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Abstract 

Dargahi-Noubary, G.R. and A. Nanthakumar, Stress-strength reliability for designs based on large historic 
values of stress, Journal of Computational and Applied Mathematics 40 (1992) 43-53. 

Some new ideas and thoughts concerning the definition and calculation of reliability for stress-strength models 
for failure are presented. In particular, calculations are carried out and statistical inference is made for 
systems whose design is made on the basis of the past data with emphasis on extremes and excesses. This is 
done based on the observation that for such designs reliability estimation can be viewed as the statistical 
problem of comparing future values, with large values of the past for a single distribution. It is discussed that 
this approach could particularly prove useful when no basis exists for assuming any specific distributions for 
either stress or strength or both, but when design is made or experimentation has been performed yielding 
sufficient information to assume a certain functional relationship between distributions for stress and strength. 
Some ideas from information theory are also brought in to provide a guideline for defining reliability on the 
basis of an “equivalent” system. Finally, a simple demonstrating example is also included using a set of 
published data. 
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1. Introduction 

Suppose R is the strength of a system or a structural element subjected to a sequence of 
stresses S,, S,, . . . . In general, a system fails when the stress exceeds the strength, see [9] for 
details and properties of the stress-strength model. Let T denote the random lifetime of the 
system and suppose that the occurrence of stress is governed by a counting process {N(t), t 2 0). 
The the survival distribution of 7’ is given by 

P(T> t) = 2 P(N(t) =h)P(h), (1) 
h=O 

where P(O) = 1 and P(h) = P(max(S,, S,, . . . , S,) <R), h = 1, 2,. . . (see, e.g., [6]). 
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Let Fs( l 1 and FJ l ) denote distribution fun&; “9 for stress and strengths. respectively; then 
noting that the distribution function of max(S,, S,, . _ . > :,I is given by (F&J)” we have 

&Jr) = jx(Fs(x))” dF,(x). i2) 
0 

oreover, since {T> t} if and only if {max(S,, S,, . . . , S,) < I?}, it follows that 

P(T> t) = i P(N(t) =h)/=(F,(x))” dF,(x) 
Ir =o 0 

= Ix i P(N(t) =k)(F,(x))” dF&). 
0 A=0 

(3) 

If, for example, stresses occurring by time t form a nonhomogeneous Poisson process with 
time-dependent rate h(t) > 0, thmn letting A(t) = l,‘h(zd du, we have 

P(T>t)= i es”“’ 
[A(t)]” x 

h, / F:(x) 
it = 0 0 

dFR(x) = /=exp( --A@)(1 -F,(x))) d&(x). 
. 0 

Now, it is clear that tar a g?den { N( t 1) the application of (3) or (4) requires knowledge of both 
FR( 4 and F& 9. In practice, however, there are many cases of prime importance where the 
nature of stress and strength random variablec are not completely known and no basis exists for 
assuming any specific distribution for both variables. Thus, an alternative solution should be 
sought. Considering this, the object of this study is to develop an appropriate technique for 
reliability calculation based on the amoun: of information available. In fact, as will be 
demonstrated, using properties of some well-known designs, it is possible to assume a func- 
tional relationship between FR( -1 to Fs( - ), and develop a methodology for reliability calcula- 
tions. Taking the viewpoint that the strength oi a component is measured by the stress required 
to cause failure, this is a reasonable approach. One advantage of this approach is that reliability 
calculation can be carried out in the absence of any distributional assumptions concerning S 
and R. In fact, unlike most classical methods which rely either on parametric or nonparametric 
approaches (see [9] for details!, here a semiparametric solution will be presented. 

2. Problem formulation and the proposed methodology 

Let y = F&x) and C( - ) be a function relating Fs( - ) to FR( - 1, that is, assume that 

FfW = G(F,(X))? 

so that 

p(h) = /=F;( x) dF,( x) = /“F;(x) dG( Fs( x)) = jly” dG( y). (5) 
0 0 0 

Note that (5) involves only a single function G( m), and if it is given, the reliability can easily be 
determined. Considering this, we propose to determine G( .) based on design consideration or 
in the absence of any information by fitting a regression function. To clarify this, consider a 
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design on the basis of the largest stress of the past, e.g., consider a structure that is built to 
resist the largest of the k earthquakes in the history of the region. Since for this case 
FR( X) = (Ps( x))~, we have 

G(Y) =yk9 

and therefore 

k 
P(h) = j’y” dyk = k+h = 

1 1 

0 I+h/k =- l+w’ U-9 

where o = h/k. Note that for h = k, P(h) = f as expected. 
The following theorem summarizes the characteristics of the function G. 

