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Abstract

We study the set S of ergodic probability Borel measures on stationary non-simple Bratteli diagrams
which are invariant with respect to the tail equivalence relation R. Equivalently, the set S is formed by er-
godic probability measures invariant with respect to aperiodic substitution dynamical systems. The paper is
devoted to the classification of measures μ from S with respect to a homeomorphism. The properties of the
clopen values set S(μ) are studied. It is shown that for every measure μ ∈ S there exists a subgroup G ⊂ R

such that S(μ) = G ∩ [0,1]. A criterion of goodness is proved for such measures. Based on this result, the
measures from S are classified up to a homeomorphism. We prove that for every good measure μ ∈ S there
exist countably many measures {μi}i∈N ⊂ S such that the measures μ and μi are homeomorphic but the
tail equivalence relations on the corresponding Bratteli diagrams are not orbit equivalent.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we are interested in the problem of classification of Borel probability measures
on a Cantor set with respect to a homeomorphism. Two probability measures μ and ν defined
on Borel subsets of a topological space X are called homeomorphic or topologically equivalent
if there exists a self-homeomorphism h of X such that μ = ν ◦ h, i.e. μ(E) = ν(h(E)) for
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every Borel subset E of X. In such a way, the set of all Borel probability measures on X is
partitioned into equivalence classes. One may be interested in the structure of the equivalence
relation defined by the classes of homeomorphic measures or in the study of a certain equivalence
class.

The topological properties of the space X are important for the classification of measures up to
a homeomorphism. For instance, the following theorem proved by Oxtoby and Ulam [16] holds:
a non-atomic Borel probability measure μ on the finite-dimensional cube [0,1]n is homeomor-
phic to the Lebesgue measure if and only if every non-empty open set has a positive measure
(in other words, μ is full) and the boundary of the cube has measure 0. Later, Oxtoby and Prasad
extended this result to the Hilbert cube [0,1]N (see [15]). Similar results were also obtained for
various manifolds (see the book by Alpern and Prasad [6] for the details).

The current work has two sources. The first one is the article [9] where an explicit descrip-
tion of all ergodic (finite and infinite) measures on stationary Bratteli diagrams was found. The
second one is a series of papers by Akin, Austin, Dougherty, Mauldin, Yingst [3,7,10,17] where
Borel probability measures on zero-dimensional compact perfect metric spaces (Cantor sets)
were extensively studied. In those papers, the major results were focused on the classification
of Bernoulli measures up to a homeomorphism continuing the preceding investigations (see
[13,14]). We should mention that it was Akin who initiated a systematic study of homeomor-
phic measures on a Cantor space [1,2]. It turns out that the situation in this case is much more
difficult than for connected spaces. Though there is, up to a homeomorphism, only one Cantor set
it is not hard to construct full non-atomic measures on the Cantor set which are not topologically
equivalent (see [1] where more impressive results were proved). The following question natu-
rally arises: find necessary and sufficient conditions under which measures on a Cantor space
X are homeomorphic. It was noted in [1] that there exist continuum classes of equivalent full
non-atomic probability measures on a Cantor set. This fact is based on the existence of a count-
able base of clopen subsets of a Cantor set. Akin [1] defined the clopen values set S(μ) as the
set of values of measure μ on all clopen subsets of X. The set S(μ) is a countable dense subset
of the unit interval, and this set provides an invariant for topologically equivalent measures, al-
though it is not a complete invariant, in general. But for the class of the so-called good measures,
S(μ) is a complete invariant. By definition, a full non-atomic probability measure μ is good if
whenever U , V are clopen sets with μ(U) < μ(V ), there exists a clopen subset W of V such
that μ(W) = μ(U). It turns out that such measures are exactly invariant measures of uniquely
ergodic minimal homeomorphisms of Cantor sets (see [2,11]).

It this paper, we consider stationary (non-simple) Bratteli diagrams and ergodic probability
measures on their path spaces invariant with respect to the cofinal (tail) equivalence relation. It
follows from [9] that, for every such measure μ, the key invariant S(μ) can be easily computed
in terms of eigenvector entries and eigenvalues of the corresponding incidence matrices. This
allows us to answer the questions about properties of μ and S(μ) and construct homeomorphic
measures.

The proved results and organization of the paper are the following. In Section 2 we collect
the definitions and statements about measures on a Cantor set that are used in the paper. Since
we would like to make the paper self-contained, we include the main results from [2,3,9] in this
section. We also discuss the main notions related to Bratteli diagrams. In contrast to the case of
full measures on a Cantor set, we have to deal with several singular ergodic invariant measures on
a path space of a stationary Bratteli diagram. As shown in [9], the support of every such measure
is a closed (Cantor) subset and any open subset of the support has positive measure. This allows
us to use the machinery developed for full measures. In Section 3, we first study the structure



S. Bezuglyi, O. Karpel / Journal of Functional Analysis 261 (2011) 3519–3548 3521
of the clopen values set S(μ) for any ergodic probability R-invariant measure μ on a stationary
Bratteli diagram B and prove that this set is group-like, i.e., S(μ) = G ∩ [0,1] for some additive
subgroup G of R. It is worth to mention that in the main result of Section 3 we consider two cases:
(i) S(μ) is a subset of Q, and (ii) S(μ) ∩ (R \ Q) �= ∅. The first case is relatively simple. But
in the second case we have to use some methods of linear algebra and matrix theory. As proved
in [9], every ergodic finite invariant measure is completely determined in terms of eigenvalues
and eigenvectors of the matrix that defines the Bratteli diagram B . In this case, the eigenvector
entries and eigenvalues admit their representations as vectors with rational entries. In the same
section, we prove an easy checkable criterion for a measure from S to be good. In Section 4,
we apply the found criterion answering the following question. Given a good measure μ on a
stationary Bratteli diagram, how many measures from S are homeomorphic to μ? Is this class
infinite? It is proved that there exist stationary Bratteli diagrams {Bi}∞i=0 and good ergodic Ri -
invariant probability measures μi on Bi such that each measure μi is homeomorphic to the given
measure μ, but the dynamical systems (Bi, Ri ), (Bj , Rj ) are topologically orbit equivalent if
and only if i = j . The last section contains several examples that illustrate the results proved in
the preceding sections. Namely, we give a class of stationary non-simple Bratteli diagrams such
that in the simplex of probability R-invariant measures only ergodic measures are good. Another
example contains an explicit description of all good measures in a particular class of stationary
Bratteli diagrams. It is also shown that given a measure ν on a stationary Bratteli diagram there
exists a good measure μ such that S(μ) = S(ν).

2. Preliminaries: Good measures and stationary Bratteli diagrams

In this section, we collect some necessary definitions and results that are used throughout the
paper. We do this for the reader’s convenience. Unless stated otherwise, all measures considered
in the paper are Borel probability non-atomic measures and all Bratteli diagrams are assumed to
be stationary.

2.1. Good measures

For a measure μ on a Cantor space X, define the clopen values set:

S(μ) = {
μ(U): U is clopen in X

}
.

For each probability measure μ on X, the set S(μ) is a dense subset of the unit interval containing
0 and 1 [1].

Let X1, X2 be two Cantor sets, h : X1 → X2 a continuous map, and μ1 a measure on X1.
Then the image measure h∗μ1 on X2 is defined by

h∗μ1(B) = μ1
(
h−1(B)

)
for all Borel subsets B of X2. It is said that the measures μ1 on X1 and μ2 on X2 are homeomor-
phic if there exists a homeomorphism h : X1 → X2 such that h∗μ1 = μ2. Clearly, S(μ1) = S(μ2)

for any homeomorphic measures μ1 and μ2.
A measure μ on a Cantor set X is called full if μ(V ) > 0 for any non-empty clopen subset V

of X. If μ(V ) > 0, then one can define the relative measure μV on V setting
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μV (A) = μ(A ∩ V )

μ(V )

where A is a Borel subset of X.
We recall below the definitions of good, refinable, and weakly refinable measures which are

based on some natural properties of measures on a Cantor set. We follow here the papers [2,3,10].
A partition basis B for a Cantor set X is a collection of clopen subsets of X such that every

non-empty clopen subset of X can be partitioned by elements of B. A partition basis is a basis
for the topology but not every basis is a partition basis.

Definition 2.1. Let μ be a full measure on a Cantor set X.

(1) A clopen subset V of X is called good for μ (or just good when the measure is understood)
if for every clopen subset U of X with μ(U) < μ(V ), there exists a clopen set W such that
W ⊂ V and μ(W) = μ(U). A measure μ is called good if every clopen subset of X is good
for μ.

(2) A clopen subset U of X is called refinable for μ if α1, . . . , αk ∈ S(μ) with α1 + · · · + αk =
μ(U) implies that there exists a clopen partition {U1, . . . ,Uk} of U with μ(Ui) = αi for
i = 1, . . . , k. A measure μ is called refinable if every clopen subset is refinable.

(3) A measure μ is called weakly refinable if there exists a partition basis B for X with X ∈ B
consisting of refinable clopen subsets.

(4) A non-empty clopen subset U of X is called a clopen set of μ type when S(μU) = S(μ).
(5) A measure μ is called a measure of Bernoulli type when there is a partition basis B for X

consisting of clopen sets of μ type.
(6) It is said that a measure μ on a Cantor set X satisfies the Quotient Condition when every

non-empty clopen subset U of X is of μ type.
(7) A subset S of the unit interval I = [0,1] is called group-like (ring-like, field-like) if S = G∩I

where G is an additive subgroup (subring, subfield) of R.

We note that “goodness” �⇒ “refinability” �⇒ “weak refinability”. One can find refinable
but not good measures. To the best of our knowledge, it is an open question whether the notions
of refinability and weak refinability are equivalent.

It can be easily verified that for a countable subset S of the unit interval with 0,1 ∈ S the
set S is group-like (ring-like, field-like) if and only if S + Z is a subgroup (subring, subfield)
of R. Clearly, S is ring-like if and only if S is group-like and multiplicative. In fact, the following
lemma proved by Akin [2] holds.

Lemma 2.2. Let S be a subset of [0,1] with 0,1 ∈ S. Let G(S) be the additive group of R

generated by S. The following conditions on S are equivalent:

(1) S is group-like;
(2) S + Z = G(S);
(3) S + Z is an additive subgroup of R;
(4) α,β ∈ S and α � β imply that β − α ∈ S.

If S is group-like and G is an additive subgroup of R, then

S = G ∩ [0,1] ⇐⇒ S + Z = G.
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In the next theorem we collect the following results on good measures.

Theorem 2.3. Let μ be a measure on a Cantor set X.

(1) If μ is good and a measure ν is homeomorphic to μ, then ν is good.
(2) In order that the measure μ on X be good, it suffices that there exists a partition basis B con-

sisting of clopen sets which are good for μ. In particular, if a clopen set can be partitioned
by good clopen sets, then it is itself good [3].

(3) The measure μ is good if and only if there is a uniquely ergodic, minimal homeomorphism
of the Cantor set for which μ is the unique invariant measure [2,11].

