science 243 (2000) 339–361

⇒ {conjunction over s∈TF ; C closed under conjunction}
(t ∧ (q∨ awp:F:(m∨ cl:C:(r ∧ t))))∈C

⇒ {induction hypothesis and hypothesis of lemma give}
(t ∧ (q∨ s:m)); C closed under conjunction}

(t ∧ (q∨ (s:m∧ awp:F:(m∨ cl:C:(r ∧ t)))))∈C
⇒ {(t ∧m); C closed under disjunction, [q⇒m]}
(t ∧ (m∨ (s:m∧ awp:F:(m∨ cl:C:(r ∧ t))))∈C)).

A monotonicity property of progress sets. From the conjunction and disjunction prop-
erties of a progress set C for (F; t; q) one derives the following monotonicity property:

C is a progress set for (F; t; q)

[q⇒ q′]∧ q′ ∈C
⇒

C is a progress set for (F; t; q′):

Now, we have the �nal theorem of this section, and a main result of the paper. It
follows immediately from the lemma and the leads-to union theorem.

Progress set union theorem. Let C be a progress set for (F; t; q).

[q⇒ q′]∧ q′ ∈C (42)

(∀c : c∈C : [¬q∧ c⇒ awp:G:c]) (43)

⇒
(wlt:F:q′)∧ t F‖G q′: (44)

5. Some progress sets

In this section, we give several examples of how progress sets can be de�ned.

The set of all predicates. The set of all predicates on the state space of F is a progress
set for (F; true; q). Then (43) is equivalent to ¬q being a �xed point of G, so that we
get another proof of Misra’s �xed point union theorem.
The set of all predicates is primarily of interest because it demonstrates the existence

of a progress set for every program and predicate.

The set of all stable predicates. The set of all stable predicates of any program on
the appropriate state space is closed under arbitrary conjunction (33) and disjunction
(34) and is therefore a candidate for progress sets.
Rao [19] gave two union theorems for leads-to based on the notion of decoupling

and weak decoupling in terms of stability. His results are

D. Meier, B. Sanders / Theoretical Computer Science 243 (2000) 339–361 351

Rao’s Decoupling Theorem

p F q

stable:G:q

F decsafeG

⇒
p F‖G q;

where

F decsafe G≡ (∀s; r : s∈ SF ∧ stable:G:r : stable:G:s:r)

and

Rao’s Weak Decoupling Theorem

p F q

stable:F‖G:q
F wdecsafe G

⇒
p F‖G q;

where

F wdecsafe G≡F decsafe F‖G:

Both of these theorems are simple corollaries of the progress set union theorem. For
the decoupling theorem, let C:F:q= {r|stable:G:r}. From F decsafe G and stable:G:q;
C:F:q is a progress set for (F; true; q). Since stable:G:r⇒ r ∧¬q coG r, the theo-
rem follows. For the weak decoupling theorem, let C:F:q= {r|stable:F‖Gr}. From
F wdecsafe G, and stable:F‖Gq, C:F:q is a progress set for (F; true; q). Since stable:
F‖Gr⇒ r ∧¬qcoG r, the theorem follows.
Rao used these results to explore notions of commutativity that allow compositional

progress results rather than advocating their direct use in programming. Indeed, di-
rect use would seem to be counterproductive since the theorems themselves are rather
noncompositional, requiring detailed knowledge of both F and G in order to determine
whether they are decoupled or weakly decoupled.
On the other hand, our more general theorem can be used in a similar, but more

“compositional” way where F and G can be decoupled via a third program G′. Instead
of checking whether two programs F and G are decoupled or weakly decoupled, given
F , we choose a program G′ so that the set of stable predicates of G′ is a progress set
for F . Ideally, G′ is chosen so that its set of stable predicates has a simple structure and
is easily described. Then, to compose a program G with F , it is only necessary to check
that G satisfy (43) for the stable predicates of G′. It su�ces that G is re�nement of G′,

352 D. Meier, B. Sanders / Theoretical Computer Science 243 (2000) 339–361

thus the stable predicates of G′ are stable in G, and we have the following corollary
of the progress set union theorem.

Decoupling via G′ union theorem. Let the set of all stable predicates of G′ be a
progress set for (F; true; q).

G′6G

⇒
wlt:F:q F‖G q: (45)

It is worth noting that when the set of stable predicates of G is taken as a progress
set, C, then cl:C:r is the strongest stable predicate weaker than r in G, or sst:G:r [20].
The set of states of G that are reachable from r is given by sst:G:r.

