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The dual observables as order parameters for center symmetry are tested at finite isospin chemical po-
tential μI in a Polyakov-loop enhanced chiral model of QCD with physical quark masses. As a counterpart 
of the dressed Polyakov-loop, the first Fourier moment of pion condensate is introduced for μI > mπ /2
under the temporal twisted boundary conditions for quarks. We demonstrate that this dual conden-
sate exhibits the similar temperature dependence as the conventional Polyakov-loop. We confirm that 
its rapid increase with T is driven by the evaporating of pion condensation. On the other hand, the 
dressed Polyakov-loop shows abnormal thermal behavior, which even decreases with T at low temper-
atures due to the influence of pion condensate. We also find that the dressed Polyakov-loop always 
rises most steeply at the chiral transition temperature, which is consistent with the previous results in 
Nambu–Jona-Lasinio (NJL) model and its variants without considering the center symmetry. Since both 
quantities are strongly affected by the chiral symmetry and pion condensation, we conclude that it is 
difficult to clarify the deconfinement transition from the dual condensates in this situation within this 
model.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The main phenomena in QCD at finite temperature and density 
are the chiral restoration and deconfining phase transitions. In the 
chiral limit, the standard order parameter for chiral transition is 
the quark condensate. However, it is conceptually difficult to de-
fine an order parameter for deconfinement in QCD. Usually, the 
expectation value of the Polyakov-loop (PL) is adopted as the indi-
cator for quark deconfining transition. This quantity is a true order 
parameter for center symmetry in pure Yang–Mills theory. Nev-
ertheless, this symmetry is badly broken by the light dynamical 
quarks in QCD. These two order parameters had been extensively 
studied in lattice QCD. It suggests that both phase transitions are 
smooth crossovers at finite T and zero density and two pseudo-
critical temperatures are very close to each other [1,2].

It is well known that the nonzero Dirac zero-mode density is 
responsible for the dynamical chiral symmetry breaking in QCD, 
according to the celebrated Banks–Casher relation [3]. An interest-
ing question is to what extent the spectral properties of the Dirac 
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operator contain the confinement information. Recently, some au-
thors have tried to link the Dirac spectral modes to the PL or its 
equivalent quantities with the same winding number in the time 
direction [4–10]. In these studies, some dual observables are in-
troduced as the new order parameters for center symmetry by 
using the twisted boundary conditions for quarks. Especially, it 
is demonstrated in the formalism of lattice QCD [5–7] that the 
dressed Polyakov-loop (DPL) interpolates between the chiral con-
densate and the thin PL. The studies from the functional methods 
[11–14] and effective models [15–17] also suggest the DPL shows 
the order parameter-like behavior like the thin PL.

In principle, one can construct many dual observables which 
transform in the same way as the thin PL under the center trans-
formation [7,10]. They are true order parameters for deconfine-
ment in the static limit m → ∞, where m is the mass of dynam-
ical quarks. However, the center symmetry is seriously broken in 
QCD since the light quark masses are very small. Then, a question 
naturally arises: to what extent do these quantities still contain 
the confinement information? Recently, it is demonstrated in the 
NJL model that the rapid rise of DPL near Tc is totally driven by 
the chiral transition [18]. The author attributes the reason to the 
lacking confinement of NJL. However, the following study based 
on several variants of NJL with (possible) confining elements sug-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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gests that the rapid rise of DPL with T still happens in the chiral 
transition region and no effect related to the change of the con-
fining properties of the propagator is observed [19]. The authors 
thus conclude that the DPL obtained in these models is not an ap-
propriate order parameter for deconfinement. Note that the gluon 
degree with center symmetry is not considered in these model 
studies.

