
J. Math. Anal. Appl. 380 (2011) 814–830

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

Long memory in a linear stochastic Volterra differential equation

John A.D. Appleby a, Katja Krol b,∗
a School of Mathematical Sciences, Dublin City University, Dublin 9, Ireland
b Institut für Mathematik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 September 2010
Available online 9 March 2011
Submitted by Steven G. Krantz

Keywords:
Volterra integro-differential equations
Volterra difference equations
Itô–Volterra integro-differential equations
Differential resolvent
Asymptotic stability
Stationary solutions
Long memory
Long-range dependence
Regular variation
Subexponential

In this paper we consider a linear stochastic Volterra equation which has a stationary
solution. We show that when the kernel of the fundamental solution is regularly varying at
infinity with a log-convex tail integral, then the autocovariance function of the stationary
solution is also regularly varying at infinity and its exact pointwise rate of decay can
be determined. Moreover, it can be shown that this stationary process has either long
memory in the sense that the autocovariance function is not integrable over the reals or
is subexponential. Under certain conditions upon the kernel, even arbitrarily slow decay
rates of the autocovariance function can be achieved. Analogous results are obtained for
the corresponding discrete equation.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, much attention in quantitative finance has centred on the question of whether financial markets are
efficient, and whether there is a significant impact of past events on the current state of the system, see e.g. Cont [13].
A mathematical way in which this phenomenon can be captured is through the theory of long range dependence, or long
memory. For continuous time processes, this is measured by the autocovariance function of a stationary process being non-
integrable and polynomially decaying, so it must decay more slowly than exponentially. Processes with long memory also
arise in other areas of science such as data network traffic or hydrology see e.g. Doukhan et al. [14].

In this paper, we describe a class of processes, both in discrete and continuous time which exhibit long range dependence
through non-exponential convergence of their autocovariance functions. In the continuous case, these are solutions of scalar
affine stochastic Volterra equations of the form

dX(t) =
(

aX(t) +
t∫

0

k(t − s)X(s)ds

)
dt + σ dB(t) for t � 0, (1.1)

where B is standard Brownian motion and k is an integrable function. Applications of such equations stochastic Volterra
equations arise in physics and mathematical finance. In physics, for example, the behaviour of viscoelastic materials under
external stochastic loads has been analysed using Itô–Volterra equations (cf., e.g. Drozdov and Kolmanovskiı̆ [15]). In finan-
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cial mathematics, the presence of inefficiency in real markets can be modelled by using stochastic functional differential
equations. Anh et al. [1,2] have posited models for the evolution of asset returns using stochastic Volterra equations with
infinite memory.

For affine stochastic functional differential equations with bounded delay, it has been shown that stationary solutions
always have exponentially fading autocovariance function, see e.g. Gushchin and Küchler [21], Riedle [32]. This is a conse-
quence of the fact that, if an autonomous linear differential equation with finite delay is stable, then its resolvent converges
to zero at an exponentially fast rate, see Hale and Lunel [22].

In order to obtain polynomial convergence results for linear autonomous Volterra equations, it is necessary to consider
kernels k which decay non-exponentially, both for deterministic and stochastic equations. While a substantial literature
exists in the deterministic case (see e.g. [34,19,25,7,5,6]) only a few results for non-exponential convergence phenomena of
linear stochastic autonomous Volterra equations exist, and those that do concern the asymptotic stability of point equilibria.
Examples of such papers include Appleby [3,4] for pointwise convergence rates, Appleby and Riedle [9] for convergence rates
in weighted L p-spaces, and Mao and Riedle for mean square convergence rates [28]. In particular, polynomial convergence
rates of the autocovariance function of (1.1) have not been recorded.

In this paper, we examine the asymptotic behaviour of the autocovariance function of asymptotically stationary solutions
of (1.1). To do this, our first class of results concerns the exact rate of convergence to zero of the solution of the differential
resolvent associated with (1.1), namely

r′(t) = ar(t) +
t∫

0

k(t − s)r(s)ds for t � 0, r(0) = 1. (1.2)

We consider first equations for which the kernel k is positive and integrable with infinite first moment. In this case it is
only known to date that the resolvent r converges to zero and is not integrable.

In this paper we first show that if the kernel k additionally satisfies a + ∫ ∞
0 k(s)ds = 0 and the tail integral λ(t) :=∫ ∞

t k(s)ds is a log-convex regularly varying function with index α, then the solution r is decays at a hyperbolic rate,
according to

lim
t→∞ r(t)t1−αL(t) = sinαπ

π
, (1.3)

where L is a slowly varying function related to k. Corresponding asymptotic results are established in discrete time. The dis-
crete analogue of Eq. (1.2) with positive summable kernel of infinite moment corresponds to the renewal sequence of a
null-recurrent Markov chain [20], and under similar additional assumptions on the kernel, the hyperbolic decay of the
sequence relies upon well-known results by Garsia and Lamperti [18] and Isaac [23].

Our second class of results in this paper employ the convergence rate of the resolvent r to investigate the long memory
properties of the solution of the Itô–Volterra differential equation (1.1) and its discrete analogue. It turns out, that under the
same conditions on the kernel k, Eq. (1.1) possesses an asymptotically stationary solution for 0 < α < 1/2. There also exists
a limiting equation which is stationary and its autocovariance function c obeys

lim
t→∞ c(t)L2(t)t1−2α = σ 2 Γ (1 − 2α)Γ (α)

Γ (1 − α)
· sin2(πα)

π2
. (1.4)

Moreover, because c is non-integrable, the process has long memory. Again, corresponding results hold in discrete
time.

If α > 1/2, no stationary solutions exist and the case α = 1/2 turns out to be critical. In this situation, we give necessary
and sufficient conditions for the existence of a stationary solution and show not only that its autocovariance function has
long memory, but that it can also decay at an arbitrarily slow rate in the class of slowly varying functions.

In order to give a complete characterization the asymptotic behaviour of the autocovariance function of (1.1), we also
treat the cases a + ∫ ∞

0 k(s)ds < 0 and a + ∫ ∞
0 k(s)ds > 0. While in the latter case no stationary solution exists, we show

in the first case, that under weaker assumptions on the kernel k, the autocovariance function of the stationary solution is
integrable. Nevertheless, its decay is very slow: the rate of convergence to zero is the same as the decay rate of k, that is
hyperbolic.