Additional program properties that generate potential progress sets. In the previous
section, we discussed using the set of all stable properties of some program G as a
potential progress set for (F; t; q). In this section, we give three more program properties
that are slightly weaker than stable such that all predicates satisfying the property
for some program G are closed under conjunction and disjunction and are therefore
potential progress sets for (F; t; q). (We still need to check the remaining conditions
on progress sets.) Like the set of all stable predicates, all of the predicates so obtained
satisfy (43) for G.

Stable.G-not-leaving-q

{r|r ∧¬q coG r ∧ [r ∧ q coG r ∨¬q]}: (46)

In this case, cl:C:r is the set of states that are reachable from r along a sequence
of states satisfying the requirement that once q holds for some state in the sequence,
it holds for all later states in the sequence.
For two states � and connected by such a sequence we write � Reach.G.nl.q .

Stable.G-not-leaving-q-all-directions

{r|r ∧ (¬q∨ awp:q) coG r}: (47)

Here, cl.C.r is the set of states that are reachable from r via a sequence of states
where once q holds, the sequence cannot be extended without maintaining q.

Stable.G-outside-q

{r|r ∧¬q coG r}: (48)

In this latter case, cl.C.r is the set of states that are reachable from r via a sequence
of states where q holds for at most the �nal state in the sequence.

D. Meier, B. Sanders / Theoretical Computer Science 243 (2000) 339–361 353

Also, note that for each of these choices for C, q∈C trivially, thus providing al-
ternatives to the set of all stable predicates, which requires that q be stable in G. For
later use we also note that a predicate p with [q⇒p] satis�es (46) and (47) if it
satis�es (48).

Progress sets from a relation. Let R be a reexive, transitive relation on the state
space and � and be representative states. Then the set of predicates r such that

(∀�; : r:�∧ �R⇒ r:) (49)

is closed under arbitrary conjunction and disjunction. 2

5.1. Composition theorems based on monotonicity and commutativity

The previous section listed several ways that sets of predicates closed under arbitrary
conjunction and disjunction can be generated. In this section, we give two theorems
that are helpful in showing (40), repeated here for convenience, under the assumption
of (33, 34, 38, and 39).

(∀m; s : [q⇒m]; s∈F : (t ∧m)∈C⇒ (t ∧ (q∨ s:m)) ∈ C) (50)

Commutativity of cl:C and command. Assuming (33, 34, 38, and 39), the following
implies (40):

(∀s : s∈ SF : (∀m : [q⇒m] : [cl:C:(t ∧ s:m)⇒ t ∧ (q∨ s:(cl:C:(t ∧m)))])) (51)

Proof.

[q⇒m]∧ t ∧m ∈ C
⇒ {(51) and cl:C:t ∧m= t ∧m}
[cl:C:t ∧ s:m⇒ t ∧ (q∨ s:(t ∧m))]

⇒ {monotonicity of s}
[cl:C:t ∧ s:m⇒ t ∧ (q∨ s:m)]

⇒ {disjunction of left and right side with t ∧ q
which is equal cl:C:t ∧ q}

[cl:C:t ∧ q∨ cl:C:t ∧ s:m⇒ t ∧ (q∨ s:m)]
⇒ {disjunctivity of cl:C}
[cl:C:t ∧ (q∨ s:m)⇒ t ∧ (q∨ s:m)]

⇒ {def : of closed}
t ∧ (q∨ s:m)∈C:

In the next theorem, we require that the command corresponding to each s is deter-
ministic and given by a functional state transformer fs.

2 If we let R be de�ned by �R= (cl:C:〈�〉):, where 〈�〉 is the point predicate that holds at � then the
set of predicates generated by R is just C.

354 D. Meier, B. Sanders / Theoretical Computer Science 243 (2000) 339–361

Commutativity of functions and relation. Let R be de�ned by �R=(cl:C:〈�〉):. Then
the condition below implies (51).

(∀s : s∈ SF : (∀�; ∈ state space of F‖G :
� R∧ t:�⇒ q:�∨ q:∨ (fs:� R fs:))): (52)

Proof.