(4) The direct product of a finite or infinite sequence of good measures is a good measure [3].
(5) If μ is good, then S(μ) is group-like. Conversely, if S is a group-like countable dense subset

of [0,1], then there is a good measure μ on X such that S = S(μ) (μ is unique up to a
homeomorphism).

(6) If μ is good and V is a non-empty clopen subset of X, then μV is a good measure on the
Cantor set V and therefore S(μV ) is group-like [2].

(7) The following statements are equivalent [3]:
(i) μ is a good measure;

(ii) μ is refinable and S(μ) is group-like;
(iii) μ is weakly refinable and S(μ) is group-like.

Corollary 2.4. If μ and ν are good measures on Cantor sets X and Y and if S(μ) = S(ν), then
μ and ν are homeomorphic.

Let D be a countable subset of the unit interval which contains 1. A number δ ∈ [0,1] is called
a divisor of D if for all α ∈ [0,1]

α ∈ D ⇐⇒ α · δ ∈ D.

The set of all divisors of D is denoted by Div(D). The set Div(D) is multiplicative and 1 ∈
Div(D).

This following theorem focuses on the properties of measures of Bernoulli type:

Theorem 2.5. Let μ be a full measure on a Cantor set X and let G be the group generated by
the clopen values set S(μ).

(1) If μ is good then μ is of Bernoulli type if and only if G is a subring of R such that every
positive element of G is a sum of positive units of G.

(2) If μ is good then every non-empty clopen subset of X is a set of μ type if and only if G is a
subfield of R.

(3) If μ is of Bernoulli type then the clopen values set S(μ) is multiplicative and for every
non-empty clopen subset U of X we have S(μ) ⊂ S(μU).

(4) If μ satisfies the Quotient Condition then μ is a refinable measure of Bernoulli type, and,
for every non-empty clopen U ⊂ X, the relative measure μU is homeomorphic to μ. The
rationals Q ∩ [0,1] are contained in S(μ).
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(5) Any two of the following conditions imply the third:
(i) U is a clopen subset good for μ;

(ii) U is a clopen subset of μ type;
(iii) μ(U) ∈ Div(S(μ)).

2.2. Bratteli diagrams

We recall here some basic definitions and facts about Bratteli diagrams. We mainly use the
notation and results from [9].

Definition 2.6. A Bratteli diagram is an infinite graph B = (V ,E) such that the vertex set V =⋃
i�0 Vi and the edge set E = ⋃

i�1 Ei are partitioned into disjoint subsets Vi and Ei such that

(i) V0 = {v0} is a single point;
(ii) Vi and Ei are finite sets;

(iii) there exist a range map r and a source map s from E to V such that r(Ei) = Vi , s(Ei) =
Vi−1, and s−1(v) �= 0, r−1(v′) �= 0 for all v ∈ V and v′ ∈ V \ V0.

The pair (Vi,Ei) or just Vi is called the i-th level of the diagram B . A finite or infinite
sequence of edges (ei : ei ∈ Ei) such that r(ei) = s(ei+1) is called a finite or infinite path, re-
spectively. For a Bratteli diagram B , we denote by XB the set of all infinite paths starting at
the vertex v0. We endow XB with the topology generated by cylinder sets U(e1, . . . , en) = {x ∈
XB : xi = ei, i = 1, . . . , n}, where (e1, . . . , en) is a finite path from B . We consider here such
Bratteli diagrams B for which the path space XB is a Cantor set.

Given a Bratteli diagram B = (V ,E), define a sequence of incidence matrices Fn = (f
(n)
vw )

of B:

f (n)
vw = ∣∣{e ∈ En+1: r(e) = v, s(e) = w

}∣∣
where v ∈ Vn+1 and w ∈ Vn and the size of Fn is |Vn+1| × |Vn|. Here and thereafter |Λ| denotes
the cardinality of the set Λ.

A Bratteli diagram is called stationary if Fn = F1 for every n � 2.
Observe that every vertex v ∈ V is connected to v0 by a finite path, and the set E(v0, v) of all

such paths is finite. Set h
(n)
v = |E(v0, v)|, v ∈ Vn. Then

h(n+1) = Fnh
(n),

where h(n) = (h
(n)
w )w∈Vn .

For w ∈ Vn, the set E(v0,w) defines the clopen subset X
(n)
w := {x = (xi) ∈ XB : r(xn) = w}

of XB . Then {X(n)
w : w ∈ Vn} is a clopen partition of XB . Analogously, the sets X

(n)
w (e) := {x =

(xi) ∈ XB : xi = ei, i = 1, . . . , n} determine a clopen partition of X
(n)
w where e = (e1, . . . , en) ∈

E(v0,w), n � 1.

Definition 2.7. Let B = (V ,E) be a Bratteli diagram. Two infinite paths x = (xi) and y = (yi)

from XB are called tail equivalent if there exists i0 such that xi = yi for all i � i0. Denote by R
the tail equivalence relation on XB .
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Recall that a Bratteli diagram is called simple if the tail equivalence relation R is minimal.
We will consider Bratteli diagrams B for which R is a countable Borel equivalence relation

on XB . Any two paths x, y from XB are R-equivalent if and only if there exists w ∈ V such that
x ∈ X

(n)
w (e) and y ∈ X

(n)
w (e′) for some e, e′ ∈ E(v0,w).

Recall that a measure μ on XB is called R-invariant if for any two paths e and e′ from
E(v0,w) and any vertex w, one has μ(X

(n)
w (e)) = μ(X

(n)
w (e′)). Then

μ
(
X(n)

w (e)
) = 1

h
(n)
w

μ
(
X(n)

w

)
, e ∈ E(v0,w).

In [9], all invariant ergodic measures on a stationary Bratteli diagram were described as fol-
lows. It was first shown that the study of any stationary Bratteli diagram B = (V ,E) (with
|V | = K) can be reduced to the case when the incidence matrix F of size K × K has the form:

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1 0 · · · 0 0 · · · 0
0 F2 · · · 0 0 · · · 0
...

...
. . .

...
... · · · ...

0 0 · · · Fs 0 · · · 0
Xs+1,1 Xs+1,2 · · · Xs+1,s Fs+1 · · · 0

...
... · · · ...

...
. . .

...

Xm,1 Xm,2 · · · Xm,s Xm,s+1 · · · Fm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.1)

The square non-zero matrices Fi on the main diagonal are irreducible (without loss of gener-
ality, one can assume that these matrices are strictly positive). For any j = s + 1, . . . ,m, at least
one of the matrices Xj,k is non-zero. The matrices Fi determine the partition of the vertex set
V into subsets (classes) Vi of vertices. In their turn, these subsets generate subdiagrams Bi . The
non-zero matrices Xj,k indicate which subdiagrams are linked by some edges (or finite paths).
Notice that each subdiagram Bi , i = 1, . . . , s, corresponds to a minimal component of the cofinal
equivalence relation R.

We denote by Fα , α ∈ Λ, the non-zero matrices on the main diagonal in (2.1). Let α � β . It
is said that the class of vertices α has access to a class β , in symbols α � β , if and only if either
α = β or there is a finite path in the diagram from a vertex which belongs to β to a vertex from α.
In other words, the matrix Xα,β is non-zero. A class α is called final (initial) if there is no class
β such that α � β (β � α).

Let ρα be the spectral radius of Fα . A class α ∈ {1, . . . ,m} is called distinguished if ρα > ρβ

whenever α � β . Notice that all classes α = 1, . . . , s are necessarily distinguished. A real number
λ is called a distinguished eigenvalue if there exists a non-negative eigenvector x with Fx = λx.
A real number λ is a distinguished eigenvalue if and only if there exists a distinguished class α

such that ρα = λ. In this case we denote λα = λ. If x = (x1, . . . , xK)T is an eigenvector corre-
sponding to a distinguished eigenvalue λα , then xi > 0 if and only if i ∈ β and α � β .

Let λ1, . . . , λk be the distinguished eigenvalues of the matrix A = FT (we will keep this
notation below). The main result of [9] asserts that there exist exactly k ergodic probability
invariant measures defined by λ1, . . . , λk . More precisely, fix a distinguished eigenvalue λ and
let x = (x1, . . . , xK)T be the probability non-negative eigenvector corresponding to λ. Then the
ergodic probability measure μ defined by λ and x satisfies the relation:
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μ
(
X

(n)
i (e)

) = xi

λn−1
(2.2)

where i ∈ Vn and e is a finite path with s(e) = i. Therefore, the clopen values set for μ has the
form:

S(μ) =
{

K∑
i=1

k
(n)
i

xi

λn−1
: 0 � k

(n)
i � h

(n)
i ; n = 1,2, . . .

}
. (2.3)

This relation is of extreme importance for us and will be used throughout the paper.
Let λα be a distinguished eigenvalue corresponding to the distinguished class α. In the next

section, we will use the following asymptotics mentioned in [9]

(
An

)
ij

∼ λn
α, n → ∞, for i ∈ β, j ∈ α, with α � β. (2.4)

Here ∼ means that the ratio tends to a positive constant. On the other hand,

(
An

)
ij

= o
(
λn

α

)
, n → ∞, for j ∈ β ≺ α. (2.5)

If λ is a non-distinguished Perron–Frobenius eigenvalue for A, then the corresponding
R-invariant measure on XB is infinite [9]. We do not study infinite measures in this paper.

2.3. Measure supports

Given the diagram B as above, let Yα be the path space of the Bratteli subdiagram Bα , α ∈ Λ.
Define Xα = R(Yα), that is, a path x ∈ XB belongs to Xα if it is R-equivalent to a path y ∈ Yα .
We see that Xα = Yα if and only if α is a distinguished class corresponding to a minimal compo-
nent of R. It follows from the structure of the diagram B , see (2.1), that Xα ∩Xβ = ∅ for α �= β ,
and {Xα: α ∈ Λ} is a partition of XB . It is also easy to see that for any x ∈ Xα the orbit R(x) is
dense in

⋃
β≺α Xβ .

We describe here the support of measure μα defined by a distinguished eigenvalue λα and
the corresponding eigenvector xα of A. Given such a measure μα , we call the measure support,
supp(μα), the largest closed (Cantor) subset of XB such that every open subset of supp(μα) has
positive measure. In other words, μα is full on supp(μα).

It is clear that when α is a final class, then the support of μα is a Cantor set Yα .
If α is not a final class, then the measure μα is supported on Xα = R(Yα). Then supp(μα) is

the closure Xα of Xα . That is, to obtain Xα , we need to add to Xα those minimal components of
the diagram which are accessible from α.

It is obvious that all definitions (clopen values set, good measures, measures of Bernoulli
type, etc.) given in Section 2.1 are applicable to the measures μα because μα is full on the
corresponding Cantor sets Xα . In particular, we note that the ergodic measures corresponding to
minimal components are automatically good: on a simple stationary Bratteli diagram any Vershik
map is minimal and uniquely ergodic.