Although we have mentioned discrete results only briefly in this introduction, there are many reasons to formulate the
models (1.2) and (1.1) in discrete time. When modelling dynamic real-world phenomena, it is desirable that properties
formulated in discrete or continuous time should be consistent. In this paper, our results demonstrate that the long or
subexponential memory are general properties of the Volterra model and do not depend on the continuity assumption.
Secondly, by applying for example a constant step size Euler–Maruyama scheme to the continuous equation (1.1), we obtain
consistent estimates of the decay rate of the autocovariance function. These decay estimates stabilise appropriately to those
obtained in the continuous case in the limit as the step size tends to zero.
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2. Discrete and continuous stochastic Volterra equations

2.1. Mathematical preliminaries

We denote the spaces of real-valued continuous functions by C([0,∞);R). Let L p([0,∞);R), (�p), p � 1, denote the
space of real-valued measurable functions f (sequences ( fn)n∈N) satisfying

∞∫
0

∣∣ f (t)
∣∣p

dt < ∞
( ∞∑

n=0

| fn|p < ∞
)

.

We write f ∼ g for x → x0 ∈ R ∪ {±∞} if limx→x0 f (x)/g(x) = 1.

A function L : [0,∞) → (0,∞) is slowly varying at infinity if for all x > 0,

lim
t→∞

L(xt)

L(t)
= 1. (2.1)

A function f varies regularly with index α ∈ R, f ∈ RV∞(α), if it is of the form

f (t) = tαL(t) (2.2)

with L slowly varying, see e.g. Feller [17, Chapter VIII.8].
The definition of a regularly varying sequence is a counterpart of the continuous definition [12]: a sequence of positive

numbers (cn)n∈N is said to be regularly varying of index ρ ∈ R (c is slowly varying if ρ = 0), if

lim
n→∞

c[λn]
cn

= λρ, for every λ > 0,

where [x] denotes the integer part of x ∈ R+ . A regularly varying sequence is embeddable as the integer values of a regularly
varying function: the function c(·), defined on [0,∞) by c(x) := c[x] is regularly varying of index ρ .

2.2. Continuous-time Gaussian Volterra equations

We first turn our attention to the deterministic Volterra equation in R:

x′(t) = ax(t) +
t∫

0

k(t − s)x(s)ds for t � 0, x(0) = x0. (2.3)

For any x0 ∈ R there is a unique R-valued function x which satisfies (2.3) on [0,∞). The so-called fundamental solution or
resolvent of (2.3) is the real-valued function r : [0,∞) → R, which is the unique solution of Eq. (1.2).

Let (Ω, F ,P) be a probability space equipped with a filtration (Ft)t�0, and let B = {B(t): t � 0} be a one-dimensional
Brownian motion on this probability space. We will consider the stochastic integro-differential equation of the form

dX(t) =
(

aX(t) +
t∫

0

k(t − s)X(s)ds

)
dt + σ dB(t) for t � 0,

X(0) = X0, (2.4)

where k is a continuous, integrable real-valued function, and σ is a non-zero real constant. The initial condition X0 is a
real-valued, F0-measurable random variable with E|X0|2 < ∞ which is independent of B . The existence and uniqueness
of a continuous solution X of (2.4) with X(0) = X0 P-a.s. is covered in Berger and Mizel [10], for instance. Independently,
the existence and uniqueness of solutions of stochastic functional equations was established in Itô and Nisio [24] and
Mohammed [30]. In fact, X has the variation of constants representation

X(t) = r(t)X0 +
t∫

0

r(t − s)σ dB(s), t � 0. (2.5)

We first discuss the existence of asymptotically stationary solutions of (2.4). It transpires that the critical condition to
guarantee stationarity is that the fundamental solution r of (2.3) is in L2([0,∞);R).
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Theorem 2.1. Let k ∈ L1([0,∞);R) ∩ C([0,∞);R). Suppose the fundamental solution r of (2.3) obeys r ∈ L2([0,∞);R). Let
σ ∈ R \ {0}. Let X be the solution of (2.4). Then there exists a real-valued function c such that

c(t) := lim
s→∞ Cov

(
X(s), X(s + t)

) = σ 2

∞∫
0

r(s)r(s + t)ds, t � 0. (2.6)

The result follows directly from (2.5), and the fact that X0 is independent of B .
The following theorem shows that (2.4) has a limiting equation which possesses a stationary, rather than an asymptot-

ically stationary solution. To this end, let B1 = {B1(t): t � 0} and B2 = {B2(t): t � 0} be independent standard Brownian
motions, and consider the process B = {B(t): t ∈ R} defined by

B(t) =
{

B1(t), t > 0,

B2(−t), t � 0.
(2.7)

Then B is a standard Brownian motion defined on the whole line.

Theorem 2.2. Let k ∈ L1([0,∞);R) ∩ C([0,∞);R). Suppose the fundamental solution r of (2.3) obeys r ∈ L2([0,∞);R). Let
σ ∈ R \ {0}. Let B = {B(t): t ∈ R} be the standard one-dimensional Brownian motion defined by (2.7). Then the unique continuous
adapted process which obeys

dX(t) =
(

aX(t) +
∞∫

0

k(s)X(t − s)ds

)
dt + σ dB(t), t > 0;

X(t) =
t∫

−∞
r(t − s)σ dB(s), t � 0, (2.8)

is given by

X(t) =
t∫

−∞
r(t − s)σ dB(s), t ∈ R. (2.9)

Moreover, X is a stationary zero mean Gaussian process with autocovariance function given by

c(t) = Cov
(

X(s), X(s + t)
) = σ 2

∞∫
0

r(s)r(s + t)ds. (2.10)

It is clear that if r is in L2([0,∞);R) that X defined by (2.9) is a stationary zero mean Gaussian process with autoco-
variance function given by (2.10). To show that X satisfies (2.8) requires more work, and a proof is given in Section 6.

Theorem 2.2 provides direction for the investigations in this paper. It is readily seen that r ∈ L1([0,∞);R) implies
c ∈ L1([0,∞);R). Therefore in order to possess long memory but still to have stationary solutions, we need to con-
sider conditions on the kernel k in (2.3) such that the fundamental solution r of (2.3) obeys r ∈ L2([0,∞);R) but
r /∈ L1([0,∞);R).

Section 3 gives an example of how this can be achieved. The crucial hypotheses on k is that it is regularly varying and
its tail integral is log-convex: this enables us to prove that r is regularly varying and to determine the exact rate of decay
of r. We then show how the asymptotic behaviour of c can be inferred from r when r is regularly varying in such a way
that r ∈ L2([0,∞);R) but r /∈ L1([0,∞);R). The results enable us to determine the exact rate of decay of the autocovariance
function c in terms of the rate of decay of k.