To further test weather the dual observables can be used as 
order parameters, we extend the previous study to finite isospin 
chemical potential μI by simultaneously considering the pion con-
densation and the twisted boundary conditions in this paper. We 
mainly concentrate on the thermal properties of two simple dual 
observables for μI > mπ/21: the DPL and the first Fourier moment 
of the generalized pion condensate. Here we refer to the later as 
the dual pion condensate (DPC), which is the counterpart of the 
DPL at finite μI . Due to the influence of pion condensate, the ther-
mal property of DPL may change explicitly for μI > mπ/2. Thus it 
is interesting to check whether the DPL still behaves like an order 
parameter in this situation. Second, similar to the DPL, the DPC 
transforms in the same manner as the thin PL under the center 
transformation. So it is also interesting to explore whether this 
simple dual quantity can be used to indicate the deconfinement 
transition at finite isospin density.

We employ the PL enhanced NJL model (PNJL) in our investiga-
tion by adopting the U(1)-valued boundary conditions. Compared 
to [17,18], the advantage of PNJL is that the PL dynamics is in-
cluded to partially mimic the confinement, which is directly re-
lated to the center symmetry. Moreover, the pion condensate and 
PL obtained in lattice simulations [21,22] for μI > mπ/2 can be 
well reproduced in this model [23]. The paper is organized as fol-
lows. In Sec. 2 the dual pion condensate is defined and the PNJL 
model with the twisted boundary conditions for μI > mπ/2 is in-
troduced. The numerical results and discussion are given in Sec. 3. 
In Sec. 4 we summarize.

2. Dual pion condensate and PNJL model with twisted boundary 
condition for μI > mπ/2

2.1. Dual pion condensates for μI > mπ/2

According to [5], the dual quark condensates are defined as

�
(n)
σ = −

2π∫
0

dφ

2π
e−inφσ (φ), (1)

where n is an integer and σ(φ) is the generalized quark conden-
sate

σ(φ) = 〈ψ̄ψ〉φ = − 1

V
〈Tr[(m + Dφ)−1]〉, (2)

which is obtained with the twisted boundary condition in the time 
direction

ψ(x, β = 1/T ) = eiφψ(x,0). (3)

The Dφ in (2) is the Dirac operator without the quark mass for 
the twisted angle φ. Note that φ = π corresponds to the physical 
boundary condition. The dressed PL is defined as the first Fourier 
moment of σ(φ), namely

�
(1)
σ = −

2π∫
0

dφ

2π
e−iφσ (φ). (4)

1 It is well known that the charged pion condensation appears at zero and low 
temperature for μI > mπ /2 in QCD [20].
In the lattice language, this quantity only includes the contribu-
tions of (infinite) closed loops with the winding number one in 
the compact time direction [5]. So it belongs to the same class as 
the thin PL under the center transformation.

In the same way, we can introduce the dual pion condensates at 
finite μI . The charged pion condensates for μI > mπ/2 are defined 
as

〈ψ̄ iγ5τ+ψ〉 = π+ = π√
2

eiθ , 〈ψ̄ iγ5τ−ψ〉 = π− = π√
2

e−iθ , (5)

where τ± = (τ1 ± τ2)/
√

2 and τi is the Pauli matrix in quark flavor 
space. In (5) nonzero π indicates the spontaneous breaking of the 
isospin I3 symmetry and the breaking direction is described by the 
phase factor θ . Without loss of generality, we adopt θ = 0 in the 
following and the pion condensate is expressed as

〈ψ̄ iγ5τ1ψ〉 = π. (6)

Similar to (1), we can define the dual pion condensates

�
(n)
π = −

2π∫
0

dφ

2π
e−inφπ(φ), (7)

where π(φ) is the generalized pion condensate under the bound-
ary condition (3), which takes the form

π(φ) = − 1

V
〈Tr[iγ5τ1(m + Dφ)−1]〉. (8)

As mentioned, the DPC is defined as the first Fourier moment of 
π(φ), namely

�
(1)
π = −

2π∫
0

dφ

2π
e−iφπ(φ). (9)

Analogous to the DPL (and also the dual density proposed in 
[10]), �(1)

π is gauge invariant which merely includes the contribu-
tions of closed loops with wingding number one. Thus it is another 
simple dual observable transforming in the same manner as the 
thin PL under the Z(3) center transformation. It is interesting to 
check whether this quantity also exhibits an order parameter-like 
behavior with increasing T at finite isospin density.