Finally, we remark that one can extend the mentioned above definitions to non-ergodic R-
invariant measures. Such measures form a simplex whose extreme points are ergodic R-invariant
measures. Therefore, any non-ergodic finite R-invariant measure is supported on the closure of
a finite disjoint union of some sets Xα .
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3. Good measures on stationary Bratteli diagrams

In this section, we study finite ergodic R-invariant measures on stationary Bratteli diagrams.
We show that, for any such a measure, the clopen values set S(μ) is group-like. We also give
the necessary and sufficient conditions under which a measure on a stationary Bratteli diagram
is good.

3.1. Group-like clopen values set

Consider a stationary non-simple Bratteli diagram B = (V ,E). Let F be its incidence K ×K

matrix and A = FT . Let μ be the measure defined by a distinguished class of vertices α and
λ the corresponding distinguished eigenvalue of A. Denote by (y1, . . . , yK)T the probability
eigenvector of the matrix A corresponding to λ. Notice that the vector (y1, . . . , yK)T may have
zero entries. These zero entries are assigned to the vertices from B that are not accessible from
the class α. Denote by (x1, . . . , xn)

T the positive vector obtained from (y1, . . . , yK)T by crossing
out zero entries. We call (x1, . . . , xn)

T the reduced vector corresponding to the measure μ. Recall
that we consider the measure μ only on its support. This means that we can ignore the part of B

formed by subdiagrams which are not accessible from the class α. Without loss of generality, we
can think that the matrix A = FT satisfies the condition Ax = λx.

Let H be the additive subgroup of R generated by {x1, . . . , xn}.

Lemma 3.1. Let B , μ, A, λ, H , and (x1, . . . , xn)
T be as above. Let G be the additive subgroup

of R generated by the clopen values set S(μ). Then:

1) λH ⊂ H ;
2) G = ⋃

N∈N

1
λN H ;

3) S(μ) is group-like if and only if S(μ) + Z = ⋃
N∈N

1
λN H ;

4) λ−1 ∈ Div(G).

Proof. 1) Let A = (aij )
n
i,j=1. Then

∑n
j=1 aij xj = λxi , hence λxi ∈ H for i = 1, . . . , n. Since

λH is generated by λx1, . . . , λxn, we see that λH ⊂ H .
2) It follows from (2.3) that 1

λN H ⊂ G because x1
λN , . . . , xn

λN ∈ G for any N ∈ N. On the other

hand, we see that
⋃

N∈N

1
λN H is a group and S(μ) ⊂ ⋃

N∈N

1
λN H . Hence, G ⊂ ⋃

N∈N

1
λN H .

3) By Lemma 2.2, S(μ) is group-like if and only if G = S(μ) + Z.
4) It follows from the above results that λG = G. �

Remark. Since
∑n

k=1 xk = 1, we have 1 ∈ H and λN ∈ H for N ∈ N. It is clear that 1
λM H ⊂

1
λM+1 H , M ∈ N.

One of the main results of this section is the following:

Theorem 3.2. Let μ be an ergodic invariant measure on a stationary diagram B defined by
a distinguished eigenvalue λ of the matrix A = FT . Let (x1, . . . , xn)

T be the corresponding
reduced vector and H the additive subgroup of R generated by {x1, . . . , xn}. Then the clopen
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values set S(μ) is group-like and

S(μ) =
( ∞⋃

N=0

1

λN
H

)
∩ [0,1].

Proof. The proof is divided into two parts depending on the properties of λ. The first part deals
with rational (hence integer) λ, and the second one contains the proof of the case of irrational
(hence algebraic integer) λ.

1. Let λ ∈ Q and x = (
p1
q

, . . . ,
pn

q
)T be the corresponding reduced probability vector. It fol-

lows from (2.3) that

S(μ) =
{

n∑
i=1

l
(N)
i

pi

qλN−1

∣∣∣ 0 � l
(N)
i � h

(N)
i , N = 1,2, . . .

}
.

Hence, S(μ) ⊂ { m
qλN : N ∈ N, m = 0,1, . . . , qλN }. We need to prove the converse, that is, for

every natural number N and every integer 0 � m � qλN , there exist M ∈ N and integers l
(M)
i ∈

[0, h
(M)
i ], i = 1, . . . , n, such that

m

qλN
=

n∑
i=1

l
(M)
i

pi

qλM−1
(3.1)

or, equivalently,

mλR =
n∑

i=1

l
(M)
i pi,

where R = M−N −1. We may assume that 0 < m < qλN because the cases m = 0 and m = qλN

are trivial. We note also that if an integer M satisfying (3.1) exists then M can be chosen arbitrary
large, in particular, M > N .

Let α be the class of vertices corresponding to λ and defining μ. If the measure μ is supported
on a simple subdiagram of B corresponding to a minimal component, then there is nothing to
prove since this measure is invariant for a uniquely ergodic homeomorphism of a Cantor set.

Without loss of generality, we may assume that the non-zero value p1
q

is assigned to a vertex
from a class β such that α � β (see (2.1)).

Since gcd(p1, . . . , pn) = 1, there exist integers d1, . . . , dn such that d1p1 + · · · + dnpn = 1.
For the homogeneous equation

n∑
i=1

zipi = 0,

there are n − 1 independent parameters, say (z2, . . . , zn), amongst the solution of this equation.
Then z1 = − 1

p1

∑n
i=2 zipi . It is obvious that we can choose parameters {zi}ni=2 such that all the

numbers {zi}n are integers. From the above relations we obtain that
i=1
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mλR =
n∑

i=1

yipi,

where yi = mλRdi + zi . We need to show that there exist z2, . . . , zn such that yi ∈ N and 0 �
yi � h

(M)
i for i = 1, . . . , n. We first note that

−mλRdj � zj � h
(N+R+1)
j − mλRdj , j = 2, . . . , n. (3.2)

Since y1 must be in the interval [0, h
(M)
1 ], the value z1 must satisfy the inequalities

−mλRd1 � z1 � h
(N+R+1)
1 − mλRd1. (3.3)

On the other hand, it follows from (3.2) that

mλR

p1

n∑
j=2

djpj −
n∑

j=2

h
(N+R+1)
j pj

p1
� z1 � mλR

p1

n∑
j=2

djpj . (3.4)

Since
∑n

j=2 djpj = 1 − d1p1, we deduce from (3.4) that

mλR

p1
− mλRd1 − 1

p1

n∑
j=2

h
(N+R+1)
j pj � z1 � mλR

p1
− mλRd1. (3.5)

Thus, z1 must satisfy both inequalities (3.3) and (3.5). We show that if z1 satisfies (3.3) then z1
also satisfies (3.5) when R is sufficiently large.

To do this, we compare the left bounds of (3.5) and (3.3) and show that for sufficiently large R

mλR

p1
− 1

p1

n∑
j=2

h
(N+R+1)
j pj = λN+Rq

p1

(
m

qλN
−

n∑
j=2

h
(N+R+1)
j

pj

λN+Rq

)
< 0. (3.6)

Indeed, the vertex of the diagram corresponding to p1
q

belongs to a final class of the vertices.
Since

μ(XB) =
n∑

j=1

h
(M)
j

pj

qλM−1
= 1, M ∈ N,

we have from asymptotics (2.5) that h
(M)
1 · p1

qλM−1 → 0 as M → ∞. Thus,

n∑
j=2

h
(N+R+1)
j

pj

λN+Rq
→ 1

as R → +∞. Since m < λNq , the expression in parentheses in (3.6) is negative for sufficiently
large R as desired. Moreover, the absolute value of expression (3.6) tends to +∞ as R → +∞.
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Similarly, comparing the right bounds of (3.5) and (3.3), and using asymptotics h
(N+R+1)
1 =

o(λR), we obtain that

mλR

p1
− h

(N+R+1)
1 > 0 (3.7)

when R is sufficiently large. Therefore, the interval defined by (3.3) lies in that defined by (3.5)
and its length tends to infinity as R → +∞.

To finish the proof, we need to show that z2, . . . , zn can be chosen so that they satisfy simul-
taneously (3.2) and (3.3). We consider z1 as a linear function of the parameters z2, . . . , zn. The
integer parameters such that z1 is integer and Eqs. (3.2) hold form the domain of z1. Relation
(3.5) contains the range of z1. The range of z1 is a finite number of points. The largest distance
between two neighboring points is bounded and does not depend on R. The length of subinterval
(3.3) tends to infinity as R becomes infinitely large. Hence, we can find allowable parameters
{zj }nj=2 such that z1 lies in the interval (3.3). Thus, we set

l
(M)
j = mλRdj + zj , j = 1, . . . , n

where M = R + N + 1. This proves the theorem in the rational case.
2. Let λ ∈ R \ Q and x = (x1, . . . , xn)

T be the corresponding reduced vector.
To clarify the main idea of the proof, we first consider an example. Let

A =
(

1 1
1 2

)
.

We have the eigenvalue λ = 3+√
5

2 and eigenvector x = ( 3−√
5

2 ,
√

5−1
2 )T for A. Hence, x1 = 3−λ,

x2 = λ − 2 and 1
λ

= 3 − λ. Then, by (2.3),

S(μ) = {
l
(N)
1 (3 − λ)N + l

(N)
2 (λ − 2)(3 − λ)N−1

∣∣ 0 � l
(N)
i � h

(N)
i , i = 1,2; N = 1,2, . . .

}
.

The minimal polynomial for λ is f (t) = t2 −3t +1. It can be proved that (3−λ)N = −f2N−1λ+
f2N+1, where fi is the i-th Fibonacci number. Hence S(μ) can be written in terms of polynomials
of λ of first degree:

S(μ) = {
l
(N)
1 (−f2N−1λ + f2N+1) + l

(N)
2 (f2N−2λ − f2N), N � 1

}
,

where 0 � l
(N)
i � h

(N)
i , i = 1,2. Instead of polynomials, we can work with vectors formed by

their coefficients. Thus, we obtain a vector representation of any element from S(μ). Let PN =
{l(N)

1 (−f2N−1λ + f2N+1) + l
(N)
2 (f2N−2λ − f2N) | 0 � l

(N)
i � h

(N)
i , i = 1,2}. Then PN is a part

of the lattice in R2 generated by vectors uN = (f2N+1,−f2N−1)
T and vN = (−f2N,f2N−2)

T

which includes all points with coordinates {(i, j) | 0 � i � h
(N)
1 , 0 � j � h

(N)
2 } in the basis

{uN,vN }. We see that PN+1 ⊃ PN and S(μ) = ⋃∞
i=1 PN . It can be proved that uN , vN both

tend to the same line a in R2 generated by the vector (−λ,1)T as N → ∞. We also show that
the norms of these vectors tend to infinity. This suffices to conclude that the points in R2 that
represent S(μ) “uniformly” fill the gap between lines a and a + (1,0)T . This means that S(μ) is
group-like.
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Now we consider the general case. It suffices to prove that for any u,v ∈ S(μ) with u+ v � 1
we have u+v ∈ S(μ). Indeed, let u,v ∈ S(μ) with u < v. Then v−u = 1− ((1−v)+u) ∈ S(μ)

(Akin used similar arguments in [2]). Then S(μ) is group-like by Lemma 2.2. It follows from
(2.3) that it suffices to prove that any number s = ∑n

i=1 li
xi

λN−1 from [0,1] such that li � 0
belongs to S(μ).