2.3. Discrete-time Volterra equations

Let (Ω, F ,P) be a probability space equipped with a filtration (Fn)n∈N . We consider the discrete version of (2.4):

Xn+1 − Xn = aXn +
n∑

j=1

k j Xn− j + ξn+1, n � 0,

X0 = x0, (2.11)
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where k is a positive summable kernel, a := −∑∞
j=1 k j and ξ = {ξn: n ∈ N} is a sequence of independent, identically

distributed random variables with E(ξn) = 0, E(ξ2
n ) = σ 2 > 0 for all n ∈ N. x0 is an F0-measurable random variable with

E(x2
0) < ∞ which is independent of ξ . Let r = {rn: n ∈ N} denote the fundamental solution of (2.11), i.e., the unique solution

of

rn+1 − rn = arn +
n∑

j=1

k jrn− j, n � 1, r0 = 1. (2.12)

For more information on Volterra difference equations, the reader is referred to the book of Elaydi [16]. An analogous result
to Theorem 2.2 holds for (2.11):

Theorem 2.3. Suppose that k ∈ �1 and the fundamental solution (2.12) obeys r ∈ �2 . Then there is a unique adapted process X which
obeys

Xn+1 − Xn = aXn +
∞∑
j=1

k j Xn− j + ξn+1, n � 0;

Xn =
n∑

j=−∞
rn− jξ j, n < 0, (2.13)

where ξ is extended to n ∈ Z by taking an independent copy ξ1 of ξ (defined on the same probability space) and setting ξ−n = ξ1
n ,

n ∈ N. X is a stationary zero mean process with autocovariance function given by

c(h) = Cov(Xn, Xn+h) = σ 2
∞∑

n=0

rnrn+h, h ∈ N. (2.14)

Again, we are able to show that if (kn)n∈N is a so-called Kaluza-sequence, then r satisfies r ∈ �2 but r /∈ �1 with exact
rate of decay specified. From (2.14) we can deduce the exact asymptotic behaviour of the autocovariance function of the
stationary solution.

3. Long memory in the continuous equation

3.1. Asymptotic behaviour of the deterministic resolvent

This section gives the exact rate of decay of the solution of a scalar linear Volterra differential equation with a non-
integrable solution r which nonetheless obeys r(t) → 0 as t → ∞. Suppose that a + ∫ ∞

0 k(s)ds = 0 and let k satisfy the
following conditions

(C1) k ∈ L1([0,∞); (0,∞)) ∩ C([0,∞); (0,∞)),
(C2) t 
→ log λ(t) is a convex function, where

λ(t) :=
∞∫

t

k(s)ds, (3.1)

(C3) λ(t) = L(t)t−α with α ∈ (0,1) and a slowly varying at infinity function L.

Remark 3.1. The last two conditions are satisfied, if k is a completely monotone function such that k ∈ RV∞(−1 − α).
Condition (C2) is equivalent to

(C2∗) λ(t)
λ(t+T )

is non-increasing in t for all T > 0.

Proofs can be found in Miller [29].

Condition (C1) implies existence of a unique continuous function r which is a solution of the integro-differential equa-
tion (1.2). In particular, it follows from (C3) that k obeys

∞∫
sk(s)ds = ∞. (3.2)
0
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In this case it is only known that the differential resolvent r satisfies

lim
t→∞ r(t) = 0, r /∈ L1((0,∞); (0,∞)

)
. (3.3)

Theorem 3.2. Suppose that k obeys (C1)–(C3). If r is the unique continuous solution of (1.2), then

lim
t→∞ r(t)t1−αL(t) = sinαπ

π
. (3.4)

Hence for α ∈ (0,1/2) we have r ∈ L2([0,∞); (0,∞)) but r /∈ L1([0,∞); (0,∞)) due to r ∈ RV∞(μ) for μ = α − 1 ∈
(−1,−1/2).

Proof of Theorem 3.2. We note that λ ∈ C1((0,∞); (0,∞)). Evidently λ is positive, non-increasing, satisfies λ(t) → 0 as
t → ∞. Though, by virtue of (C3) this happens so slowly that λ /∈ L1([0,∞);R).

Since r ∈ C1((0,∞); (0,∞)), we can also introduce the function ρ = −r′ .
By differentiation of the function f (t) = r(t) + ∫ t

0 λ(t − s)r(s)ds, and using (1.2), we see that f ′(t) = 0. Since f (0) =
r(0) = 1, we have

r(t) +
t∫

0

λ(t − s)r(s)ds = 1, t � 0. (3.5)

Therefore,

ρ(t) = −r′(t) = d

dt

(
−1 +

t∫
0

λ(s)r(t − s)ds

)

=
t∫

0

λ(s)r′(t − s)ds + λ(t)r(0) = λ(t) −
t∫

0

λ(t − s)ρ(s)ds.

Hence ρ is the integral resolvent of λ. Now by (C2) and Theorem 1.2 in [27], it follows that

0 � ρ(t) � λ(t) for all t > 0,

∞∫
0

ρ(t)dt = 1, (3.6)

particularly implying 0 � r(t) � 1 for all t � 0. Since λ(t) � 0, we may define a measure Λ by Λ([0, t]) = ∫ t
0 λ(s)ds. Then

ωΛ(z) :=
∞∫

0

e−zt Λ(dt) = λ̂(z).

By (C3), it follows that Λ ∈ RV∞(1 − α), so as 1 − α > 0, we can apply Theorem XIII.5.1 in [17] to get

λ̂(τ ) = ωΛ(τ ) ∼ Γ (−α + 2)Λ(1/τ ), as τ → 0. (3.7)

Next, as r(t) > 0 for all t � 0, we may define the measure U by U ([0, t]) = ∫ t
0 r(s)ds. Then u(t) := U ′(t) = r(t) obeys

u′(t) = r′(t) = −ρ(t) � 0 for all t � 0. Furthermore

ωU (z) :=
∞∫

0

e−zt U (dt) =
∞∫

0

e−ztr(t)dt = r̂(z).

Since λ(t) → 0 and r(t) → 0 as t → ∞, λ̂(z) and r̂(z) exist for �(z) > 0. Therefore, by (3.5), we have

r̂(z) + λ̂(z)r̂(z) = 1

z
, �(z) > 0.

Therefore, for τ > 0,

ωU (τ ) = r̂(τ ) = 1
ˆ .
τ + τλ(τ )
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Now, by (3.7)

τ λ̂(τ ) ∼ Γ (−α + 2)τΛ(1/τ ), as τ → 0.