[q⇒ m]∧ (cl:C:t ∧ s:m):
⇒ {de�nition of R}

∃� : �R : (t ∧ s:m):�
⇒ {rewritten with fs using stable F:t}
(t ∧m):fs:�

⇒ {(52)⇒ (q:�∨ q:∨fs:� R fs:)}
q:�∨ q:∨ (cl:Ct ∧m):fs:

⇒ {q ∈ C and �R}
q:∨ (cl:C:t ∧m):fs:

⇒ {rewritten with s instead of fs}
q:∨ (s:cl:C:t ∧m):

⇒ {t ∈ C implies t:�⇒ t:}
(t ∧ (q∨ s:cl:C:t ∧m))::

5.2. Monotonicity

This section gives a composition theorem based on monotonicity with respect to a
partial order 6.
Again, we require that the command corresponding to each s∈ SF and t ∈ SG is

deterministic and given by a functional state transformer fs and gt; respectively.
We use the following de�nitions.
A predicate q is called monotonic with respect to 6 if

(∀�; : q:�∧ (�6)⇒ q:): (53)

A function f is called monotonic with respect to 6 if

(∀�; : (�6)⇒f:�6f:): (54)

A function f is called nondecreasing with respect to 6 if

(∀� : �6f:�): (55)

If we take the set of all monotonic predicates as C, then the condition (∀s : s∈ SF :
fs is monotonic with respect to6) implies (52) and (∀s : s∈ SG : gt is non-decreasing
with respect to 6) implies that all predicates in C are stable and satisfy therefore (43),
so that we have the following corollary:

D. Meier, B. Sanders / Theoretical Computer Science 243 (2000) 339–361 355

For a partial order 6

q is monotonic with respect to 6

(∀s : s∈ SF : fs is monotonic with respect to 6)
(∀s : s∈ SG : gs is non-decreasing with respect to 6)

⇒
wlt:F:q F‖G q:

This result can be applied in many programming situations. One example is PCN,
see for example [8], processes communicate via so-called de�nitional variables. A
de�nitional variable is initially unde�ned and may have assigned a value at most
once. We can express this as monotonicity with respect to the partial order given
by (�6)≡ (� unde�ned ∨ �=). Another example are processes that communicate
by message passing where the partial order is given by the length of the messages that
have been sent along a communication channel.

6. Generalized commutativity conditions

The importance of commutativity in program composition has been known for some
time. Both Lipton [14] and Misra [16] have proposed relevant conditions and their
relationship has been explored by Rao [19]. Here, we give generalized de�nitions of
both Lipton and Misra commutativity and prove a composition theorem using these
results. The advantage of our results is that they apply when q in p q is not stable.
The commutativity conditions are conditions on functions, we therefore assume that

all commands are deterministic and are expressed by functional state transformers fs
for program F and gs for program G. In addition, we assume that for each function,
there is a guard predicate written bs or []fs, and if the guard predicate is false, then
the state is unchanged, i.e.

[¬bs⇒ (fs= id)];

where id is the identity function.
If bs:�, then we say that fs is enabled at � and write this as [�]fs:
Now we assume that we have a second function gt with guard ct . The composition

of functions fsgt is evaluated from the right, i.e. fsgt :�=fs:(gt :�) and we de�ne
enabled for the composition as

[�]fsgt = ct :�∧ bs:gt :�: (56)

Left Lipton commutativity outside q. Lipton proposed a commutativity condition
where left commutativity can be briey stated as: If for all states, [�]fg, then [�]gf
and f:g:�= g:f:�, i.e. if fg is enabled, then so is gf and both give the same result.

356 D. Meier, B. Sanders / Theoretical Computer Science 243 (2000) 339–361

Here, we give a de�nition that applies to states where some predicate q does not hold.
For two guarded functions f and g left Lipton commutativity outside q is given by:

(flco‘:qg)≡
(∀� : ¬q:�∧ [�]fg∧¬q:g:� : [�]gf∧f:g:�= gf:�∧ (q:f:�⇒ q:fg:�)): (57)

Operationally left Lipton commutativity outside q can be described as follows: If �
is outside q, i.e. if ¬q:� and fg is enabled and g:� is outside q, then gf is enabled
and fg= gf and if the result fg:� is outside q then f:� is outside q. Note that if
q=false we get the original de�nition given in [14, 19].
Left Lipton commutativity is extended to programs by requiring all pairs of functions

from the programs to commute. For two programs F and G:

(F lco‘:q G)≡ (∀fs; gt : s∈ S ∧ t ∈T : fs lco‘:q gt): (58)

Misra commutativity outside q. Misra de�ned a slightly di�erent commutativity con-
dition. Two functions f and g Misra commute if at points when both are enabled,
both compositions are enabled and give the same result. As above, we give a modi�ed
condition that applies to states where a predicate q does not hold.
For two guarded functions f and g:

(f com:q g)≡
(∀� : ¬q:�∧ [�]f∧ [�]g : [�]fg∧ [�]gf∧fg:�= gf:�∧
(q:f:�∨ q:g:�⇒ q:fg:�∨ q:f:�∧ q:g:�)): (59)

Operationally this can be described as follows: If � is outside q and f and g are
enabled, then fg and gf are enabled and fg= gf and if the result fg:� is outside q
and if f or g is outside q at �, then both are. If q=false, then we get the original
de�nition of [16].
Misra commutativity is extended to programs in the obvious way. For two programs

F and G:

(F com:q G)≡ (∀fs; gt : s∈ S ∧ t ∈T : fscom:qgt): (60)

Now we show the main result of this section, if we have Left Lipton and Misra
commutativity outside q that the set of predicates that are stable.G-not-leaving-q (46)
are a progress set for (F:true:q).

Commutativity outside q and stable.G-not-leaving-q.

(F lco‘:q G)∧ (F com:q G)
⇒

The set of all predicates that are stable:G-not-leaving-q

is a progress set for (F:true:q):

D. Meier, B. Sanders / Theoretical Computer Science 243 (2000) 339–361 357

Proof. Since q is stable.G-not-leaving-q, it is su�cient to show that (40) holds, or the
stronger (52) with relation Reach:G:nl:q, (46), i.e.

(∀s : s∈ S : � Reach:G:nl:q ⇒ q:�∨ q:∨ (fs:� Reach:G:nl:q fs:))
(1) q:

(� Reach:G:nl:q)∧ q:
⇒

q:�∨ q:∨ (fs:� Reach:G:nl:q fs:);
(2) ¬q:
(2a)

(� Reach:G:nl:q)∧ (� 6=)∧¬q:
⇒ {(46)}

∃�= �0; �1; : : : ; �n= :: (∀i : 06i¡n : ∃t : t ∈T : �i+1 = gt :�i)
∧ (∀i : 06i¡n : q:�i⇒ q:�i+1)

⇒ {omitting all �i with �i+1 = �i}
∃�= �0; �1; : : : ; �n= :: (∀i : 06i¡n : ∃t : t ∈T : [�i]gt ∧ �i+1 = gt :�i)
∧ (∀i : 06i¡n : q:�i⇒ q:�i+1)

⇒ {¬q()}
∃�= �0; �1; : : : ; �n= :: (∀i : 06i¡n : ∃t : t ∈T : [�i]gt ∧ �i+1 = gt :�i)
∧ (∀i : 06i6n : ¬q:�i):

(2b)

s∈ S
⇒ {construction of a set for fs)}
(i : 06i6n : �′i =fs:�i if fs is enabled for �i, �

′
i = �i otherwise):

(2c) It is now su�cient to prove:

∀i : 06i¡n : ∃t : t ∈T : �′i+1 = gt:�′i ∧ (q:�′i ⇒ q:�′i+1)

(2c1) �′i+1 6= �i+1
�′i+1 6= �i+1

⇒ {fs must be enabled at �i+1}
[�i+1]fs ∧ �′i+1 =fs:�i+1

⇒ {By (2a) ¬q(�i)∧ [�i]gt ∧¬q:�i+1 ∧ �i+1 = gt:�i}
¬q:�i ∧ [�i]fsgt ∧¬q:gt :�i ∧ �′i+1 =fsgt :�i

⇒ {F lco‘:q G}
[�i]gtfs ∧ gtfs:�i=fsgt :�i ∧ (q:fs:�i⇒ q:gtfs:�i)

⇒ {�′i+1 =fsgt :�i}
[�i]gtfs ∧ �′i+1 = gtfs:�i

⇒ {[�i]gtfs⇒ [�i]fs; def :�′i}
�′i+1 = gt:�

′
i ∧ (q:�′i ⇒ q:�′i+1):

358 D. Meier, B. Sanders / Theoretical Computer Science 243 (2000) 339–361

(2c2) �′i+1 = �i+1 ∧ �′i 6 = �i
�′i 6= �i

⇒ {fs must be enabled at �i; also by (2a); gt is enabled at �i}
¬q(�i)∧ [�i]fs ∧ �′i =fs:�i ∧ [�i]gt ∧¬q:gt :�i

⇒ {F com:q G}
[�i]fsgt ∧ [�i]gtfs ∧fsgt :�i= gtfs:�i ∧ (q:fs:�i⇒ q:gtfs:�i)

⇒ {[�i]fsgt⇒ [gt:�i]fs}
[�i+1]fs ∧fs:�i+1 = gt:�′i

⇒ {def : of �′i+1}
¬q:�′i ∧ �′i+1 = gt :�′i ∧ (q:�′i ⇒ q:�′i+1):

(2c3) �′i+1 = �i+1 ∧ �′i = �i
By (2a) �′i+1 = gt :�

′
i ∧ (q:�′i ⇒ q:�′i+1):

Now we can state the theorem on commutativity, which follows now from the
progress set union theorem.