We will use a vector representation of algebraic numbers as we did in the above example.
Since λ is a root of the characteristic polynomial 	(x) of A, λ is an algebraic integer number.
Suppose the degree of λ is k. Denote by

f (t) = tk + mk−1t
k−1 + · · · + m1t + m0

the minimal polynomial of λ over Q. Let Q(λ) denote the least field that contains both Q and λ.
If Q[λ] stands for the least ring that contains both Q and λ, then Q[λ] = Q(λ). Any element
y ∈ Q(λ) can be uniquely represented as a0 + a1λ + · · · + ak−1λ

k−1 = y(λ) where ai ∈ Q.
Hence, there is a one-to-one correspondence between polynomials in λ and vectors formed by
their coefficients:

a0 + a1λ + · · · + ak−1λ
k−1 ↔ (a0, a1, . . . , ak−1)

T . (3.8)

Since S(μ) ⊂ Q(λ), every element of S(μ) can be also considered as a vector in the space Qk .
Thus, if we need to emphasize that a number y ∈ S(μ) is considered as a vector from Qk (or a
polynomial from Q(λ)), we will use the notation y. This convention will be used throughout the
paper.

It follows from (3.8) that the polynomials {1, λ, . . . , λk−1} correspond to the vectors
{e1, e2, . . . , ek}, the standard basis in Rk (or Qk). Denote by 〈u,v〉 the scalar product of vectors
u,v ∈ Rk . Let n denote the vector (1, λ, . . . , λk−1)T ∈ Rk . Then, for any y ∈ Qk , the correspond-
ing polynomial y(λ) can be written as y(λ) = 〈y,n〉 ∈ R.

Take the entries x1, . . . , xn of the reduced vector, and for each xi find its representation as a
vector from Qk ⊂ Rk :

xi = (
a

(i)
0 , a

(i)
1 , . . . , a

(i)
k−1

)T
.

Denote by

A0 =

⎛
⎜⎜⎜⎝

a
(1)
0 . . . a

(n)
0

a
(1)
1 . . . a

(n)
1

... . . .
...

a
(1)
k−1 . . . a

(n)
k−1

⎞
⎟⎟⎟⎠

the matrix formed by the vectors x1, . . . ,xn. In other words, A0 represents the transposed eigen-
vector (x1, . . . , xn).

Let p(λ) be the polynomial in Q(λ) such that λ−1 = p(λ). The map y �→ p(λ)y in Q(λ)

determines a linear transformation in the vector space Qk . Find the k × k matrix D which cor-
responds to this transformation. It is obvious that D(ei ) = ei−1, i = 2, . . . , k, and D(e1) is the
vector corresponding to p(λ). Thus, the matrix D and the inverse matrix C = D−1 have the form
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D =

⎛
⎜⎜⎜⎝

−m1
m0

1 . . . 0
...

...
. . .

...

−mk−1
m0

0 . . . 1

− 1
m0

0 . . . 0

⎞
⎟⎟⎟⎠ , C =

⎛
⎜⎜⎝

0 . . . 0 −m0
1 . . . 0 −m1
...

. . .
...

...

0 . . . 1 −mk−1

⎞
⎟⎟⎠ ,

where m0,m1, . . . ,mk−1 are the coefficients of the minimal polynomial f (t). Then the equation
Ax = λx can be written in new terms as CA0 = A0A

T or A0 = DA0A
T .

Now we use the found matrix D to represent the clopen values set in more convenient form:

S(μ) =
{

DN−1

(
n∑

i=1

k
(N)
i xi

) ∣∣∣ 0 � k
(N)
i � h

(N)
i ; N = 1,2, . . .

}
⊂ Qk.

Denote by π the hyperplane in Rk which is specified by the relation π = {y: 〈y,n〉 = 0}. Let π1
be the hyperplane which is obtained by the relation π1 = {y: 〈y,n〉 = 1} (hence π1 = π + e1).
Then all points of S(μ) lie in the stripe between π and π1.

Consider the family of sets

PN =
{

n∑
i=1

l
(N)
i DN−1(xi )

∣∣∣ 0 � l
(N)
i � h

(N)
i

}
, N ∈ N.

Since

xi

λN
=

n∑
i=1

aij

xj

λN+1
,

we see that PN+1 ⊃ PN for N ∈ N. Let P = ⋃
N∈N

PN . Clearly, S(μ) = P .
We show that the vectors from P can be chosen arbitrary close to the hyperplane π and have

arbitrary big length. Hence they “fill” the gap between hyperplanes π and π1. Thus we show that
for any two vectors u,v ∈ P if u + v lies in the stripe between hyperplanes π and π1 then there
exists N ∈ N such that u + v ∈ PN ⊂ P .

Recall that the non-zero entries x1, . . . , xn are related to the vertices that are accessible from
the distinguished class α defining the measure μ. Suppose that the vertices m + 1, . . . , n belong
to α. We will need the following lemma.

Lemma 3.3.

(1) det(C − λI) = 0 if and only if f (λ) = 0. All eigenvalues of C (and hence D) are distinct.
(2) The rank of the matrix A0 is k. Moreover, a set of k linearly independent columns of A0 can

be chosen amongst the vectors {xm+1, . . . ,xn}.

Proof. In order to prove (1), it suffices to notice that det(C − tI ) = (−1)kf (t).
Because the eigenvector (x1, . . . , xn)

T is probability, we obtain that for any M ∈ N

λM =
n∑ n∑(

AM
)
ij
xj =

n∑
xj

n∑(
AM

)
ij
, (3.9)
i=1 j=1 j=1 i=1
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and therefore every basis vector ei can be represented as a linear combination of vectors
x1, . . . ,xn with non-negative coefficients. Let S be the subspace of Qk generated by vectors
{x1, . . . ,xn}. First we show that dim(S) � k. Indeed, relation (3.8) shows that the numbers
1, λ, . . . , λk−1 correspond to the standard basis in Qk . Then we deduce from (3.9) that this basis
belongs to S and, therefore, rank(A0) = k.

Next, we use the fact that λ is also the Perron–Frobenius eigenvalue of the submatrix
Aα = FT

α . Applying (3.9) to Aα , we obtain that

n∑
i=m+1

n∑
j=m+1

(
Ar

)
ij
xj = λr

n∑
i=m+1

xi (3.10)

for r ∈ N. We denote q(λ) = ∑n
i=m+1 xi . Then q(λ) ∈ Q[λ]. It follows from (3.10) that, for any

polynomial h(λ) ∈ Q[λ], the product h(λ)q(λ) is a linear combination of vectors {xm+1, . . . ,xn}
with rational coefficients. Then, choose hr ∈ Q[λ] such that λr = hr(λ)q(λ). Therefore,
each λr , r = 0, . . . , k − 1, can be represented as a linear combination of {xm+1, . . . ,xn} with
rational coefficients. It follows that the set {xm+1, . . . ,xn} contains k linearly independent vec-
tors. �

We continue the proof of the theorem. We note that DT n = 1
λ

n. It is clear that D(π) =
C(π) = π .

Since (−1)kf (x) is the characteristic polynomial for C, the matrix C has k distinct eigen-
values in C. In particular, λ is an eigenvalue for C, and for every other eigenvalue ν we have
|ν| < λ. It is not hard to find the eigenvector y1 of C corresponding to λ:

y1 =

⎛
⎜⎜⎜⎝

1
1
λ

+ m1
m0

...

( 1
λ
)k−1 + m1

m0
( 1
λ
)k−2 + · · · + mk−1

m0

⎞
⎟⎟⎟⎠ .

This is the only eigenvector of C (and hence of D) which is not orthogonal to n. Indeed, suppose
Cz = νz. Then

ν〈z,n〉 = 〈Cz,n〉 = 〈
z,CT n

〉 = λ〈z,n〉.

We see that either ν = λ or 〈z,n〉 = 0. All eigenvalues of C are different, so we obtain that
〈z,n〉 = 0. This means that all eigenvectors of C (or D) different from y1 belong to π .

Now we are ready to prove that the vectors of P can be chosen arbitrary close to the hyper-
plane π . Consider two cases when the eigenvalues of C are real or complex.

(I) Suppose all eigenvalues of C are real. Then C is diagonalizable in Rk . Let y1, . . . ,yk be
the eigenvectors of C which correspond to the eigenvalues λ1 = λ, . . . , λk . For y ∈ Rk , there
exist unique real numbers αi such that y = ∑k

i=1 αiyi . Then CN y = α1λ
Ny1 + zN where zN =∑k

i=2 αiλ
N
i yi belongs to π , N ∈ N. We prove that the angle between the lines generated by CN y

and y1 can be made arbitrary small when N tends to infinity. Indeed, it is obvious that
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‖zN‖
‖α1λNy1‖ =

√∑
2�i,j�k αiαj 〈yi ,yj 〉λN

i λN
j

‖α1λN y1‖ → 0

as N → ∞ because |λi | < λ for i = 2, . . . , n.
(II) Suppose some of the eigenvalues of C are complex. Then they form the pairs of complex

conjugate numbers; say, λ2 = α + iβ , and λ3 = α − iβ where α,β ∈ R. Let u + iv be the eigen-
vector of C corresponding to λ2 where u,v ∈ Rk . Then the subspace of Rk generated by u, v is
an invariant space for C and Cu = αu −βv, Cv = αv +βu. Since |λ2| < λ, we have |α| < λ and
|β| < λ.

We represent y as a linear combination of real eigenvectors and real components of complex
eigenvectors of C. The proof now is analogous to that in case (I).

Thus, while the iterations of C drive any ray which is not in π to the limit ray generated
by y1, the iterations of D = C−1 do the opposite thing. Arguing as above, we can prove that the
angle between the line generated by DNy and π can be made arbitrary small when N tends to
infinity.

Applying the iterations of D, we prove that the length of vectors from P can be made arbitrary
long. Recall that the vertices m + 1, . . . , n belong to the distinguished class α corresponding
to μ. By Lemma 3.3, the vectors {xi}ni=m+1 contain a basis of Rk . We have 〈DN xi ,n〉 → 0

as N → ∞. Moreover, cos � (DN xi ,n) → 0 as N → ∞. Consider 〈h(N+1)
i DNxi ,n〉. For i =

m + 1, . . . , n, it follows from the asymptotics of (AN)ij that h
(N+1)
i

xi

λN ∼ cixi as N → ∞ where

ci is a constant. Hence 〈h(N+1)
i DN xi ,n〉 ∼ cixi and finally ‖h(N+1)

i DN xi‖ → ∞ as N → ∞
because cos � (DN xi ,n) → 0.

Recall that we need to prove that any number s = ∑n
i=1 li

xi

λN−1 from [0,1] such that li � 0

lies in S(μ). In the vector interpretation, this means that s = ∑n
i=1 liD

N−1xi . We will use in our
proof the fact that the measure μ is supported on the set Xα of all infinite paths that eventually
go through vertices of the class α. We consider two cases.