The previous studies [22,23] suggest that under the physical 
boundary condition, the pion condensate competes with the quark 
condensate for μI > mπ/2. Or in other words, the quark conden-
sate partially rotates into the pion condensate when the isospin 
chemical potential surpasses the half of the pion mass at zero T
and their competition becomes more involved at finite T . We can 
expect that there may exist the similar interplay between these 
two condensates for other twisted boundary angles. This implies 
π(φ) affects σ(φ), and vice versa. So the thermal behavior of DPL 
at μI > mπ/2 may deviate significantly from that at zero μI due to 
the influence of π(φ). We will test whether such a deviation still 
supports the DPL as an indicator for quark deconfinement transi-
tion with physical quark masses.

2.2. PNJL model for μI > mπ/2 with twisted boundary condition

We adopt the following Lagrangian of two-flavor PNJL model:

L = ψ̄
(
iγμDμ + γ0μ̂ − m̂0 − iλγ5τ1

)
ψ

+ gs

[(
ψ̄ψ

)2 + (
ψ̄ iγ5 �τψ

)2
]
− gs

v

(
ψ̄γμψ

)2

− gv
v

(
ψ̄ �τγμψ

)2 − U
(
�,�̄, T

)
, (10)
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where the last term is the effective PL potential. This type of model
has been used to study the DPL at zero density [15]. Compared to 
[15], we ignore the eight-quark interaction but include four-quark 
vector interactions with two different couplings. It is demonstrated 
in [24] that the mismatch between gv

v and gs
v can lead to non-

anomaly flavor mixing at finite baryon and isospin densities.
The m̂0 is the matrix of current quark masses

m̂0 =
(

mu

md

)
, (11)

and we choose mu = md ≡ m. The μ̂ is the matrix of quark chemi-
cal potentials

μ̂ =
(

μu

μd

)
=

(
μ + μI

μ − μI

)
, (12)

with

μ = μu + μd

2
= μB

3
and μI = μu − μd

2
. (13)

The μB and μI in (13) are the baryon and isospin chemical po-
tentials, which correspond to the conserved baryon and isospin 
charges, respectively. Following [22,23], we introduce a small pa-
rameter λ in (10), which explicitly breaks the I3 symmetry.

The mean field thermal potential of PNJL model for μI > mπ/2
under the physical boundary condition has been given in [23], 
where vector interactions are ignored. Its form is slightly modified 
when considering the vector interactions

 = U(�, �̄, T ) − 2Nc

∫
d3 p

(2π)3

[
E−

p + E+
p

]
θ(�2 − �p2)

− 2T

∫
d3 p

(2π)3

{
ln

[
1 + 3

(
� + �̄e−(

E−
p −μ′)β)

e−(
E−

p −μ′)β

+ e−3
(

E−
p −μ′)β]

+ ln
[

1 + 3
(
�̄ + �e−(

E−
p +μ′)β)

e−(
E−

p +μ′)β

+ e−3
(

E−
p +μ′))β]

+ ln
[

1 + 3
(
� + �̄e−(

E+
p −μ′)β)

e−(
E+

p −μ′)β

+ e−3
(

E+
p −μ′)β]

+ ln
[

1 + 3
(
�̄ + �e−(

E+
p +μ′)β)

e−(
E+

p +μ′)β

+ e−3
(

E+
p +μ′)β]}

+ gs(σ
2 + π2) − gs

v(ρu + ρd)
2

− gv
v (ρu − ρd)

2, (14)

with the quasi-particle energy E±
p =

√
(E p ± μ′

I )
2 + N2 and E p =√�p2 + M2 in which the two energy gaps are defined as

M = m − 2gsσ , (15)

N = λ − 2gsπ. (16)