Commutativity outside q theorem.

p F r

¬q∧ r co:G r ∨ q
(F lco‘:qG)∧ (F com:qG)

⇒
p F‖G r ∨ q: (61)

The next example applies the theorem to a simple handshaking protocol. The results
of Rao are not applicable here since the target predicate is not stable.

Example. Consumer and producer. Variable x is a local variable of F , y of G. Both
programs share a one element bu�er b.

F: Consumer
consume : x; b := b;⊥if b 6= ⊥
additional assignments that do not modify b
or any variable of G.

G: Producer
produce : b :=y if b=⊥
additional assignments that do not modify b
or any variable of F .

Now b= k F b= ⊥. We want to apply the theorem to show b= k F‖G b= ⊥.

D. Meier, B. Sanders / Theoretical Computer Science 243 (2000) 339–361 359

With q=(b= ⊥), the conditions of the theorem (61) hold:
(1) ¬q∧ r co.G q∨ r holds because in our case r= q.
(2) F lco‘.q G and F com.q G:
Since there is no interaction between between F and G except via b and the value

of q is changed only by consume and produce, we need only look at pairs of functions
involving consume and produce.
The conditions ¬q:�∧ [�]fg∧¬q:g:� or ¬q:�∧ [�]f∧ [�]g never hold if g=

produce, so that the case with f= consume and g 6=produce remains.
The commutativity in this case follows because there is no interaction between

consume and g and q:consume:g holds.

7. Comparison with other work

Another common approach to compositionality (for example, see any of [1, 2, 4–
6, 9, 13, 14, 18, 23]) is to specify programs with 2-part properties variously called
rely=guarantee, hypothesis=conclusion, assumption=commitment, o�ers=using, assump-
tion=guarantee, or guarantees. The common idea is that assumptions about the envi-
ronment form part of the speci�cation of a component. The focus of most of these
works is to provide proof rules allowing a rely=guarantee property to be proved for a
component, and for the rely=guarantee speci�cation of, say F‖G, to be obtained from
the (rely=guarantee) speci�cations of F and G. Care must be taken to deal with the
circularity introduced when the “environment” is some component, say G, also spec-
i�ed with a rely guarantee property and the behavior of G in F‖G also depends on
G’s environment, which includes F .
In [12, 13], for example, this problem is dealt with by considering layered systems,

and only allowing the rely part of a speci�cation to depend on modules at lower layers.
Rules for rely=guarantee properties for UNITY with local variables have been given in
[5, 6]. They de�ne properties of the form

F sat P w:r:t: R;

where F is a program, P is a UNITY property such as leads-to, and R is an inter-
ference predicate constraining the next state relation of the environment. Two com-
ponents cooperate with respect to their interference predicates if neither violates the
interference predicate of the other. Proof rules allow rely=guarantee properties of com-
positions that cooperate with respect to the interference predicates to be derived from
the rely=guarantee properties of the components. In other words, the “rely” part of a
speci�cation is always a constraint on the next-state relation of the environment.
Treatments of rely=guarantee speci�cations in temporal logic frameworks are given,

for example, in [2, 18, 23]. The interpretation of a rely=guarantee speci�cation of F is
“For all computations:: if a computation satis�es the rely property up to some point,
and the next step is a step taken by F , then the guarantee property will be satis�ed at

360 D. Meier, B. Sanders / Theoretical Computer Science 243 (2000) 339–361

least one more step”. In [2], the notation

E
+

−B M
is introduced for this temporal property. Note that this property only makes sense
when E is a safety property. A proof rule allows the determination of rely=guarantee
properties of systems solely from the rely=guarantee properties of components.
In [4], the interpretation of P guarantees Q for temporal properties P and Q is that

in any system containing F , if all computations satisfy P then all computations will
satisfy Q.
In all of these approaches, the “guaranteed” property can typically be an arbitrary

property expressible in some programming logic, and for any component, one is only
interested in dealing with a small set of properties.
Finally, we mention that our theorem on decoupling via G′ (45) is similar to the

approach taken in [22] in that one veri�es a property of a program composed with an
abstract environment, then later proves that the real environment is a re�nement of the
abstract one.
In this paper, we are concerned with understanding how the environment can be

constrained speci�cally in order for the leads-to properties of a program to continue
to hold in a system containing that program. We give several kinds of constraints and
di�erent ways of describing them with the goal of �nding constraints that are weak,
and easy to check. We uni�ed and generalized previous results along these lines.