Theorem 1. Let R and S be continuous random variables on [0, ~4; then G( l ) exists, is unique and 
is a distribution ,frlnction on [0, I]. 

Proof. Define G = F, 0 F; ‘; then 

G(F,)=(F,oF,-l)o~S=F,. 

Also since FS and FR are nondecreasing, it follows that G is a nondecreasing function on [O: I]. 
Moreover, 

FR( -0~) = G( FS( -m)) = G(0) = 0, 

and this complete the proof. 0 

F&o) = G( F,(m)) = G( 1) = 1, 

Note that for random variables whose supports have a partial overlap, G represents only a 
part of a distribution function defined on the overlapping interval. 

We now consider few examples to demonstrate the usefulness of the proposed methodology. 

Example 2. Suppose that the process {N(t)} has been observed throughout the time interval 
( -7, 0) and further stress values are referred to the largest stress occurring therein. Then 

FR(x) =P(R <x) = e P(max(S,, S 2 ,..., S,,) <X 1 N(al = h)P(,‘V(T) =hj. 
II =o 

For nonhomogeneous Poisson {N(t)}, this equals to 

2 exp( -n(T)) [nL)l” (F,(x))” = exp( -n(r)(l - F,(x))). 
h =o . 

That is, for this case, 

G(Y) -1 exp( -A(W -Y)>, 

and hence 

P(T> t) =A(T) 
1 - ew( - [A(T) +A(t)l) 

A(r) +A(t) ’ 
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Example 3. Suppose that the designer knows the critical values of the stress (e.g.. sea wave 
height, wind speed or flood amount) that lead to damage and his interest is centered in the 
frequencies of excess of such values. Let 5 denote the value of the lath largest of the k past 

stresses and let x denote the (unknown) number of excesses of 5 in the next (so far 
unobserved) h stresses. Then, it is known that 

P(x)=P(X=x)=( h+t_,--x)(x;~;l)/(h;k), x=0, l,...,h, (8) 

18, p.591. Con SI ‘d er now a less conservative design based on 5. For this case the probability of no 
excess of 5 over the next 11 stresses equals P(x = 0) and can be obtained from (8). As an 
example, if we have 100 years of data and set our design standard equal to the second largest, 
there is about a 70% chance that this will survive the next 20 years. Noting that the distribution 
function of the mth largest order statistics for a sample of size k from F,(x) is given by 

it follows that for the above design we have 
k 

G(Y) = 
k 

= 0 I 
j=k-m+l ’ 

y’(1 -y)“_‘, o<y < 1, 

and P(h) is given by (8). Note that for nr = 1, this equals 

F(h) 
k 1 1 

=-= =- 
k+h 1 +h/k 1+0’ 

Example 4. Rather than considering the maxima for stress measurements one could accomplish 
a design based on the minima of the strength measurements. This is also intuitively appealing 
sir :e failures are often due to the weak component of a system (weakest link principal, see [ll, 
p.267]), e.g., a series system. Noting that the distribution of minima for a sample of size n from 
H x1 is given by 1 - ( 1 - F(x))“, we have 

F&x-) = 1 - (1 - FR(x))“, 

and the required relation is given by 

G(y)=l-(l-y)l”‘, O<y<l. 

Ii is worth noting that this model represents a proportional failure rate (Lehman alternative), 
see, e.g., [2]. The exponential distribution and the Weibull distributions with common shape 
parameter satisfy this requirement. We end this section by noting that each of the examples 
introduced above preserves the distributional form of a certain class of the distributions. 