The μ′ and μ′
I are the shifted quark and isospin chemical poten-

tials

μ′ = μ − 2gs
v(ρu + ρd), μ′

I = μI − 2gv
v (ρu − ρd), (17)

where ρu(d) is the u (d) quark density.
In the following, we only consider the situation with finite μI

and zero μ. In this case, the baryon number density is zero for 
φ = π and � equals to �̄ strictly. Minimizing the thermal dynam-
ical potential (14), the motion equations for the mean fields σ , π , 
� and the density ρI are determined through the coupled equa-
tions
∂

∂σ
= 0,

∂

∂π
= 0,

∂

∂�
= 0,

∂

∂ρI
= 0. (18)

This set of equations is then solved for the fields σ , π , � and ρI

as functions of T and μI .
Under the generalized boundary condition, the modified quark 

chemical potential μ′ in (14) should be replaced by iT (φ − π)

[5,10,15], which is nothing but an effective imaginary chemical 
potential. Strictly speaking, the μ′ for φ �= π should also contain 
the density-related contribution 2gs

v (ρu + ρd) even if the real μ is 
zero. This is because the imaginary chemical potential also leads to 
a nonzero baryon number density. It has been shown in [15] that 
the coupling gs

v only has significant effect on �(1)
σ for T > 1.5Tc in 

PNJL. Since we are only interested in the thermal behavior of dual 
observables near and below Tc , the correction 2gs

v(ρu + ρd) is ig-
nored in our calculation. Note that the μ′

I is still real and keeps 
the form as (17). The reason is that it is the difference between 
μ′

u and μ′
d and their imaginary parts cancel each other out for 

φ �= π .
According to the definition of DPL (and also the DPC), the 

twisted boundary condition is imposed on the Dirac operator Dφ , 
and the bracket 〈· · ·〉 still keeps the antiperiodic condition with 
φ = π [5,6]. So in our calculation, the � as a function of T and μI

is first obtained by solving (18) using the physical boundary condi-
tion. The other quantities, such as σ(φ), π(φ) and ρ(φ), are then 
determined by the following coupled equations:

∂

∂σ (φ)
= 0,

∂

∂π(φ)
= 0,

∂

∂ρI (φ)
= 0, (19)

with � keeping its value for φ = π . Such a treatment is consistent 
with [15].

2.3. Model parameters

In our calculation, the model parameters related to the NJL sec-
tor, such as the current quark mass m, the momentum cutoff �
and the scalar coupling gs , are all adopted from [23], which take 
the values

m = 5.5 MeV, � = 0.651 GeV, and gs = 5.04 GeV−2, (20)

respectively. The vector coupling gv
v is fixed as 0.25gs , which is 

supported by the instanton liquid molecular model.2

As for the PL potential, we employ the logarithm form [25]. 
It has been reported that this type of U can reproduce the LQCD 
data at finite imaginary chemical potential, but the polynomial one 
(which is used in [23]) does not [15]. Following [15], the parameter 
T0 in the logarithm potential is fitted as 200 MeV to reproduce the 
lattice pseudo-critical temperature Tc at zero density.

For computational convenience, a small λ with value m/10 is 
used. It is confirmed that the deviation of our main results from 
zero λ is negligible.

3. Numerical results and discussions

3.1. φ-dependence of quark and pion condensates

The generalized quark and pion condensates as functions of φ
for μI = 100 MeV at different temperatures are shown in Fig. 1. 
Fig. 1.a indicates that the shapes of |σ(φ)| for temperatures be-
low and above T χ

c are quite different: for T = 210 MeV and 

2 In two flavor case, the acceptable theoretical value of gv
v may be in the range 

0.25gs–0.5gs , where the lower and upper limits are determined by the instanton 
induced interaction and the Fierz transformation of the one gluon exchange inter-
action, respectively.



Z. Zhang, Q. Miao / Physics Letters B 753 (2016) 670–676 673
Fig. 1. The twisted angle dependences of the quark condensate σ(φ) and pion con-
densate π(φ) at μI = 100 MeV for different temperatures.