(i) Let 0 � li � h
(N)
i for i /∈ α and 0 < s = 〈s,n〉 < 1. We show that s ∈ S(μ). Indeed, the

part s′ = ∑
i /∈α liD

N−1xi belongs to PN because its coefficients li lie in the needed range.
Clearly, s′ ∈ PM for M > N . The vector

∑
i∈α liD

N−1xi lies in the integer lattice generated by

DMxm+1, . . . ,D
Mxm for M � N . Since ‖h(M)

i DM−1xi‖ → ∞ as M → ∞, i = m + 1, . . . , n,
the allowable linear combinations of DMxm+1, . . . ,D

Mxm eventually fill the stripe between π

and π1. Thus, the point s will be “covered” by an allowable combination.
(ii) Let s = ∑n

i=1 l
(N)
i DN−1xi , where l

(N)
i ∈ N and 0 < 〈s,n〉 < 1. We show that this case

can be reduced to the previous one. Suppose there exist li > h
(N)
i for some i ∈ {1, . . . ,m}. By

Lemma 3.3, there exist {pij }nj=m+1 ∈ Z and qi ∈ N such that

qixi =
n∑

j=m+1

pij xj (3.11)

for i = 1, . . . ,m. We can find M > N such that h
(M)
i > qi for i = 1, . . . ,m. We have

s = ∑n
i=1 l

(M)
i DM−1xi where l

(M)
i = ∑n

j=1 l
(N)
j (A(M−N))ji . Then if l

(M)
i > h

(M)
i for some

i ∈ {1, . . . ,m} we write down l
(M)
i = t

(M)
i qi + r

(M)
i where t

(M)
i ∈ N and 0 � r

(M)
i < qi . By

(3.11), the vector t
(M)

qixi can be expressed as the integer combination of {xj }n . Hence
i j=m+1
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s =
m∑

i=1

r
(M)
i DM−1xi +

n∑
i=m+1

(
l
(M)
i +

m∑
j=1

pji t
(M)
j

)
DM−1xi .

Since r
(M)
j < qj � h

(M)
j for j = 1, . . . ,m, it suffices to show that the coefficients (l

(M)
i +∑m

j=1 pji t
(M)
j ), i = m + 1, . . . , n, can be made positive for M large enough. It follows from

the above relations that l
(M)
i ∼ λM as M → ∞ for i ∈ α. On the other hand, t

(M)
j < l

(M)
j and

l
(M)
j ∼ o(λM) as M → ∞ for j = 1, . . . ,m. Hence the needed coefficients can be made posi-

tive. �
3.2. Good measures

Now we consider the conditions under which an ergodic invariant measure on a stationary
Bratteli diagram is good.

Lemma 3.4. Let μ be an ergodic R-invariant measure on a stationary Bratteli diagram B and
let A be the matrix transposed to the incidence matrix of B . Denote by α the distinguished class
of vertices that defines μ. Then μ is good if and only if all the clopen cylinder sets that end in
the vertices of the class α are good.

Proof. The “only if ” part of this result is obvious.
To prove the “if ” part, we consider any clopen sets U,V ⊂ Xα with μ(U) < μ(V ). Since

cylinder sets form a partition basis for XB , we may assume that V is a cylinder set (see Theo-
rem 2.3). We must find a clopen subset W ⊂ V with μ(U) = μ(W). By definition of Xα , the
finite path corresponding to V ends in a vertex of a class β that is accessible from α, i.e. α � β

(otherwise V would have zero measure). If β = α, then there is nothing to prove. Suppose now
that α � β . Denote by N the length of the cylinder set V . Then V is a disjoint union of cylinder
subsets of length N + 1. Their end vertices are either in the class α or in the classes that are
accessible from α. Take the latter cylinder sets and represent each of them as a disjoint union of
cylinder sets of length N + 2. We continue these partitions infinitely many times. Enumerate the
cylinder subsets of V that end in vertices of α by Vk , k ∈ N. Then

V ⊃
∞⊔

k=1

Vk and μ(V ) =
∞∑

k=1

μ(Vk)

by asymptotics (2.4), (2.5). Since μ(U) < μ(V ), we can find m such that

m∑
k=1

μ(Vk) � μ(U) <

m+1∑
k=1

μ(Vk).

If the equality
∑m

k=1 μ(Vk) = μ(U) holds, then we define W = ⊔m
k=1 Vk . Otherwise consider

the number μ(U)−∑m
k=1 μ(Vk). This number is contained in S(μ), since S(μ) is group-like by

Theorem 3.2. The set Vm+1 is good because it ends in a vertex of α. Hence, it contains a clopen
subset U1 such that μ(U1) = μ(U) − ∑m

k=1 μ(Vk). Then we set W = ⊔m
k=1 Vk � U1. �
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Theorem 3.5. Let μ be an ergodic R-invariant measure on a stationary diagram B defined
by a distinguished eigenvalue λ of the matrix A = FT . Denote by x = (x1, . . . , xn)

T the cor-
responding reduced vector. Let the vertices m + 1, . . . , n belong to the distinguished class α

corresponding to μ. Then μ is good if and only if there exists R ∈ N such that λRx1, . . . , λ
Rxm

belong to the additive group generated by {xj }nj=m+1.

If the clopen values set of μ is rational and (
p1
q

, . . . ,
pn

q
)T is the corresponding reduced vector,

then μ is good if and only if gcd(pm+1, . . . , pn) | λR for some R ∈ N.

Proof. If m = 0, then the Bratteli diagram B is simple and the measure μ is good by Theo-
rem 2.3. Suppose m > 0. Consider the (n−m)× (n−m) block Aα of the matrix A whose entries
count the edges between vertices of the class α. Set x̃ = ∑n

k=m+1 xk . Then (
xm+1

x̃
, . . . , xn

x̃
)T is

the probability eigenvector for Aα corresponding to the eigenvalue λ. Let Bα be the stationary
subdiagram of B consisting of vertices from the class α and edges connecting them. Then Aα is
the matrix transpose to the incidence matrix of the subdiagram Bα . Moreover, we can assume,
without loss of generality, that Bα is a simple subdiagram (see [9]). Let μ̃ be the (unique) ergodic
R-invariant measure on this diagram. If Yα denotes the path space of the Bratteli diagram Bα ,
then μ(Yα) = x̃ because Yα is a complete section in Xα for the tail equivalence relation. Then
μ̃ can be regarded as a relative measure on the clopen subset Yα of Xα . By Theorem 2.3, the
measure μ̃ is good.

Denote by H(
xm+1

x̃
, . . . , xn

x̃
) the group generated by xm+1

x̃
, . . . , xn

x̃
. By Theorem 3.2,

S(μ̃) =
{

r

λN
: N ∈ N, 0 � r � λN, r ∈ H

(
xm+1

x̃
, . . . ,

xn

x̃

)}
. (3.12)

Suppose that for any xi , i = 1, . . . ,m there exists R ∈ N such that xi belongs to the additive
group generated by { xj

λR }nj=m+1. Then we can find one common R for them. By Lemma 3.4, it
suffices to prove that any cylinder set that ends in the class α is good. Let V be a cylinder set
whose terminal vertex v is in the class α. For any clopen set U with μ(U) < μ(V ) we must find
a clopen subset W ⊂ V such that μ(W) = μ(U). Consider a cylinder set Ṽ that ends at the same
vertex v, but passes only through the vertices of the class α (i.e. Ṽ is tail equivalent to V ). Then
Ṽ ⊂ Yα and μ(Ṽ ) = μ(V ). To prove the claim, it suffices to find a clopen set W̃ ⊂ Ṽ such that
μ(W̃) = μ(U). Indeed, if such a set W̃ exists then we can find a tail equivalent clopen subset
W ⊂ V such that μ(W̃) = μ(W) = μ(U). By Theorem 3.2, μ(V ) = xj

λN , for some N ∈ N and

j ∈ {m + 1, . . . , n}. Since U is a clopen set, we have μ(U) = k
λM where k ∈ H . We can take

M � N . For any subset W̃ ⊂ Yα , we see that μ(W̃) = x̃ · μ̃(W̃ ). By (3.12), μ̃(W̃ ) = k1
λS for some

S ∈ N, and 0 � k1 � λS , k1 ∈ H(
xm+1

x̃
, . . . , xn

x̃
). Thus, we need to find S, k1 such that

μ(U) = k

λM
= k1

λS
· x̃ = μ(W̃). (3.13)

Let k = ∑n
i=1 dixi and k1 = ∑n

i=m+1 ci
xi

x̃
. Then it follows from (3.13) that

n∑
dixi = 1

λS−M

n∑
cj xj .
i=1 j=m+1
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Since xi ∈ H(
xm+1
λS−M , . . . , xn

λS−M ) for S − M � R, there exist integers cm+1, . . . , cn satisfying the

above equation. Because μ̃ is good, we can find a clopen subset W̃ ⊂ Ṽ with μ̃(W̃ ) = k1
λS , i.e.

μ(W̃) = μ(U).
Conversely, suppose that μ is a good measure. We can repeat the proof of the “if ” part back-

wards to obtain the needed result.
In the rational case, xi = pi

q
, H = 1

q
Z. Then H(xm+1, . . . , xn) = a

q
Z, where a = gcd(pm+1,

. . . , pn). Hence, μ is good if and only if gcd(pm+1, . . . , pn) | λR for some R ∈ N. �
Corollary 3.6. Let μ be the rational measure (i.e. S(μ) ⊂ Q) on a stationary diagram B de-
fined by a distinguished eigenvalue λ of the matrix A = FT . Denote by (

p1
q

, . . . ,
pn

q
)T the

corresponding reduced vector. Let the vertices m + 1, . . . , n belong to the distinguished class
α corresponding to μ. If gcd(pm+1, . . . , pn) = 1, then μ is good.

From Theorems 2.3 and 3.2 we obtain the following

Corollary 3.7. For an ergodic invariant measure μ on a stationary Bratteli diagram the following
are equivalent:

(i) μ is a good measure.
(ii) μ is refinable.

(iii) μ is weakly refinable.

4. Homeomorphic measures on stationary diagrams

Let D be the set of all (non-simple) stationary Bratteli diagrams. Denote by S the set of all
Borel probability measures on diagrams from D which are ergodic and invariant with respect to
the tail equivalence relation. Recall that, in other words, a measure μ ∈ S if and only if there
exist an aperiodic substitution dynamical system (Y,ϕ) and an ergodic ϕ-invariant measure ν

such that μ is homeomorphic to ν [8]. Clearly, S is a countable set.
Our goal is to show that for every good measure μ from S there are countably many measures

μi ∈ S on stationary Bratteli diagrams Bi such that μi is homeomorphic to μ, i ∈ N. Moreover,
the stationary Bratteli diagrams Bi can be chosen essentially different: the corresponding tail
equivalence relations Ri are pairwise non-orbit equivalent.