Because Λ ∈ RV∞(−α + 1), Λ1(τ ) := τΛ(1/τ ) obeys Λ1 ∈ RV0(α). Since α ∈ (0,1), τ + τ λ̂(τ ) ∼ Γ (2 − α)Λ1(τ ) =
Γ (2 − α)τΛ(1/τ ) as τ → 0. Thus

ωU (τ ) = 1

τ + τ λ̂(τ )
∼ 1

Γ (2 − α)τΛ(1/τ )
= 1

τα
L̃(1/τ ), as τ → 0, (3.8)

where

L̃(1/τ ) := 1

Γ (2 − α)

τα−1

Λ(1/τ )
, τ > 0,

which is a slowly varying function by virtue of the fact that Λ ∈ RV∞(−α + 1). Then, as U has a monotone derivative u,
and (3.8) holds, Theorem XIII.5.4 in [17] implies that

u(t) ∼ 1

Γ (α)
tα−1 L̃(t), as t → ∞.

Since u(t) = r(t), by the definition of L̃

r(t) ∼ 1

Γ (α)
tα−1 · 1

Γ (2 − α)

t−α+1

Λ(t)
= 1

Γ (α)Γ (2 − α)

1

Λ(t)
, as t → ∞.

Moreover, we have from Proposition 1.5.8 in [11], that

Λ(t) =
t∫

0

s−α L(s)ds ∼ 1

1 − α
t1−αL(t), as t → ∞.

Hence,

lim
t→∞ r(t)t1−αL(t) = 1 − α

Γ (α)Γ (2 − α)
= sinαπ

π
,

as required. �
For the sake of completeness, we also study the case where λ, defined as in (3.1), satisfies λ ∈ RV∞(−α) with α > 1. It

turns out that in this case r converges to a positive limit and hence cannot be asymptotically stable.

Corollary 3.3. Suppose that k satisfies (C1) and (C3) with α > 1 and that a + ∫ ∞
0 k(s)ds = 0 holds true. Then,

∫ ∞
0 sk(s)ds < ∞ and

lim
t→∞ r(t) =

(
1 +

∞∫
0

sk(s)ds

)−1

. (3.9)

Proof. Since λ is continuous satisfying λ(0) = ∫ ∞
0 k(s)ds < ∞ and λ ∈ RV∞(−α) with α > 1, we also have λ ∈

L1([0,∞); (0,∞)) ∩ C([0,∞); (0,∞)). Moreover

∞∫
0

λ(s)ds =
∞∫

0

sk(s)ds < ∞.

Then, Theorem 4.2 in [8] yields (3.9). �
3.2. Asymptotic behaviour of the autocovariance function

In this section we state our second main result, Theorem 3.4, which characterizes completely the asymptotic rate of
convergence of the autocovariance function c(t) of the solution of (2.8) for the case when a = − ∫ ∞

0 k(s)ds. In the case
where 0 < α < 1/2, it turns out that for the kernels k satisfying (C1)–(C3), c(t) resembles the power law function t2α−1

for large values of t and hence exhibits long memory. The case where α = 1/2 is more subtle; indeed, for some such k we
have r /∈ L2([0,∞);R). If r ∈ L2([0,∞);R), it is still possible to determine the rate of decay of c, which continues to exhibit
long memory. Perhaps the most interesting aspect of this result is that arbitrarily slow rates of decay of c in RV∞(0) can be
obtained.
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Theorem 3.4. Suppose that k satisfies (C1)–(C3) with α ∈ (0,1/2). Let r be the solution of (1.2). Let σ ∈ R\{0} and B = {B(t): t ∈ R}
be the standard one-dimensional Brownian motion defined by (2.7). Then there is a unique stationary Gaussian process X which
obeys (2.8):

dX(t) =
(

aX(t) +
∞∫

0

k(s)X(t − s)ds

)
dt + σ dB(t), t > 0;

X(t) =
t∫

−∞
r(t − s)σ dB(s), t � 0.

The autocovariance function c(·) = Cov(X(s), X(s + ·)) satisfies

lim
t→∞ c(t)L2(t)t1−2α = σ 2 Γ (1 − 2α)Γ (α)

Γ (1 − α)
· sin2(πα)

π2
. (3.10)

Proof. The proof of the theorem can be found in Section 7. �
Example 3.5. Let α ∈ (0,1/2) and

k(t) = 1

(1 + t)α+1
, t � 0. (3.11)

Then, λ(t) = 1/(α(1 + t)α), t � 0, and since L(t) → 1/α as t → ∞, we obtain the following convergence rate of the autoco-
variance function:

lim
t→∞

c(t)

t2α−1
= σ 2 sin(απ)Γ (1 − 2α)

πΓ (−α)2
.

We now consider the interesting and critical case where α = 1/2. Depending on the properties of the slowly varying
function L, both r /∈ L2([0,∞);R) as well as r ∈ L2([0,∞);R) is possible. In the latter case, we can achieve arbitrary slow
decay rates of the autocovariance function. We first determine the rate of convergence of the autocovariance function.

Theorem 3.6. Suppose that k satisfies (C1), (C2) and λ(t) = L(t)t−1/2 , t � 0, with a slowly varying function L. Then, r ∈ L2([0,∞);R)

if and only if

∞∫
1

1

tL(t)2
dt < ∞. (3.12)

Moreover, if (3.12) holds true, then

c(t) ∼ σ 2

π2

∞∫
t

1

sL(s)2
ds, t → ∞. (3.13)

Proof. Theorem 3.2 yields that

lim
t→∞ r(t)t1/2L(t) = lim

t→∞ r(t)λ(t)t = 1

π
. (3.14)

Since r is continuous on [0,∞), r ∈ L2([0,∞);R) if and only if

∞∫
1

1

t2λ(s)2
dt =

∞∫
1

1

tL(t)2
dt < ∞.

In this case we denote by

f (t) := σ 2

π2

∞∫
1

s2λ(s)2
ds, t � 0.
t



822 J.A.D. Appleby, K. Krol / J. Math. Anal. Appl. 380 (2011) 814–830
The integrand of f is regularly varying with index −1. Then, by Karamata’s theorem (see e.g. [11, Theorem 1.5.11]) we
obtain

t

t2λ2(t) f (t)
→ 0, for t → ∞. (3.15)

Moreover, with (3.14) and (3.15) it holds that

lim
t→∞

tr(t)2

f (t)
= lim

t→∞ r(t)2t2λ(t)2 lim
t→∞

t

t2λ(t)2 f (t)
= 0. (3.16)

We write

c(t)

f (t)
= σ 2

f (t)

t∫
0

r(s)r(t + s)ds + σ 2

f (t)

∞∫
t

r(s)r(t + s)ds =: I1(t) + I2(t), t � 0.