240 MeV (or T > T χ
c ), the quark condensates are concave lines 

with |σ(π)| < |σ(0)|; but for T = 150 MeV and 170 MeV (or 
T < T χ

c ), they are convex ones with |σ(π)| > |σ(0)|. The transi-
tion line between the concave and convex ones takes the wavy 
shape, as displayed in Fig. 1.a for T = 190 MeV (or T ∼T χ

c ). All this 
is quite different from what is obtained in [5,12,15], where only 
concave curves emerge for vanishing μ and μI . Fig. 1.a also shows 
that |σ(φ ∼ π)| first increases and then decreases with T due to 
the impact of pion condensate3; but in [5,12,15], |σ(φ ∼ π)| al-
ways decreases with T .

In contrast, Fig. 1.b shows that all lines of |π(φ)| at different 
fixed T are concave curves. We see that in the fermionic-like re-
gion (namely the area for φ ∼ π ), |π(φ)| decreases with T but it 
increases with T in the bosonic-like region (namely the area for φ
near zero or 2π ). In addition, the curve of |π(φ)| becomes more 
flat with decreasing T . All this is very similar to the φ-dependence 
of the quark condensate obtained for zero μ and μI [5,12,15]. The 
similarity can be understood in the following way: for μI > mπ/2, 
the quark condensate partially turns into the pion condensate, and 
thus the later inherits some properties of the former. However, the 
φ-dependence of |σ(φ)| changes obviously due to such a transfor-
mation, as shown in Fig. 1.a.

Fig. 2 shows the φ-dependence of quark and pion conden-
sates at different temperatures for μI = 200 MeV. Compared with 
Fig. 1, we see that σ(φ) is suppressed and π(φ) is enhanced (sup-
pressed) in the fermion-like (boson-like) region. But the φ- and 

3 This is also observed in [23] and in other chiral model studies [26]. The reason 
for such an anomaly is that the quantity 

√
σ 2 + π2 always decreases with T but 

|π | drops more quickly near the phase transition since λ is zero but m is finite.
Fig. 2. The twisted angle dependences of the quark condensate σ(φ) and pion con-
densate π(φ) at μI = 200 MeV for different temperatures.

T -dependences of these two condensates are still qualitatively con-
sistent with that displayed in Fig. 1.

3.2. Thermal behaviors of dual condensates

Two dual condensates and other three (pseudo-) order param-
eters as functions of T for μI = 100 MeV and 200 MeV are shown 
in Figs. 3–4, respectively. The quark and pion condensates are ob-
tained with physical boundary condition φ = π , which are normal-
ized by σ0 = σ(T = 0, μ = 0, μI = 0); the dual condensates and PL 
are normalized by their corresponding values at T = 240 MeV. We 
mainly focus on the thermal behaviors of these quantities near the 
phase transitions.

Fig. 3 shows that |π(φ = π)| (�) decreases (increases) mono-
tonically with T , but |σ(φ = π)| first increases (slowly) up to 
T ∼ 180 MeV and then decreases. The similar T -dependences of 
these quantities are also observed in Fig. 4. These results are qual-
itatively in agreement with what is obtained in [23] by using 
the polynomial PL potential. As mentioned above, the increase of 
|σ(φ = π)| with T is due to the competition between the quark 
and pion condensates.

Consistent with Fig. 1.b, Fig. 3 indicates that the normalized 
DPC really behaves like an order parameter for center symmetry: 
analogous to the DPL obtained in [5,12,15], it keeps rather small 
value in low temperature region and gradually becomes larger 
with T . Like the thin PL, the DPC increases monotonically with T . 
However, the normalized DPL in Fig. 3 shows abnormal thermal 
behavior, which first reduces with T (up to T ∼ 180 MeV) and 
then raises. Fig. 3 also shows that the DPL even becomes negative 
near and below T ∼ 190 MeV. The similar T -dependences of DPL 
and DPC are also observed in Fig. 4.
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Fig. 3. The temperature dependences of the normalized conventional Polyakov-loop, 
quark and pion condensates and their corresponding dual parters at μI = 100 MeV.