3. Reliability inference when G ( y ) = ya 

We now concentrate on the case G(y) = y”, 0 < y < 1, which includes design for the largest 
stress of the past. As noted earlier since the strength is measured by the stress required to 
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cause failure, and failure happens in the incidence of the largest stress so far observed, this is a 
reasonable assumption for most practical purposes. Also, as is demonstrated in Section 4, for 
any given system there is an equivalent system having the same reliability but being designed 
for the largest stress of the past. There are, also, other circumstances which lead to design 
based on the largest stress. As an example, consider a situation where it is required to maintain 
a reliability of at least 1 -p for a certain period of time. What should the design policy be? Let 
p = P( S > R) and N be the number of stresses that the system would experience during the 
period of interest. Then the probability of failure in the incidence of the nth stress equals to 

P(N=n) =p(l -p)“-I, n = 1, 2 ,..., 

and that E(N) = l/p. If we exclude the stress causing the first failure, then (l/p) - 1 presents 
the expected number of stresses up to the next fai!ure. Now, to maintain an averag: reliability 
of at least 1 - p we could adopt the policy of designing for the largest of h(l/p - 1) = k 
stresses. Since for this case G(y) = yk, reliability for h applications of the load is given by 

P(h) = f=F;(x) dF,(x) = jaF;(x) dF,k(x) = & = 
W/P - 1) 

=1-p. 
0 

(9) 
0 i h(l/P) 

Thus, the required reliability will be maintained. 

4. Reliability, J-divergence rate and equivalent systems 

Consider once more the case FR( x) = F,k( x) for a fixed k. Then k/( k + h) = p is the 
reliability of a system that will experience exactly h stresses (shocks) during its lifetime. Now it 
is evident that increasing k will result in larger p, whereas increasing h will lead to a smaller p. 
Now, to have a better insight we could use the ideas from information theory, and define a 
divergence measure between Fl( x) and F:(x), which in turn lead to meaningful and useful 
measure for reliability. Let f,( a) and fs( 0) denote the probability density function of R and S, 
respectively, and consider the expressions 

fs 
I, =jrn fs logf dx, 

fR 
-CU R 

12=lm fR log7 dx. 
-m S 

These are called the Kullback-Leibler discrimination information rate [lo] for discriminating in 
faVOr of fs over fR and fR over fs, respectively. Also their sum ./ = 1, + Iz iS called 
J-divergence rate, which measures the degree o f separation between F& a) and FRi 9. For 
example, the divergence rate for two distributions F:(x) and F:(x) is given by 

h k 1 
J=-+ --2=w+--2, 

k h w 
(101 

I 

where h/k = O. This is a monotonic increasing function of w with minimum occurring at w = 1. 
Note that (10) is also the divergence rate between (I-F&x))” and (I - Fs(x)Jk. Also since 
p = l/(1 + w), it follows that 
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This function has its minimum for p = $, and its maximum (00) for p = 1 and is a monotonic 
increasing function of p in 4 < p < 1. Thus we see that reliability of a system can also be 
defined on the basis of the divergence rate between distributions for strength and stress. 

Now when F,(x) = F:(x), the reliability of the system for single application of stress (h = 1) 
and the corresponding divergence rate are respectively p = k/(1 + k) and J given by (11). If for 
a given system, J, denotes the divergence rate between the distribution for strength and stress, 
then since k + l/k - 2 is monotonic increasing in k, it follows that there exists a unique k, 
1 G k < Q), such that k + l/k - 2 = Jo. This means that corresponding to any given system, 
there is a unique equivalent system possessing the property FR( X) = F,k( x) and having the same 
reliability as the system under consideration. This is because J is also a monotonic increasing 
function of p. Using this point the reliability estimation for a given system can be carried out by 
estimating J or alternatively by estimating the parameter k in the equivalent system. This leads 
to define the reliabiiity as the maximum stress that a component can stand. For noninteger k 
we can think of the equivalent system as a system that can stand the largest of [k] stresses but 
not the largest of [k] + 1 where [k] denotes the integer part of k. Hence, an estimate of k for 
any given system could furnish an estimate for reliability of that system for a single application 
of the stress. Note that since for a system experiencing h stresses (shocks), reliability equals 
l/(1 + h/k), the equivalent system, being subject to a single stress, is the one with the property 
F,(X) = F~/‘*(x) = F:/“(x). The next section considers the problem of statistical inference for 
w and for the reliability p. 

5. Statistical inference 

In this section the problem of making inference about reliability for a system described in 
previous sections will be considered. Since, as was discussed, the value of o could be specified 
based on design considerations, the statistical test of a hypothesis for a specified value of o (or 
p) versus an appropriate alternative will also be included in our discussion. When the 
hypothesis is not rejected, the value assigned to o could be used as an estimate for the 
reliability. 