By (3.6), r is positive and non-increasing, hence we obtain the following upper bound for I2(t):

I2(t) � σ 2

f (t)

∞∫
t

r(s)2 ds, t � 0. (3.17)

The denominator and the numerator in (3.17) tend to zero as t tends to infinity, therefore, we may apply L’Hôspital’s rule
to obtain

lim
t→∞

σ 2

f (t)

∞∫
t

r(s)2 ds = lim
t→∞π2r(t)2t2λ(t)2 = 1. (3.18)

On the other hand,

I2(t) � σ 2

f (t)

∞∫
t

r(s + t)2 ds = σ 2

f (t)

∞∫
2t

r(s)2 ds, t � 0. (3.19)

By (3.16) we have

lim
t→∞

1

f (t)

2t∫
t

r(s)2 ds � lim
t→∞

tr(t)2

f (t)
= 0. (3.20)

Combining (3.17), (3.18), (3.19) and (3.20) we obtain limt→∞ I2(t) = 1. The term I1(t) vanishes as t tends to infinity: apply-
ing Karamata’s theorem to r ∈ RV∞(−1/2) and using (3.16), we obtain

lim
t→∞

I1(t)

σ 2
� lim

t→∞
r(t)

f (t)

t∫
0

r(s)ds = lim
t→∞

∫ t
0 r(s)ds

tr(t)
· tr(t)2

f (t)
= 2 lim

t→∞
tr(t)2

f (t)
= 0.

This completes the proof. �
To see that it is possible to obtain arbitrary rates of decay for c in the class of slowly varying functions which tend to

zero, we consider such a function γ ∈ RV∞(0). We demonstrate this claim, under a mild technical assumption on γ .

Corollary 3.7. Suppose that γ is in C1((0,∞); (0,∞)), γ (t) → 0 as t → ∞ and that −γ ′ ∈ RV∞(−1). Then γ ∈ RV∞(0) and there
exists L ∈ RV∞(0) which satisfies (3.12) and

∞∫
t

1

sL2(s)
ds ∼ γ (t), as t → ∞. (3.21)

Proof. For any T > t � 0, we have γ (T ) − γ (t) = ∫ T
t γ ′(s)ds. Letting T → ∞, we see that γ (t) = ∫ ∞

t −γ ′(s)ds. −γ ′ is
integrable because γ (t) → 0 as t → ∞. The fact that −γ ′ ∈ RV∞(−1) and is integrable forces γ to be in RV∞(0). Define
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the function L : [1,∞) → (0,∞) by

L2(t) = −1

tγ ′(t)
. (3.22)

Clearly L ∈ RV∞(0). Moreover for any T � 1

T∫
1

1

sL2(s)
ds =

T∫
1

−γ ′(s)ds = γ (1) − γ (T ).

Since γ (T ) → 0 as T → ∞, it follows that L obeys (3.12). The asymptotic relation (3.21) is an obvious consequence of the
construction of L. �
Remark 3.8. By applying Theorem 3.6, it can be seen that if k(t) ∼ t−3/2L(t) as t → ∞, where L is given by (3.22),
then c(t) ∼ σ 2/π2γ (t) as t → ∞. Therefore, functions k exist such that the rate of convergence of the autocovariance
function is an (essentially) arbitrary function in RV∞(0). For example, c(t) can decay to zero at a rate asymptotic to
(log log log · · · log t)−1 as t → ∞, where there are finitely but arbitrarily many compositions of logarithms.

4. Long memory in the discrete equation

In this section we study the discrete counterparts to Eqs. (1.2) and (2.4) for some summable kernels k with infinite mean.

4.1. Asymptotic behaviour of the deterministic resolvent

Let us first consider the deterministic equation (2.12) with a + ∑∞
j=1 k j = 0. If 1 + a > 0 and (kn)n�1 has infinite mean,

the classical renewal theorem yields that rn converges to zero as n tends to infinity. If (kn)n�1 has a regularly varying
tail (Garsia and Lamperti [18, Theorem 1.1]) and (rn)n∈N is monotone non-increasing (Isaac [23, Theorem 3.1]), the exact
convergence rates are also known.

In this section we prove that if the tail (
∑∞

j=n k j)n�1 is a so-called Kaluza sequence, which is a discrete analogue of
log-convexity, then the sequence (rn)n∈N is monotone non-increasing and we can apply the above mentioned theorems.

Theorem 4.1. Let (kn)n�1 be a positive sequence such that
∑∞

j=1 k j � 1. Moreover, let λn := ∑∞
j=n k j , n � 1, satisfy:

(C2′) (λn)n�1 is a Kaluza sequence, that is λ2
n � λn−1λn+1 for all n � 1,

(C3′) λn = L(n)n−α , where 0 < α < 1 and L(n) is a slowly varying sequence.

Then

lim
n→∞n1−α L(n)rn = sinαπ

π
.

Proof. Since (L(n))n∈N is slowly varying, so is the function x 
→ L([x]). Since 1 + a � 0, we can apply Theorem 1.1 in [18] to
obtain the result for 1/2 < α < 1. For α � 1/2 the claim follows from [23, Theorem 3.1] if the sequence (rn)n�0 is monotone
non-increasing. To show this, we define

an := rn +
n−1∑
j=1

r jλn+1− j, n � 0,

to obtain

an+1 − an = rn+1 − rn +
n−1∑
j=0

(λn+1− j − λn− j)r j + rnλ1

= rn+1 − rn −
n−1∑
j=0

kn− jr j + rna

= 0.

Hence, (an)n�0 is a constant sequence and equals a0 = r0 = 1. With �n := −(rn − rn−1) we have
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0 = an − an−1 = −�n +
n−1∑
j=0

r jλn− j −
n−2∑
j=0

r jλn−1− j

= −�n +
n−1∑
j=1

λn− j(r j − r j−1) + λn

= −�n −
n−1∑
j=1

λn− j� j + λn.

Therefore, (�n)n�0 satisfies the recurrence relation

�n = λn −
n−1∑
j=1

λn− j� j. (4.1)

Since (λn)n�0 is a Kaluza sequence, it follows from [33] that �n is non-negative for all n � 0. Hence, the sequence (rn)n�0
is non-increasing and the claim follows. �
4.2. Asymptotic behaviour of the autocovariance function

Now we are able to state the discrete analogue of Theorem 3.4:

Theorem 4.2. Suppose that k satisfies the assumptions of Theorem 4.1 with α ∈ (0,1/2). Let r be the solution of (2.12) and
ξ = {ξn: n ∈ Z} be a sequence of random variables defined as in Theorem 2.3. Then there is a unique stationary process X which
obeys (2.13):

Xn+1 − Xn = −aXn +
∞∑
j=1

k j Xn− j + ξn+1, n � 0;

Xn =
n∑

j=−∞
rn− jξ j, n < 0.