Theorem 4.1. Let μ be a good ergodic R-invariant probability measure on a stationary (non-
simple) Bratteli diagram B . Then there exist stationary Bratteli diagrams {Bi}∞i=0 and good
ergodic Ri -invariant probability measures μi on Bi such that each measure μi is homeomorphic
to μ and the dynamical systems (Bi, Ri ), (Bj , Rj ) are topologically orbit equivalent if and only
if i = j . Moreover, the diagram Bi has exactly i minimal components for the tail equivalence
relation Ri , i ∈ N.

Proof. We divide the proof into two cases: (1) the set S(μ) has only rational values; (2) there
are irrational values in S(μ).

1. Let S = S(μ) ⊂ Q. Then, as proved in Theorem 3.2, there exist natural numbers λ and q ,
greater than one, such that S = { m

N | m,N ∈ N, 0 � m � qλN }.

qλ
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We first construct a simple Bratteli diagram B0 and an ergodic probability invariant measure
μ0 such that S(μ0) = S. H. Yuasa [18] used similar arguments in the study of orbit equivalence
of substitution systems arising from primitive substitutions whose composition matrices have
rational Perron–Frobenius eigenvalues. We take the probability vector x = ( 1

q
, . . . , 1

q
)T and the

q × q matrix

A0 =

⎛
⎜⎜⎜⎜⎝

λ − 1 1 . . . 0 0
0 λ − 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . λ − 1 1
1 0 . . . 0 λ − 1

⎞
⎟⎟⎟⎟⎠ .

Then A0x = λx. Clearly, the stationary Bratteli diagram B0 defined by the transpose to A0 is
simple. The unique ergodic probability measure μ0 is good and S(μ0) = S. Hence, μ and μ0 are
homeomorphic by Corollary 2.4.

Next, fix i � 1 and construct Bratteli diagrams Bi and measures μi as follows. Set λi = λi+1

and define the probability vector xi = ( 1
qλi

, . . . , 1
qλi

)T . Take a qλi × qλi non-negative matrix

Ai = (a
(i)
lj ) such that Aixi = λixi . Then for every l = 1, . . . , qλi

qλi∑
j=1

a
(i)
lj = λi. (4.1)

By (4.1), exactly λi edges start from each vertex in the diagram Bi . Clearly, there are several
matrices Ai that can satisfy the above conditions. For instance, we can choose

Ai =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 . . . 0 0 0 . . . λi − 2
0 2 0 . . . 0 0 0 . . . λi − 2
...

...
...

. . .
...

...
...

. . .
...

0 0 0 . . . 2 0 0 . . . λi − 2
0 0 0 . . . 0 λi − 1 1 . . . 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 . . . 0 1 0 . . . λi − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the submatrix in the left upper corner with the number two on the main diagonal has the
size i× i. Let now Bi be the stationary Bratteli diagram defined by the incidence matrix transpose
to Ai . The form of Ai means that every minimal component is a 2-odometer and there are exactly
i such components. Therefore, the tail equivalence relations Ri and Rj are not orbit equivalent
for diagrams Bi and Bj if i �= j . Note also that the non-minimal component of Bi has the same
form as the diagram B0.

To finish the proof of first part, we conclude that if μi is the measure on Bi defined by the
eigenvector xi and the eigenvalue λi , then S(μi) = S and μi is good by Corollary 3.6. Therefore,
μi and μ are homeomorphic for any i.

2. Let B and μ be as in the theorem and suppose μ is defined by the eigenvalue λ ∈ R \ Q

of A = (aij )
n
i,j=1, the matrix transposed to the incidence matrix of B . To prove the theorem, it

suffices to construct a stationary Bratteli diagram B ′ such that: (i) there is an ergodic invariant
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probability good measure ν on B ′ such that S(ν) = S(μ); (ii) B ′ has one more minimal compo-
nent in comparison with B (in fact, we add another vertex to each level of the initial diagram B

and this vertex will determine a minimal component for the tail equivalence relation R′).
Denote by (x1, . . . , xn)

T the eigenvector corresponding to λ. Recall that we consider measures
on their supports, hence we assume that all xi are positive. Let H = H(x1, . . . , xn) denote the
additive group generated by x1, . . . , xn. Suppose that the vertices m + 1, . . . , n belong to the
distinguished class α of vertices that determine the measure μ. Since μ is good, there exists
R0 ∈ N such that for any integer R � R0 the values λRxi , i = 1, . . . , n, belong to the additive
group H(xm+1, . . . , xn) generated by {xj }nj=m+1 (see Theorem 3.5).

Fix R such that R � R0. We will construct a new diagram B ′ such that the matrix Q =
(qij )

n+1
i,j=1 transposed to the incidence matrix of B ′ has the eigenvector

z =
(

x1

λR
, . . . ,

xm

λR
,
λR − 1

λR
,
xm+1

λR
, . . . ,

xn

λR

)T

corresponding to the eigenvalue ψ = λM where M = R + N , N ∈ N (M will be chosen below).
To define Q, take AM = (a

(M)
ij )ni,j=1 and insert in AM the additional (m+1)-st row (0, . . . ,0,

qm+1,m+1, . . . , qm+1,n+1) and (m + 1)-st column (0, . . . ,0, qm+1,m+1,0, . . .0)T :

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
(M)
11 . . . a

(M)
1,m 0 a

(M)
1,m+1 . . . a

(M)
1,n

...
. . .

...
...

...
. . .

...

a
(M)
m1 . . . a

(M)
m,m 0 a

(M)
m,m+1 . . . a

(M)
m,n

0 . . . 0 qm+1,m+1 qm+1,m+2 . . . qm+1,n+1

0 . . . 0 0 a
(M)
m+1,m+1 . . . a

(M)
m+1,n

...
. . .

...
...

...
. . .

...

0 . . . 0 0 a
(M)
n,m+1 . . . a

(M)
n,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where {qm+1,j }n+1
j=m+1 are undefined non-negative integers yet. It is worth to mention that some

of the entries a
(M)
ij of AM may be zero. But the submatrix of AM formed by the rows enumerated

from m + 1 to n and the columns enumerated from 1 to m is zero matrix since we assumed that
the measure μ is determined by the vertices of the class α.

It is obvious that if qm+1,m+1 � 2 and at least one of the numbers {qm+1,j }n+1
j=m+2 is non-zero,

then the Bratteli diagram corresponding to Q has one more minimal component than the diagram
B corresponding to A. Hence, the dynamical systems (XB, R) cannot be orbit equivalent to the
system (XB ′ , R′).

Our goal now is to find non-negative integers {qm+1,j }n+1
j=m+1 such that Qz = ψz. It is clear

that this equality holds for the rows 1, . . . ,m,m + 2, . . . , n of the matrix Q since AM( x
λR ) =

λM x
λR . Therefore, we need only to verify that the equation

qm+1,m+1
λR − 1

λR
+

n+1∑
j=m+2

qm+1,j

xj−1

λR
= λN

(
λR − 1

)
(4.2)

can be solved for non-negative integers {qm+1,j }n+1 .
j=m+1
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We will use the geometric representation of algebraic numbers as vectors over Q as we did
in the proof of Theorem 3.2. Let λ be the algebraic integer of degree k. Suppose {e1, . . . , ek}
denote the standard basis in Rk corresponding to the numbers 1, λ, . . . , λk−1. Then (4.2) can be
written as follows (we use here and below the notation from the proof of Theorem 3.2 where, in
particular, matrices C and D were defined):

n+1∑
j=m+2

qm+1,jD
Rxj−1 = CN

(
CRe1 − e1

) − qm+1,m+1
(
e1 − DRe1

)
. (4.3)

Then relation (4.3) can be considered as a k × (n − m) system of linear equations with re-
spect to the unknowns {qm+1,j }n+1

j=m+2 and the parameter qm+1,m+1. The matrix P of the system

is formed by the columns p1, . . . ,pn−m where p1 = DRxm+1, . . . ,pn−m = DRxn. Since μ is
good, we see that λH ⊂ H ⊂ H(

xm+1
λR , . . . , xn

λR ) for R � R0. It follows that λN(λR − 1) ∈
H(

xm+1
λR , . . . , xn

λR ) for R � R0 because λR − 1 ∈ H . Using the correspondence between the

elements of S(μ) and Qk , we obtain that CN(CRe1 − e1) ∈ H(DRxm+1, . . . ,D
Rxn). We

show that there exists a natural number qm+1,m+1 such that qm+1,m+1(e1 − DRe1) belongs to
H(DRxm+1, . . . ,D

Rxn). Indeed, by Lemma 3.3, any vector in Qk can be represented as a ratio-
nal linear combination of vectors DRxm+1, . . . ,D

Rxn. Hence, there exist t ∈ N and {ti}n−m
i=1 ⊂ Z

such that

e1 − DRe1 =
n−m∑
i=1

ti

t
DRxm+i .

Therefore, t (e1 − DRe1) ∈ H(DRxm+1, . . . ,D
Rxn). It follows that there exist integers

{qm+1,j }n+1
j=m+2 and a non-negative number qm+1,m+1 such that relation (4.3) holds.

Let K = {β1D
Rxm+1 + · · · + βn−mDRxn: β1, . . . , βn−m � 0}. We consider two cases.

First, let k = n − m. Then the columns of P , the vectors {DRxm+1, . . . ,D
Rxn}, form a ba-

sis in Qk . Choose qm+1,m+1 such that qm+1,m+1(e1 − DRe1) ∈ H(DRxm+1, . . . ,D
Rxn). Then

the vector in the right part of relation (4.3) has integer coordinates {qm+1,j }n+1
j=m+2 in the basis

{DRxm+1, . . . ,D
Rxn}. We refer now to the proof of Theorem 3.2 where the behavior of the ma-

trices C and D has been studied. Denote by l(y) the line in Rk generated by a vector y ∈ Rk .
Let y1 be the eigenvector of the matrix C (see the proof of Theorem 3.2). We can choose R

sufficiently large such that the line l(y1) lies in K ∪ (−K). Now we fix R and show that for
sufficiently large N the numbers {qm+1,j }n+1

j=m+2 are non-negative. As N tends to infinity, the

vector CN(CRe1 − e1) approaches to the line l(y1) in K . The norm of this vector tends to infin-
ity. Hence, for sufficiently large N , the right part of (4.3) lies in K and is an integer combination
of linearly independent vectors {DRxm+1, . . . ,D

Rxn}. Thus, the coefficients {qm+1,j }n+1
j=m+2 of

this combination are non-negative integers.
Let k < n−m. To find non-negative integer solutions {qm+1,j }n+1

j=m+2 of (4.3), we use a vector
generalization of the Frobenius Problem. The following lemma follows from [4,5]:

Lemma 4.2. Let A ∈ Zm×n, 1 � m < n, be an integral m × n matrix satisfying

(i) gcd(det(Ωi): Ωi is an m × m minor of A) = 1,
(ii) {y ∈ Rn : Ay = 0} = {0}.
�0
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Denote by v1, . . . ,vn ∈ Zm the columns of the matrix A, and let

K = {β1v1 + · · · + βnvn: β1, . . . , βn � 0}

be the cone generated by v1, . . . ,vn. Set v = v1 + · · · + vn. Then there exists 0 � t0 < ∞ such
that for t � t0 and any vector b ∈ {tv+K}∩Zm there exists a vector y with non-negative integer
entries such that Ay = b. (The least possible number t0 is called the diagonal Frobenius number
g(A).)