We start by noting that in most of the studies concerning the stress-strength model for 
failure, it is assumed that the distribution of S (or both of S and R) are known except for a few 
unknown parameters. This problem is considered in [3,7,12,13] under the assumption that S 
and R follow a normal distribution. Basu [l] has used distributions such as exponential and 
gamma. Dargahi-Noubary [4] has considered a combined Power-Pareto for both stress and 
strength distributions. Here we estimate the unknown parameter o and later use that to 
estimate the reliability. It is of interest to note that both 6 and p^ are distribution-free 
estimates. 

Suppose that x1, x2,... , x, are stress measurements and y *, y2, . . . , y, are strength meas- 
urements taken at random over a certain period of time. Under the present set-up, F,(x) = 
[F&x)ll’“, 0 < w < 1. First we estimate o and then test the hypothesis that 

H,: FR = ( Fs)l’u” vs. H,: F, = (F#“, 

where 0 < O, o0 < 1 with w < oO. Note that reliability is given by p = l/(1 + 01. 
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Estimation 

The likelihood 

L(w) = 

function for w under the alternative hypothesis is given by 

(12) 

By differentiating with respect to w and then setting the derivative to zero, we obtain 
maximum likelihood estimate G of o as 

A 

w= - ’ t log Fs( Yj)* 
m j=l 

the 

(13) 

In reliability theory, the interest centers on testing the hypothesis that H,,: p = p. vs. H,: ,o > p. 
and this is equivalent to testing the hypothesis H,: w = wg vs. H,: o < w”. In fact, designers 
often claim and wish to demonstrate that the designed system has a reliability of at least po. In 
this regard, we need the distributions of cj under both null and alternative hypothesis. 

Lemma 5. Under the null hypothesis, rnG follows a gamma (m, w,) distribution. 

Proof. Under the null hypothesis, [FR(yj)IWo = F,( yi), and hence 

p( -log t;,_( yj) <x) = P(F,( Yj) > eHx) = P{ FR( yj) >/ e-x/wc,) = 1 - e-x’w”* 

This shows that -log F,( yj) follows an exponential distribution with parameter oo. Since y,‘s 
are independent and identically distributed random variables, nz& = - CJY! Jog F&y,) follows a 
gamma distribution with parameter-r, m and uO. This completes the proof. 0 

Corollary 6. Under the nul! hypothesis, rn(l/b - 1) follows a gamma Cm, OJ distribution. 

Lemma 7 gives the distribution & under the alternative hypothesis. From this, the distribu- 
tion of p^ under the alternative hypothe,is is also obtained. 

Lemma 7. Under the alternative hypothesis, m 4 follows a gamma (m, o)distribution. 

Proof. Same as the proof of Lemma 5, except for changing w. to o. 3 

Corollary 8. Under the alternative hypothesis, m( l/p^ - 1) follows a gamma Cm, w) distribution. 

Test of hypothesis 

Here our interest is to test the hypothesis that 

Ho: w=wo vs. H,: o<w. 
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From the Neyman-Pearson lemma H, is rejected if A = Sup,LHd/Lu,, > C*, where C* is the 

critical value. Here we have 

sup [log LH,) = i: log f&i) + f log fs(Yj) -m log t.2 + 

1 
- - 1 g log &(Yj), 

0 i= 1 j=l ( 1 0 j=l 

1 
log &-I,, = ilOgfs(Xi)+ if:lOgfS(Yj)-m log wO+ G-l El”g FS(Yj)* 

i= I j=l ( 1 j=l 

(14) 

Now, combir ing (13) and (14), we get 

and the decision rule is to reject H, if log A > log C *. Now let A = w/o0 and A^ = G/o0 and 
consider the following function: 

H(h) =A -log A. 

Since 0 < A < 1, it follows that H’(A) = 1 - A - ’ Q 0 and therefore an equivalent decision rule is 
to reject H, if rn; < c, where c is a constant determined by the following equation: 

CX 
m-l e -x/w,, 

/ 0 wY(m) 
dx=cu. 