The autocovariance function c(·) = Cov(Xn, Xn+·) obeys

lim
h→∞

c(h)L2(h)h1−2α = σ 2 Γ (1 − 2α)Γ (α)

Γ (1 − α)
· sin2(πα)

π2
. (4.2)

Proof. The stationary solution is given by X(n) = ∑n
j=−∞ rn− jξ j , n ∈ Z, and its autocovariance function obviously satis-

fies (2.14). Since the sequence (L(n))n∈N is slowly varying we obtain with Theorem 4.1 for all λ > 0

lim
n→∞

r[λn]
rn

= lim
n→∞

L(n)n1−α

[λn]1−α L([λn]) = lim
n→∞

n1−α

[λn]1−α

= lim
n→∞

(
λ + [λn] − λn

n

)α−1

= λα−1.

Hence the positive sequence (rn)n∈N is regularly varying with index α − 1. Therefore, as mentioned in Section 2.1, the
function r(x) := r[x] , x � 0, is also regularly varying and we may write

c(h) = σ 2

∞∫
0

r(x)r(x + h), h ∈ N.

With Theorem 7.1 we obtain

lim
h→∞

c(h)

hrh
= L.

Following the steps of the proof of Theorem 3.4 we obtain (4.2). �
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5. Subexponential decay of the autocovariance function

In this section we study the properties of the autocovariance function of the stationary solution of the main continuous-
and discrete-time equations (1.1) and (2.11) if the kernel k is again regularly varying with index −1 − α, α > 0 but now
a + ∫ ∞

0 k(s)ds < 0 or a + ∑∞
n=1 kn < 0 holds respectively.

Then, k is a subexponential function or sequence in the sense of Appleby et al. [5,6]. In this case, the fundamental
solution in both discrete- (Theorem 3.2 in [6]) and continuous-time (Theorem 15 in [5]) decays at the same rate as the
kernel k. Since k is regularly varying with parameter −α − 1 < −1, r ∈ L2([0,∞);R) ∩ L1([0,∞);R). This implies that the
autocovariance function of the stationary solution is integrable. The next results show that nevertheless the autocovariance
function decays very slowly: it converges to zero at same rate as the kernel k, that is polynomially.

Remark 5.1. If a + ∫ ∞
0 k(s)ds > 0, then the fundamental solution grows exponentially: The characteristic function of r,

a function h which satisfies r̂(z) = 1/h(z) is given by h(z) = z − a − k̂(z), z ∈ C, and satisfies h(0) = −a − ∫ ∞
0 k(s)ds < 0.

Since k is positive, we obtain for x > 0

h(x) = x − a −
∞∫

0

e−xsk(s)ds � x − a −
∞∫

0

k(s)ds,

which is positive if x > a + ∫ ∞
0 k(s)ds > 0. Therefore, by the intermediate value theorem, there exists a positive root of

the characteristic function. By the standard theory of Volterra equations this implies that the fundamental solution grows
exponentially. Hence, the case a + ∫ ∞

0 k(s)ds > 0 is not interesting for our research.

5.1. Continuous-time stochastic equation with subexponentially decaying memory

Suppose k ∈ C([0,∞); (0,∞)) satisfies

(S1) k ∈ RV∞(−1 − α) for α > 0,
(S2) a + ∫ ∞

0 k(s)ds < 0.

Theorem 15 in [5] yields, that the fundamental solution of (1.2) converges to zero at the same rate as k:

lim
t→∞

r(t)

k(t)
= 1

(a + ∫ ∞
0 k(s)ds)2

=: Lc . (5.1)

Moreover, r is also subexponential. Since r is also square integrable, the stationary solution of (2.8) exists and the exact rate
of decay of the autocovariance function can be determined.

Theorem 5.2. Suppose k satisfies (S1) and (S2). Let r be solution of (1.2). Let σ ∈ R \ {0} and B be the Brownian motion defined
by (2.7). Then, the autocovariance function c(·) = Cov(X(s), X(s + ·)) of the stationary solution of (2.8) satisfies

lim
t→∞

c(t)

k(t)
= σ 2

(−a − ∫ ∞
0 k(s)ds)3

> 0. (5.2)

Proof. The autocovariance function of the stationary solution is again given by (2.10). Theorem 1.8.3 in [11] yields, that
there exists a decaying function λ with k(t) ∼ λ(t) for t → ∞. Since r is integrable, we choose for an arbitrary ε > 0 a
sufficiently large T > 0, so that 2Lc

∫ ∞
T |r(s)|ds < ε. We now write

∞∫
0

r(t + s)r(s)

k(t)
ds =

T∫
0

r(t + s)

k(t + s)

k(t + s)

k(t)
r(s)ds +

∞∫
T

λ(t)

k(t)

r(t + s)

λ(t + s)

λ(t + s)

λ(t)
r(s)ds. (5.3)

The second integral is negligible: since λ is decreasing and r(t)/λ(t) → Lc for t → ∞, the integrand is bounded for suffi-
ciently large t by 2Lc |r(s)|. Hence

lim sup
t→∞

∣∣∣∣∣
∞∫

T

r(t + s)r(s)

k(t)
ds

∣∣∣∣∣ � 2Lc

∞∫
T

∣∣r(s)
∣∣ds < ε.

Let us now consider the first integral in (5.3). With Potter’s bound (cf. [11, Theorem 1.5.6]) we obtain

k(t + s) → 1, t → ∞, (5.4)

k(t)
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uniformly in s for all s < T . Therefore for all sufficiently large t

sup
s�T

∣∣∣∣k(t + s)

k(t)

∣∣∣∣ � 2 and sup
s>0

∣∣∣∣ r(t + s)

k(t + s)

∣∣∣∣ � 2Lc . (5.5)

Using dominated convergence theorem we obtain

lim
t→∞

T∫
0

r(t + s)

k(t + s)

k(t + s)

k(t)
r(s)ds = Lc

T∫
0

r(s)ds.

Hence, the left-hand side of (5.2) converges to Lc
∫ ∞

0 r(s)ds and the claim follows from the fact that
∫ ∞

0 r(s)ds =
−1/(a + ∫ ∞

0 k(s)ds). �
Example 5.3. Let α > 0 and

k(t) = 1

(1 + t)α+1
, t � 0. (5.6)

We obtain the following convergence rate of the autocovariance function:

lim
t→∞ c(t)t1+α = σ 2

(−a − 1/α)3
.

Remark 5.4. Examples 3.5 and 5.3 make clear that there is a very different impact on the rate of convergence of the autoco-
variance function from the decay rate of the kernel k according as to whether we are in the long-memory or subexponential
case. In the latter case, the rate of decay of the autocovariance function c is proportional to the rate of decay of the ker-
nel k, so slow decay in the memory as measured by the rate of decay of k is reflected exactly in the statistical memory, as
measured by c. On the contrary, in the long-memory case, a faster rate of decay of the kernel k results in a slower rate of
decay of c.