8. Conclusions

Starting from “�rst principles”, we gave a general composition theorem for leads-to,
then generalized it to a theorem based on the notion of a progress set. Progress sets
proved to be an extremely useful device – by choosing di�erent de�nitions of progress
sets, we were able to obtain several di�erent theorems for composing programs without
invalidating leads-to properties.

References

[1] M. Abadi, L. Lamport, Composing speci�cations, ACM Trans. Program. Languages Systems 15 (1993)
73–132.

[2] M. Abadi, L. Lamport, Conjoining speci�cations, ACM Trans. Program. Languages Systems 17 (1995)
507–534.

[3] K.M. Chandy, J. Misra, Parallel Program Design, a Foundation, Addison-Wesley, Reading, MA, 1988.
[4] K.M.Chandy, B.A. Sanders, Predicate transformers for reasoning about concurrent computation, Sci.

Computer Program. 24 (1995) 129–147.
[5] P. Colette, Composition of assumption-commitment speci�cations in a UNITY style, Sci. Comput.

Program. 23 (1994) 107–125.
[6] P. Colette, E. Knapp, Logical foundations for compositional veri�cation and development of concurrent

programs in UNITY, 4th Int. Conf. on Algebraic Methodology and Software Technology, 1995, Lecture
Notes in Computer Science, vol. 936, Springer, Berlin, 1995.

D. Meier, B. Sanders / Theoretical Computer Science 243 (2000) 339–361 361

[7] E.W. Dijkstra, C.S. Scholten, Predicate Calculus and Program Semantics, Springer, Berlin, 1990.
[8] Foster, Olson, Tuecke, Productive parallel programming: the PCN approach, to appear in Scienti�c

Programming.
[9] C.B. Jones, Tentative steps toward a development Method for interfering programs, ACM Trans.

Program. Languages Systems 5 (1983) 596–619.
[10] C.S. Jutla, E. Knapp, J.R. Rao, A predicate transformer approach to semantics of parallel programs,

Proc. 8th ACM symp. on Principles of Distributed Computing, 1989, pp. 249–263.
[11] E. Knapp, A predicate transformer for progress, Inform. Process. Lett. 33 (1989=90) 323–330.
[12] S.S. Lam, A.U. Shankar, Specifying modules to satisfy interfaces – a state transition approach,

Distributed Comput. 6 (1992) 39–63.
[13] S.S. Lam, A.U. Shankar, A theory of interfaces and modules 1: composition theorem, IEEE Trans.

Software Eng. 20 (1994) 55–71.
[14] R.J. Lipton, Reduction: a method of proving properties of parallel programs, Commun. ACM 18 (1975)

717–721.
[15] J. Misra, A program-composition theorem involving a �xed-point, Notes on UNITY, pp. 28–91.
[16] J. Misra, Loosely coupled processes, Proc. PARLE’91, Parallel Architectures and Languages Europe,

Eindhoven, The Netherlands. Lecture Notes in Computer Science, vol. 506, Springer, Berlin, 1991,
pp. 1–26.

[17] J. Misra, A logic for concurrent programming: safety, J. Computer and Software Eng. 3(2) (1995)
239–272.

[18] A. Pnueli, In transition from global to modular temporal reasoning about Programs, Logics and Models
of Concurrent Systems, Springer, Berlin, 1985, pp. 123–144.

[19] J.R. Rao, Extensions of the unity methodology: compositionality, fairness and probability in parallelism,
Lecture Notes in Computer Science, vol. 908, Springer, Berlin, 1995.

[20] B.A. Sanders, Eliminating the substitution axiom from UNITY logic, Formal Aspects Comput. 3 (1991)
189–205.

[21] B.A. Sanders, Re�nement of mixed speci�cations: a Generalization of UNITY, Acta Informatica 35
(1998) 91–129.

[22] N. Shankar, Lazy Compositional Veri�cation, COMPOS’97, 1997.
[23] E.W. Stark, A proof technique for rely=guarantees properties, Foundations of Software Technology and

Theoretical Computer Science, Lecture Notes in Computer Science, vol. 206, Springer, Berlin, 1985,
pp. 369–391.