Since the coordinates of vectors DRxm+1, . . . ,D
Rxn in the standard basis e1, . . . , ek are ra-

tionals, it is clear that we can multiply the vectors e1, . . . , ek by some rational numbers to obtain
a new basis {e′

i}ki=1 in which the vectors p1, . . . ,pn−m have integer coordinates. We will find a
basis for which the matrix P written in this basis satisfies conditions (i), (ii) of Lemma 4.2.

Take the basis {e′
i} and denote by Λ = Λ(DRxm+1, . . . ,D

Rxn) the sublattice of Zk generated
by the vectors {DRxm+1, . . . ,D

Rxn}. In order to have integer solutions for (4.3), the vector
CN(CRe1 − e1) − qm+1,m+1(e1 − DRe1) must belong to Λ. The lattice Λ has a basis of k

elements which belong to Λ (see [12]). Then we can choose a new basis {fi}ki=1 of Λ such
that Λ(f1, . . . , fk) is isomorphic to Zk . Denote by Pf the matrix P written in the basis {fi}ki=1.
Since DRxm+1, . . . ,D

Rxn ∈ Λ(f1, . . . , fk) the matrix Pf has integer entries. We prove that Pf

satisfies (i). Consider the identity matrix I (in the basis {fi}ki=1). Since Λ(DRxm+1, . . . ,D
Rxn) =

Λ(f1, . . . , fk), we can express the vectors {fi}ki=1 as integer linear combinations of the vectors
{DRxi}ni=m+1. Since the determinant is a linear function of its columns, we obtain that det I = 1
is an integer linear combination of the determinants det(Ωi) where Ωi is a k × k minor of Pf .
Hence, condition (i) holds for Pf .

It is not hard to prove that condition (ii) holds for Pf . The vectors f1, . . . , fk form the ba-
sis of Qk . Let J be the transition matrix from the basis {ei}ki=1 to the basis {fi}ki=1. Denote by
Pe the matrix P in the basis {ei}ki=1. For a vector y ∈ Qk denote by yf the vector y written in
the basis {fi}ki=1. We keep the notation y for the vector y written in standard basis {ei}ki=1. The
columns of Pe are vectors DRxm+1, . . . ,D

Rxn. Since yf = J−1y, we have Pf = J−1Pe . Since
detJ �= 0, it suffices to prove (ii) for Pe . Using the fact that the vectors DRxm+1, . . . ,D

Rxn be-
long to the same half-space (as shown in the proof of Theorem 3.2), we see that any non-trivial
non-negative linear combination of vectors DRxm+1, . . . ,D

Rxn is non-zero. Indeed, suppose
there exist non-negative real numbers γ1, . . . , γn−m such that

∑n−m
i=1 γiD

Rxm+i = 0. We note
that 〈∑n−m

i=1 γiD
Rxm+i ,n〉 = 0 where n denotes the vector (1, λ, . . . , λk−1)T . On the other hand,

〈∑n−m
i=1 γiD

Rxm+i ,n〉 = ∑n−m
i=1 γi

xm+i

λR . Since all the values xm+i

λR are positive, the linear combi-
nation is equal to zero if and only if γi = 0 for all i.

By Lemma 4.2, for any right part of (4.3) which belongs to {tv +K} ∩ Zk in the basis {fi}ki=1,
there exists a non-negative solution {qm+1,j }n+1

j=m+2. Arguing as in the case k = n − m, we show

that the vector CN(CRe1 − e1) − qm+1,m+1(e1 − DRe1) belongs to {g(P )v + K} ∩ Zk for suffi-
ciently large N . The transformation to the basis {fi}ki=1 alters the coordinates of vectors and the
entries of matrices but it doesn’t change their properties used in the proof of the case k = n − m.

It is left to prove that the measure ν is good and S(ν) = S(μ). Since μ is good, we
have that λRx1, . . . , λ

Rxn ∈ H(xm+1, . . . , xn) for R � R0. It follows from the relation 1, λR ∈
H(x1, . . . , xn) that λR(λR − 1) ∈ H(xm+1, . . . , xn). Therefore,
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λR x1

λR
, . . . , λR xn

λR
,λR λR − 1

λR
∈ H

(
xm+1

λR
, . . . ,

xn

λR

)

for R � R0. Hence, we obtain that λRz1, . . . , λ
Rzn+1 ∈ H(zm+1, . . . , zn+1). Since M > R we

have ψz1, . . . ,ψzn+1 ∈ H(zm+1, . . . , zn+1) and ν is good by Theorem 3.5.
Finally, we conclude that

H(z1, . . . , zn+1) = 1

λR
H(x1, . . . , xn),

1

ψ
H(z1, . . . , zn+1) = 1

λR+M
H(x1, . . . , xn).

Since S(μ) = ⋃
N∈N

1
λN H(x1, . . . , xn) and λH ⊂ H , we have S(ν) = S(μ). �

Remark. For λ /∈ Q, we can proceed as in the rational case by finding a measure ν on a simple
stationary Bratteli diagram such that S(ν) = S(μ). To do this, we construct a diagram with an
n × n matrix Ã = (ãij ) transpose to the incidence matrix such that Ãx = λMx for some M ∈ N.
We obtain the matrix Ã by taking AM for sufficiently large M and changing the zero block
{a(M)

ij }n,m
i=m+1, j=1 to a non-zero one. We have qixi = ∑n

j=m+1 pij xj for i = 1, . . . ,m and some

qi ∈ N, pij ∈ Z. Since AMx = λMx, we have
∑n

i=m+1 a
(M)
ij xj = λMxi for i = m+1, . . . , n. The

block {aij }ni,j=m+1 of the matrix A is positive, hence we can make the numbers {a(M)
ij }ni,j=m+1

arbitrary large. In particular, we take M such that a
(M)
m+1,j � p1,j for all j = m + 1, . . . , n. Then

q1x1 + ∑n
j=m+1(a

(M)
m+1,j − p1,j )xj = ∑n

j=m+1 a
(M)
m+1,j xj = λxm+1 and ãm+1,1 = q1 > 0. We

proceed with other elements of the zero block in the similar way.
Thus, we obtain that for any finite ergodic invariant measure μ on a stationary Bratteli diagram

there exists a good measure ν ∈ S such that S(μ) = S(ν). This result together with an example
is discussed in the last section.

We will also construct two measures μ1 and μ2 such that S(μ1) = S(μ2), the measure μ1 is
good and the measure μ2 is not good. Hence these measures are not homeomorphic. The example
can be found in the next section.

Now we consider two classes of measures on stationary Bratteli diagrams: (i) measures of
Bernoulli type, (ii) measures satisfying the Quotient Condition.

Proposition 4.3. Let μ be an ergodic R-invariant measure on a stationary Bratteli diagram B .
Then μ does not satisfy the Quotient Condition.

Proof. Let A = FT be the n × n matrix transposed to the incidence matrix of the diagram B .
Let λ and x = (x1, . . . , xn)

T be the eigenvalue and eigenvector of A which generate μ. Denote
by H the additive subgroup of R generated by {x1, . . . , xn}. Let eigenvalue λ be the algebraic
number of degree k. If k = 1, the clopen values set S(μ) consists of rational numbers. To get a
contradiction, we assume that μ satisfies the Quotient Condition. Then, by Theorems 2.5 and 3.2,
we have

Q ∩ [0,1] ⊂ S(μ) =
( ∞⋃ 1

λN
H

)
∩ [0,1].
N=0
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Then for any l ∈ N there exists N ∈ N such that 1
l

∈ 1
λN H . In the vector form, the latter is

written as 1
l
e1 ∈ H(DN x1, . . . ,D

N xn). The matrix D (used in the proof of Theorem 3.2) has

rational entries (dij ). There exists non-negative integer t such that dij = tij
t

where tij ∈ Z

for i = 1, . . . , k, j = 1, . . . , n. Denote by T the k × k matrix with entries (tij ). Then 1
l
e1 ∈

1
tN

H(T Nx1, . . . , T
N xn). The set L of prime divisors of t and the denominators of the coor-

dinates of x1, . . . ,xn is finite. We can choose l as a prime number which does not belong
to L. Then 1

l
e1 cannot belong to H(DN x1, . . . ,D

Nxn) for any N ∈ N. This is a contradic-
tion. �

Now we focus on rational measures, i.e. on the case when the clopen values sets belong
to Q.

Proposition 4.4. Let μ be a rational measure on a stationary diagram B defined by a distin-
guished eigenvalue λ of the matrix A = FT . Denote by (

p1
q

, . . . ,
pn

q
) the corresponding reduced

vector.

(1) A number y ∈ S(μ) + Z if and only if there exists N ∈ N such that yλNq ∈ Z.
(2) The set S(μ) is multiplicative if and only if there exists K ∈ N such that q | λK .
(3) If μ is good, then μ is of Bernoulli type if and only if there exists K ∈ N such that q | λK .

Proof. 1. Suppose there exists N ∈ N such that yλNq ∈ Z. Since gcd(p1, . . . , pn) = 1, there
exist u1, . . . , un ∈ Z such that u1p1 + · · · + unpn = 1. Then one can take k1, . . . , kn ∈ Z such
that yλNq = k1p1 + · · · + knpn. Hence y = 1

λN (k1
p1
q

+ · · · + kn
pn

q
). By Theorem 3.2, S(μ) is

group-like. Therefore y ∈ S(μ) + Z.
Conversely, let y ∈ S(μ) + Z. Then there exist k1, . . . , kn ∈ Z and N ∈ N such that y =

1
λN (k1

p1
q

+ · · · + kn
pn

q
). Hence yλNq = k1p1 + · · · + knpn ∈ Z.

2. Suppose S(μ) is multiplicative. Take u1, . . . , un ∈ Z such that u1p1 + · · · + unpn = 1.
Since S(μ) is group-like, the fraction 1

q
= u1

p1
q

+ · · · + un
pn

q
lies in S(μ). Then the fraction 1

q2

belongs to S(μ). Hence, 1
q2 λKq = 1

q
λK ∈ N for some K ∈ N.

Suppose q | λK . Let y1, y2 ∈ S(μ). Then y1λ
Mq and y2λ

Nq are integers for some M,N ∈ N.
Hence, y1y2λ

M+Nq2 ∈ Z. Then y1y2λ
M+N+Kq is an integer. Therefore, y1y2 ∈ S(μ).