5.2. Discrete-time stochastic equation with subexponentially decaying memory

Let us now consider Eq. (2.11) with a discrete kernel k = {kn: n � 1} satisfying

(S1′) k is a regularly varying sequence with index −1 − α for α > 0,
(S2′) a + ∑∞

j=1 k j < 0.

Then k satisfies the assumptions of Theorem 3.2 in [6] and the fundamental solution of (1.2) converges to zero at the same
rate as k:

lim
n→∞

rn

kn
= 1

(a + ∑∞
j=1 k j)

2
=: Ld. (5.7)

Again, the stationary solution of (2.11) exists and the exact rate of decay of the autocovariance function can be determined.

Theorem 5.5. Suppose k satisfy (S1′) and (S2′). Let r be solution of (2.12). Let ξ = {ξn: n ∈ Z} be a sequence of random variables
defined as in Theorem 2.3. Then, the autocovariance function c(·) = Cov(Xn, Xn+·) of the stationary process defined in (2.13) satisfies

lim
h→∞

c(h)

kh
= σ 2

(−a − ∑∞
j=1 k j)

3
> 0. (5.8)

Proof. The autocovariance function of the stationary solution is again given by (2.14). Since (kn)n∈N is a regularly varying
sequence, the function x 
→ k(x) := k[x] is a regularly varying function with index −1−α. Hence, we may choose the function
λ as in the proof of Theorem 5.2. Since r is absolutely summable, we choose for an arbitrary ε > 0 a sufficiently large N , so
that 2Ld

∑∞
n=N+1 |rn| < ε. Similarly to the continuous case, we split the sum and study each term separately:

∞∑
n=0

rn+hrn

kh
=

N∑
n=0

rn+h

kn+h

k(n + h)

k(h)
rn +

∞∑
n=N+1

λ(h)

k(h)

rn+h

λ(n + h)

λ(n + h)

λ(h)
rn. (5.9)

The sequence rh/λ(h) converges to Ld as h → ∞, so the terms of the second sum are bounded for sufficiently large h
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by 2Ld|rn|. Therefore,

lim sup
h→∞

∣∣∣∣∣
∞∑

n=N+1

rn+hrn

kn

∣∣∣∣∣ � 2Ld

∞∑
n=N+1

|rn| < ε.

Let us now consider the first term in (5.9). Applying Potter’s bound to the function k(x) as in (5.4) we obtain the discrete
version of (5.5). Thus,

lim
h→∞

N∑
n=0

rn+hrn

kh
= Ld

N∑
n=0

rn.

Similarly,
∑∞

n=0 rn = −1/(a + ∑∞
j=1 k j) and the claim follows. �

6. Proof of Theorem 2.2

First we show that the process defined by (2.9) has a continuous modification. Applying Itô’s lemma, Cauchy–Schwarz
inequality and Fubini’s theorem we obtain

E
((

X(t) − X(u)
)2) = σ 2

∫
R

(
r(t − s)1{s�t} − r(u − s)1{s�u}

)2
ds

= σ 2
∫
R

( t∫
u

r′(v − s)dv

)2

ds

� σ 2(t − u)

∫
R

t∫
u

(
r′(v − s)

)2
dv ds

= σ 2(t − u)

t∫
u

∫
R

(
r′(s)

)2
ds dv σ 2(t − u)2

∫
R

(
r′(s)

)2
ds.

Now, r is square integrable and with ‖k ∗ r‖L2 � ‖k‖L1‖r‖L2 , we have r′ ∈ L2((0,∞);R). Here, (k ∗ r)(·) denotes the convo-
lution of k and r, given by

∫ ·
0 k(s)r(· − s)ds. The Kolmogorov–Chentsov theorem (see e.g. [26, Theorem 2.8]) yields that X

has a continuous modification. It remains to show that the process defined by (2.9) solves (2.8). We write, using r(t) = 0 for
t < 0,

X(t) − X(0) = σ

0∫
−∞

(
r(t − s) − r(−s)

)
dB(s) + σ

t∫
0

r(t − s)dB(s)

= σ

t∫
−∞

t∫
0

r′(u − s)du dB(s) + σ B(t)

= σ

t∫
−∞

t∫
0

(
ar(u − s) +

u−s∫
0

r(u − s − v)k(v)dv

)
du dB(s) + σ B(t)

= σ

t∫
0

u∫
−∞

ar(u − s)dB(s)du + σ

t∫
0

∞∫
0

u−v∫
−∞

r(u − s − v)dB(s)k(v)dv du + σ B(t)

=
t∫

0

aX(u)du +
t∫

0

∞∫
0

k(v)X(u − v)dv du + σ B(t).

Since r and B are continuous, we are able to apply stochastic Fubini’s theorem (e.g. [31, Chapter IV.6, Theorem 65]), if
t∫

−∞

t∫
0

r(u − s)2 du ds < ∞,

t∫
−∞

t∫
0

( u−s∫
0

r(u − s − v)k(v)dv

)2

du ds < ∞.

The statement follows from classical Fubini’s theorem and the fact that r ∈ L2([0,∞);R) and ‖k ∗ r‖L2 � ‖k‖L1‖r‖L2 .
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7. Proof of Theorem 3.4

Suppose that r ∈ C([0,∞); (0,∞)) obeys

r ∈ RV∞(μ) for some μ ∈ (−1,−1/2). (7.1)

Since r ∈ L2([0,∞);R), there exists c : [0,∞) → (0,∞) such that

c(t) =
∞∫

0

r(s)r(s + t)ds, t � 0. (7.2)

By assuming (7.1), we exclude the possibility that r ∈ L1([0,∞);R). Our first result is the following rate of decay of c.

Theorem 7.1. Suppose that r is a positive continuous function which obeys (7.1) for some μ ∈ (−1,−1/2). Then the function c in (7.2)
is well defined and moreover obeys

lim
t→∞

c(t)

tr2(t)
= Γ (−1 − 2μ)Γ (1 + μ)

Γ (−μ)
=: L > 0. (7.3)

Proof. For μ ∈ (−1,−1/2) we have
∫ ∞

0 xμ(x + 1)μ dx = L. First we suppose that r is decreasing. In this case we choose for

an arbitrary 0 < ε < 1 a δ = δ(ε) > 0 such that
∫ δ

0 xμ(x + 1)μ dx < ε. The Uniform Convergence Theorem [11, Theorem 1.5.2]
yields that

r(tx)

r(t)
→ xμ, uniformly in x, for all x � δ.