Fig. 4. The temperature dependences of the normalized conventional Polyakov-loop, 
quark and pion condensates and their corresponding dual parters at μI = 200 MeV.

The abnormal thermal behavior of DPL can be traced back to 
the non-concave lines of σ(φ) displayed in Figs. 1(a)–2(a). As men-
tioned, due to the influence of π(φ), |σ(φ)| increases with T be-
low T π

c (the critical temperature for the I3 symmetry restoration) 
for φ ∼ π . This results in the DPL not always raising with T . Actu-
ally, Figs. 3–4 clearly show that when |σ(φ = π)| increases with T , 
the DPL decreases, and vice versa. So the DPL is quite sensitive to 
the T -dependence of the quark condensate. In contrast, Figs. 3–4
indicate that the DPL is insensitive to the thin PL, at least at low 
temperature region. All this suggests that the DPL obtained with 
physical quark masses mainly reflects chiral transition rather than 
deconfinement. Such a conclusion is in agreement with the claim 
given in [18] that the rapid change of DPL near T σ

c in NJL is totally 
driven by the chiral restoration.

Following Ref. [18], we also calculate several susceptibilities 
which are defined as the T -derivatives of the quantities displayed 
in Figs. 3–4. As in [18], the peak of a susceptibility is used to lo-
cate the critical temperature. The susceptibilities as functions of T
for μI = 100 MeV and 200 MeV are shown in Fig. 5 and Fig. 6, 
respectively.

Fig. 5 shows that the PL susceptibility has only one peak, which 
indicates T P

c = 163 MeV. But the other susceptibilities all have 
double peaks, one of which coincides with T P

c due to the cou-
pling between the PL and quark/pion condensate in PNJL. We see 
that the highest peaks of ∂�σ

1/∂T and ∂|σ |/∂T in Fig. 5 are very 
close to each other, and the corresponding critical temperatures 
T dσ

c and T σ
c are about 40 MeV lager than T P

c . The coincidence 
of T dσ

c and T σ
c is consistent with [18] even if the PL dynamics 

and pion condensate are considered in our calculations. In addi-
Fig. 5. The temperature dependences of the T -derivatives of the conventional 
Polyakov-loop, quark and pion condensates and their corresponding dual parters 
at μI = 100 MeV.

Fig. 6. The temperature dependences of the T -derivatives of the conventional 
Polyakov-loop, quark and pion condensates and their corresponding dual parters 
at μI = 200 MeV.

tion, Fig. 5 also shows that the critical temperatures T dπ
c and T π

c
(extracting from ∂�π

1/∂T and ∂|π |/∂T , respectively) almost coin-
cide, which are about 25 MeV lager than T P

c . The slight difference 
between T π

c and T dπ
c can be traced back to a small λ = 0.1m used 

in our numerical calculation. All these coincidences are also ob-
served in Fig. 6. Actually, the accordance of T π

c and T dπ
c shown in 

Figs. 3–4 is completely analogous to T σ
c = T dσ

c obtained in [18] for 
zero m. We thus get the similar conclusion that the rapid change 
of DPC near T π

c is driven by the restoration of I3 symmetry, even 
if it exhibits an order parameter-like thermal behavior as the PL.

Note that we also perform the similar calculations by varying 
gv

v in this model. We confirm that the thermal properties of DPL 
and DPC shown in Figs. 1–6 do not change qualitatively.