3. Let q | λK for some K ∈ N. Then the set S(μ) is multiplicative, and S(μ) is ring-like. By
Theorem 2.5, it suffices to show that every positive element y from S(μ)+Z is a sum of positive
units of S(μ) + Z. There exist N ∈ N and k1, . . . , kn such that y = 1

λNq
(k1p1 + · · · + knpn). The

fractions 1
λN and 1

q
are the positive units of the ring S(μ) + Z. Therefore, their product is a unit

of the ring. Since y > 0, the integer k1p1 + · · · + knpn is non-negative. Thus, y is the sum of the
positive unit 1

qλN taken k1p1 + · · · + knpn times.
Conversely, let μ be a good measure of Bernoulli type. Then S(μ) is ring-like. Hence, there

exists K ∈ N such that q | λK . �
5. Examples

In this section, we consider several examples of ergodic invariant measures on some stationary
Bratteli diagrams illustrating the results proved in Section 3.
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Example 1. Let B be the stationary Bratteli diagram with incidence matrix

F =
(1 1 0

1 2 0
0 1 3

)
.

This diagram B looks as follows:

�

�
�

�
�

��

�
�

�
�

���� �

�
�
�

�
��

�
�

�
�

��

�
�

�
�

���� �

. . . . . . . . . . . . . .

This diagram has two simple stationary subdiagrams sitting on the first two and the third
vertices, respectively. The left subdiagram is a minimal component for R.

We consider the R-invariant ergodic measures for the diagram B and compute their clopen
values sets and prove some properties of these measures.

Denote A = FT . The eigenvectors x = ( 3−√
5

2 ,
√

5−1
2 ,0)T and y = ( 1

4 , 1
2 , 1

4 )T of the matrix A

correspond to the eigenvalues λ1 = 3+√
5

2 and λ2 = 3, respectively. Thus, there are two probabil-
ity ergodic R-invariant measures on the path space of the diagram B . Denote by μ1 the measure
generated by the vector x and the eigenvalue λ1, and by μ2 the measure generated by the vector
y and the eigenvalue λ2. We note that S(μ1) ∩ (R \ Q) �= ∅ and S(μ2) ⊂ Q.

Let h(n) = (h
(n)
i ) denote the heights of towers corresponding to the vertices i = 1,2,3 enu-

merated from left to right. We have h(1) = (1,1,1) and

h(n+1) = Fh(n). (5.1)

In order to find the solutions h(n) of (5.1), we use generating functions. Set f (i)(s) =∑∞
n=0 h

(n+1)
i sn. It can be shown that

f (1)(s) = 1 − s

1 − 3s + s2
,

f (2)(s) = 1

1 − 3s + s2
,

f (3)(s) = (1 − s)2

2
.

(1 − 3s + s )(1 − 3s)



S. Bezuglyi, O. Karpel / Journal of Functional Analysis 261 (2011) 3519–3548 3545
Decomposing the generating functions into the series, we obtain

h
(n)
1 = 1√

5

(
1 + √

5

2

(
3 + √

5

2

)n−1

− 1 − √
5

2

(
3 − √

5

2

)n−1)
,

h
(n)
2 = 1√

5

((
3 + √

5

2

)n

−
(

3 − √
5

2

)n)
,

h
(n)
3 = 4 · 3n + 7

√
5 − 15

10

(
3 − √

5

2

)n−1

− 7
√

5 + 15

10

(
3 + √

5

2

)n−1

.

We see that h
(n)
1 = f2n−1 and h

(n)
2 = f2n where fi is the i-th Fibonacci number.

The above computation allows one to determine explicitly all elements of the sets S(μ1) and
S(μ2). The ergodic measures μ1 and μ2 are good. Indeed, the measure μ1 is supported on a
simple subdiagram, hence μ1 is good. It follows from Theorem 3.5 that μ2 is also good. One
can show (see Example 2) that in the simplex of all R-invariant probability measures only these
ergodic measures are good. In other words, the measure να = αμ1 + (1 − α)μ2 is not good for
any α ∈ (0,1). We remark also that, by Proposition 4.3, neither μ1 nor μ2 satisfy the Quotient
Condition.

Proposition 5.1. Let B , μ1, μ2 be as above. Then μ1 is of Bernoulli type and μ2 is not.

Proof. We use Theorem 2.5 to prove that μ1 is of Bernoulli type. Since 2
3+√

5
= 3−√

5
2 , we see

that

S(μ1) =
{
k
(n)
1

(
3 − √

5

2

)n

+ k
(n)
2

√
5 − 1

2

(
3 − √

5

2

)n−1

: n ∈ N

}
(5.2)

where 0 � k
(n)
i � h

(n)
i .

Denote G = S(μ) + Z. By Theorem 2.3, G is an additive subgroup of R. Since (
√

5−1
2 )2 =

3−√
5

2 , the group G is multiplicative. Hence G is a ring. We note that the number 1 is a positive

unit of the ring G, and the fractions
√

5−1
2 and 3−√

5
2 are also positive units of G because 2√

5−1
=

√
5−1
2 + 1 ∈ G and 2

3−√
5

= 3 − 3−√
5

2 ∈ G. Therefore, every positive element of G is a sum of
positive units of G. By Theorem 2.5, the measure μ1 is of Bernoulli type.

We have already observed that the measure μ2 is good. Then μ2 is not of Bernoulli type by
Proposition 4.4. �
Example 2. The following example is a generalization of Example 1. We consider a class of
non-simple stationary Bratteli diagrams that have one minimal and one non-minimal component
and have exactly two ergodic probability R-invariant measures defined by these components. Let
B be such a diagram. Suppose that S(μ1) contains irrational numbers for the measure μ1 sup-
ported on the minimal component, and S(μ2) ⊂ Q for the other ergodic measure μ2. The Bratteli
diagram in Example 1 belongs to this class. Since μ1 and μ2 are the only ergodic measures, any
R-invariant measure ν is of the form να = αμ1 + (1 − α)μ2 where α ∈ [0,1]. These measures
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form the convex simplex of all R-invariant probability measures on XB . Our goal is to show that
the measure να is good only for α = 0,1.

Proposition 5.2. Let μ1, μ2 and να be as above. Then the measure να on the Cantor space XB

is not good for any α ∈ (0,1).

Proof. Let A = FT be the n × n matrix transposed to the incidence matrix of the diagram B .
Assume the vertices 1, . . . ,m belong to the minimal component of the diagram and the vertices
m + 1, . . . , n are in the non-minimal component. Let μ1 be generated by the eigenvalue λ1 ∈
R\Q and the eigenvector x = (x1, . . . , xm,0, . . . ,0)T , and let μ2 be generated by the eigenvalue
λ2 ∈ N and the eigenvector y = (

p1
q

, . . . ,
pn

q
)T where pi, q ∈ N.

We first chose two particular clopen sets U and V such that να(U) < να(V ) and then we show
that there is no clopen subset of V with measure να(U). Denote by V the cylinder set of length 1
that ends in a vertex of the non-minimal component. Without loss of generality, we assume that
V ends in the vertex number n. Denote by UN the cylinder set of length N which ends in the
vertex 1 of the minimal component of B . Take N sufficiently large so that να(UN) < να(V ). Let
U = UN .

Suppose να is good for some α ∈ (0,1). We have

να(U) = α
x1

λN−1
1

+ (1 − α)
p1

qλN−1
2

< να(V ) = pn

q
.

By assumption, there exists a subset W ⊂ V such that να(U) = να(W). Since W ⊂ V , there exist
integers k, M (we can always choose M > N ) such that

να(W) = (1 − α)
k

qλM
2

.

It follows from the equality να(W) = να(U) that

k = α

1 − α
· x1qλM

2

λN−1
1

+ p1λ
M−N+1
2 . (5.3)

Since the numbers k, p1λ
M−N+1
2 , qλM

2 are integers, we have

α

1 − α
· x1

λN−1
1

∈ Q.

We can repeat the same arguments for N + 1 instead of N and obtain that

α

1 − α
· x1

λN
1

∈ Q.

Hence, the ratio of the two above mentioned values should be rational. But this ratio equals
λ1 ∈ R \ Q. This is a contradiction. �



S. Bezuglyi, O. Karpel / Journal of Functional Analysis 261 (2011) 3519–3548 3547
Example 3. We consider now a class of stationary Bratteli diagrams and determine which mea-
sures on them are good. Fix an integer N � 3 and let

FN =
(2 0 0

1 N 1
1 1 N

)

be the incidence matrix of the Bratteli diagram BN . For AN = FT
N we easily find the Perron–

Frobenius eigenvalue λ = N + 1 and the corresponding probability eigenvector

x =
(

1

N
,
N − 1

2N
,
N − 1

2N

)T

.

Let μN be the measure on BN determined by λ and the eigenvector x. It follows from Theo-
rem 3.5 that μN is a good measure if and only if for all sufficiently large R we have

(N + 1)R

N
∈ N − 1

2N
Z

or, equivalently, 2(N+1)R

N−1 is an integer, k ∈ N. This is possible if and only if N = 2k + 1. For
instance, the measure μN is good for N = 3,5 but is not good for N = 4.

�
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�

�
��

�
�
�

���� �

�
�
�

��

����������

�
�
�

��

�
�

�
���� �

. . . . . . . . . . . . .

B3: μ3 is good
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B4: μ4 is not good
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B5: μ5 is good

In the case when N = 4, we see that the eigenvector corresponding to λ = 5 is ( 2
8 , 3

8 , 3
8 ). The

fact that μ4 is not good can be also proved straightforwardly. Indeed, the measure of any cylinder
set that ends in one of the last two vertices of the diagram B at the level n is 3

8·5n−1 . Hence, the
measure μ4(V ) of any clopen set V combined from such cylinder sets is a rational number with
factor 3 in the numerator. Let, for instance, U be the cylinder set of length 1 that ends at the first
vertex of the diagram and V be the cylinder set of length 1 that ends at the second vertex. Then
2
8 = μ4(U) < μ4(V ) = 3

8 and the measure of any clopen subset of V is a rational irreducible
fraction with the number 3 as a numerator factor. Thus, there is no clopen subset of V with
measure μ4(U) = 2

8 and μ4 is not good.

On the other hand, it is easy to find a measure ν on a simple stationary Bratteli diagram such
that S(μ4) = S(ν). In fact, the following general statement holds.
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Proposition 5.3. For any probability ergodic R-invariant measure μ on a stationary Bratteli
diagram there exists a good measure ν ∈ S such that S(μ) = S(ν).

Proof. The proof immediately follows from Theorem 4.1 and the remark after the theorem: there
exists a measure ν on a simple Bratteli diagram (hence ν is good) such that S(μ) = S(ν). �

Another way to find such a measure ν is to find a non-negative integer solution (pij ) = P of
the system Py = ψy where the eigenvector y and eigenvalue ψ generate the measure ν and are
chosen such that S(ν) = S(μ). For instance, if μ = μ4, then we can take

P =
(1 2 0

1 2 1
9 3 2

)

where y = ( 1
8 , 2

8 , 5
8 ) and ψ = 5. It is not hard to see that the clopen values sets for S(ν) and

S(μ4) coincide, and the measure ν is good but μ4 is not. Hence, by Theorem 2.3, the measures
μ4 and ν are not topologically equivalent.
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