Hence, there exists a t0 = t0(δ) such that

r(tx)r(t(x + 1))

r(t)2
� 2xμ(x + 1)μ, for all t � t0, x > δ.

The function on the right-hand side is integrable, hence, the dominated convergence theorem yields that

lim
t→∞

∞∫
δ

r(tx)r(t(x + 1))

r(t)2
dx =

∞∫
δ

lim
t→∞

r(tx)r(t(x + 1))

r(t)2
dx =

∞∫
δ

xμ(x + 1)μ dx.

There exists a t1 = t1(δ) > t0 such that∣∣∣∣∣L −
∞∫

δt

r(s)r(t + s)

tr(t)2
ds

∣∣∣∣∣ =
∣∣∣∣∣L −

∞∫
δ

r(tx)r(t(x + 1))

r(t)2
dx

∣∣∣∣∣
� ε +

∣∣∣∣∣
∞∫
δ

xμ(x + 1)μ dx −
∞∫
δ

r(tx)r(t(x + 1))

r(t)2
dx

∣∣∣∣∣ � 2ε (7.4)

for all t � t1. On the other hand, using the monotonicity of r we obtain

δt∫
0

r(s)r(t + s)

tr(t)2
ds �

δt∫
0

r(s)

tr(t)
ds = R(t)

r(t)t

R(δt)

R(t)
,

where R(t) = ∫ t
0 r(s)ds ∈ RV∞(μ + 1). It follows from Karamata’s theorem [11, Theorem 1.5.11], that

R(t)

tr(t)
→ 1

μ + 1
.

Choosing δ small enough and a t2(δ) > t1(δ) large enough we obtain

δt∫
r(s)r(t + s)

tr(t)2
ds � 2 lim

t→∞
R(t)

r(t)t

R(δt)

R(t)
= 2

1

μ + 1
δμ+1 � ε, (7.5)
0
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for all t � t2. Hence, combining (7.5) and (7.4) we get for all t � t2∣∣∣∣∣L −
∞∫

0

r(s)r(t + s)

tr(t)2
ds

∣∣∣∣∣ �
∣∣∣∣∣L −

∞∫
δt

r(s)r(t + s)

tr(t)2
ds

∣∣∣∣∣ +
δt∫

0

r(s)r(t + s)

tr(t)2
ds � 3ε.

Now, for arbitrary r obeying (7.1), let ρ(t) := sup{r(t): t � x}. Then ρ is a positive decreasing function, continuous on [0,∞)

and satisfying ρ(x) ∼ r(x) for x → ∞ [11, Theorem 1.5.3]. For an arbitrary ε > 0 we choose t0 = t0(ε) such that for all t > t0
we have∣∣∣∣∣ 1

tρ(t)2

∞∫
0

ρ(s)ρ(t + s)ds − L

∣∣∣∣∣ � ε.

Since r(t)/ρ(t) → 1 as t → ∞ for every ε ∈ (0,1) there exists t1 = t1(ε) � t0 such that 1 − ε < r(t)/ρ(t) < 1 + ε for all
t � t1. Therefore

(1 − ε)2 �
∫ ∞

t1
r(s)r(s + t)ds∫ ∞

t1
ρ(s)ρ(s + t)ds

� (1 + ε)2. (7.6)

For ε sufficiently small we obtain∣∣∣∣
∫ ∞

t1
r(s)r(s + t)ds∫ ∞

t1
ρ(s)ρ(s + t)ds

− 1

∣∣∣∣ � 3ε. (7.7)

Now, since ρ is decreasing, we have for t � t1

1

ρ(t)

t1∫
0

r(s)r(s + t)ds =
t1∫

0

r(s)
r(s + t)

ρ(s + t)

ρ(s + t)

ρ(t)
ds � (1 + ε)

t1∫
0

r(s)ds. (7.8)

Therefore as t 
→ tρ(t) is in RV∞(μ + 1) and μ + 1 > 0, we have tρ(t) → ∞ as t → ∞, and so there exists a t2 = t2(ε) � t1
such that∣∣∣∣∣ 1

tρ2(t)

t1∫
0

r(s)r(s + t)ds

∣∣∣∣∣ � ε and

∣∣∣∣∣ 1

tρ2(t)

t1∫
0

ρ(s)ρ(s + t)ds

∣∣∣∣∣ � ε

for all t � t2. Therefore,∣∣∣∣∣ 1

tρ2(t)

∞∫
0

r(s)r(s + t)ds − L

∣∣∣∣∣
�

∣∣∣∣∣ 1

tρ2(t)

∞∫
0

ρ(s)ρ(s + t)ds − L

∣∣∣∣∣ +
∣∣∣∣∣ 1

tρ2(t)

t1∫
0

r(s)r(s + t)ds

∣∣∣∣∣
+

∣∣∣∣∣ 1

tρ2(t)

t1∫
0

ρ(s)ρ(s + t)ds

∣∣∣∣∣ +
∣∣∣∣∣ 1

tρ2(t)

∞∫
t1

r(s)r(s + t)ds − 1

tρ2(t)

∞∫
t1

ρ(s)ρ(s + t)ds

∣∣∣∣∣
� 3ε + 1

tρ2(t)

∞∫
t1

ρ(s)ρ(s + t)ds

∣∣∣∣
∫ ∞

t1
r(s)r(s + t)ds∫ ∞

t1
ρ(s)ρ(s + t)ds

− 1

∣∣∣∣
� 3ε + 3εL = (3 + 3L)ε.

Finally we note that

lim
t→∞

c(t)

r(t)2
= lim

t→∞
c(t)

ρ(t)2

ρ(t)2

r(t)2
= lim

t→∞
c(t)

ρ(t)2
. �

We now explicitly connect the result of Theorem 7.1 to the autocovariance function of the stationary solution of (2.8) in
the case when a = − ∫ ∞ k(s)ds to prove our main result.
0
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Proof of Theorem 3.4. It follows from Theorem 3.2 that

lim
t→∞ tr(t) · L2(t)t1−2α = sin2 απ

π2
. (7.9)

Since α ∈ (0,1/2) we have that r ∈ L2([0,∞); (0,∞))∩ C([0,∞); (0,∞)) and r ∈ RV∞(α −1) with μ := α −1 ∈ (−1,−1/2).
Therefore by Theorem 7.1 and Theorem 2.2 obtain

lim
t→∞ c(t)L2(t)t1−2α = lim

t→∞
c(t)

tr2(t)
· r2(t)L2(t)t2−2α

= σ 2 Γ (1 − 2α)Γ (α)

Γ (1 − α)
· sin2(πα)

π2
,

as claimed. �
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