Here cy denotes the significant level of the test. The power of the test 
follows: 

m-l m-l -f 

Power=P(mi<e)=~cx~m~~~~*d~=/c/mr r(i) dt. 
0 

Since 

a Power -(c/o)~+ e-‘/O 
= 

al.0 

_2 ~ o 

r(m) cw ’ 

can be calculated as 

(15) 

we see that the maximum power occurs when o = 0, and the power decreases as we increase 
the value of W. 

Shortesr confidence intervals for reliability 

We have already shown that under the alternative hypothesis, m((l/p^) - 1) follows a gamma 
distribution having m and w as parameters. We set up the lOO( 1 - cu)% confidence interval for 
p in such a way that 

P(c, <; <cJ = 1 --cu (16) 
and 

C2 -Cl = shortest distance. (1v 
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We use the following lemma to find the limits of the shortest confidence interval. 

51 

Lemma 9. The shortest interval (cl, c,) such that P{q < p^ < c2} = 1 - ar satisfies the condition 

( cl 
-l_ l)m-l e-(m/~)C~'c~2=(c;1 _ I)m-l e-(m/o)cF1c;2, 

where p^ is the estimate of the reliability. 

Proof. Note that 

P(clCp^,(c2)=P{c~1~l/pl~c~1)=P(m(c;l-1)~m(l/p^-1)~ -l . m+, 

= 
/ 

(m/d&-‘- 11 P-l e-’ 

Wn) 

dt=l-ar. 
(m/ok+ 1) 

Differentiation with respect to c1 and setting the derivative equal to zero yields 

m-l e-t~~/4Ci’-lJl m 
0 = qc;1- 1) 

0 1 qm) (- !);cT2 

4 

1?I- 1 e-l~/MC~‘-~)l m 
-2 dc2 

1 r(m) WC2 (19) 

However, when cl and c2 are placed at the shortest distance, dc,/dc, equals 1. This 
immediately gives the condition. II 

Also is it of interest to note that (18) can be rewritten as 

m-l m 

=[ ( 

- c,‘-1) I 
j e-[lPZ/w(C;‘-l)] hi - 1 m j e-[m/dC;‘- 111 

i=() @ j! - j=O ; CT’ EL ( 
-1) 1 j! 

=I-Cu. 

We use (20) and the result of the previous lemma to compute cl and c2. 

6. Example of application 

Consider the reliability data presented in Table 1, for 15 pairs of stress and strength 
measurements. For this data, Basu [l] has found p^ = 0.9639 assuming exponential distribution 

Table 1 
Stress S and strength R 

S 0.0352 0.0397 0.0677 0.0233 0.087 
R 1.77 0.9457 1.8985 2.6121 1.0929 
S 0.1156 0.0286 0.0200 0.0793 0.0072 
R 0.0362 1.0615 2.3895 0.0982 0.7971 
S 0.0245 0.025 1 0.0469 0.0838 0.0796 
R 0.8316 3.2304 0.4373 2.5648 0.6377 
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Table 2 
95% confidence interval 

Distribution 

Exponential 
NOIUlZii 

(;) (6) Lower Upper 

0.0555 0.948 0.922 0.972 
0.0802 0.926 0.892 0.960 

for the stress and strength measurements. Ebrahimi [S] has found the reliability to be 0.903 
assuming normal distribution for the stress and IFRA for strength measurements. Using the 
method previously described, we computed & 5 and the p-value together with a 95% 
confidence limit for p assuming exponential and normal distributions for stress. These are 
summarized in Table 2. Note that for both distributions the p-value is equal to zero. Also, the 
value of p known from the past data is 0.95 [l]. 

We finish this section by noting that strength data are often rare and sometimes expensive to 
sample. However, since this is not usually the case for stress data, one could, as is demonstrated 
by the above example, consider a suitable parametric model for stress and apply the method 
described. 

7. Conclusion 

Designs are often made on the basis rrf the past data on stress and usually with particular 
emphasis on extremes and excesses. For such designs the methodology developed here can be 
used to calculate the reliability. The proposed method is particularly useful when the distribu- 
tions of stress and strength random variables are not completely known. It proposes presenting 
the design information in the form of a functional relationship between distributions for stress 
and strength and it provides a simple method for reliability calculation. It also includes a 
technique for reliability estimation based on the idea of “equivalent” system and provides a 
guideline for defining reliability using J-divergence. 
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