3.3. The case in the chiral limit

Here we only show the results with physical quark masses. In 
the chiral limit with finite μI , the pion condensate appears at 
low temperatures but the quark condensate vanishes. Or in other 
words, the quark condensate totally turns into the pion condensate 
due to the nonzero μI . Correspondingly, the dual quark condensate 
is replaced by the dual pion condensate. In this case, the approach 
used in [18] for analyzing the DPL, such as the Ginzburg–Landau 
method, can be borrowed directly to study the DPC. We have 
checked that without the quark condensate, the T -dependence of 
DPC for finite μI is much more similar to that of DPL obtained in 
the chiral limit at zero μI [18]. Actually, this case is also analo-
gous to the situation with physical quark masses and large μI , in 



Z. Zhang, Q. Miao / Physics Letters B 753 (2016) 670–676 675
which the pion condensate dominates and the suppressed quark 
condensate can be ignored.

3.4. Discussions

So beyond [18,19], we give further evidences that the dual ob-
servable may not really reflect deconfinement transition in the 
model studies, even if the center symmetry is considered. Note 
that in [18], the author still insists that the DPL calculated in 
other methods, such as the truncated Dyson–Schwinger Equation 
(tDSE) [13], can be used as an order parameter for deconfinement. 
However, the dual quark condensates obtained in NJL [18] or its 
nonlocal variants [19] and tDSE [13] are qualitatively consistent 
with each other. In addition, our result and Ref. [15] suggest that 
the T -dependence of DPL obtained in PNJL with center symmetry 
is also quite similar to that calculated in NJL type models without 
center symmetry. So if the rapid change of DPL with T merely in-
dicates the chiral transition in NJL, one should be cautious to inter-
pret it as the deconfinement transition in other effective theories 
or models of QCD. We thus argue that the so-called coincidence 
of chiral and deconfinement transitions obtained in tDSE using the 
DPL as the order parameter may also be problematic, just as that 
in NJL [17].

Our investigation suggests that the DPL is strongly affected by 
both the chiral and pion condensates. This implies that it is diffi-
cult to clarify the deconfinement transition from this quantity, at 
least in the model studies. Of course, PNJL is just a simple model 
and including PL in NJL may only partially reflect the connection 
between the (dynamically) center symmetry breaking and the DPL 
existing in QCD. Actually, as pointed out in [19], such a relation 
is totally ignored in the NJL model. So the DPL mainly indicates 
the chiral transition in [18,19] and our conclusions at finite isospin 
chemical potential may not really happen in QCD.

However, the results from PNJL may be still indicative for QCD. 
First, the center symmetry is severely violated by the light quarks. 
So it is very likely that the dual observables, such as the DPL, 
may not be so sensitive to the deconfinement transition, unless the 
dynamical quarks are heavy enough.4 Second, formally, the defini-
tions of the DPL and DPC involve quark fields which are naturally 
related to the quark and pion condensates, respectively. So it is not 
strange that the rapid change of the former mainly or even totally 
reflects the chiral transition in the chiral limit and that of the later 
just indicates the restoration of I3 symmetry.

4. Conclusion

The dual observables as possible order parameters for center 
symmetry are tested at finite temperature and isospin density with 
physical quark masses. Besides the dressed Polyakov-loop, another 
simple dual condensate, namely the dual pion condensate is pro-
posed for μI > mπ/2. We investigate the thermal behaviors of 
these two quantities in the PL enhanced NJL model of QCD by 
considering the pion condensation. Our model study suggests that 
both dual observables contain little or very limited information on 
quark deconfinement transition. On the other hand, the fast varia-
tions of both quantities are quite sensitive to the T -dependence of 
the quark and pion condensates.

First, we find that the twisted angle dependence of pion con-
densate is quite analogous to that of quark condensate obtained 
at zero μ and μI . Correspondingly, the DPC exhibits the similar 
T -dependence as the conventional PL for μI > mπ/2. We demon-
strate that the derivative of DPC with respect to T peaks exactly at 

4 Actually, even to what extent does the PL contain the information of quark de-
confinement transition is also a subtle problem if the quark mass is very small [27].
T π
c at which the pion condensation evaporates. This is very similar 

to the coincidence verified in [18,19], where the critical temper-
ature extracting from the DPL equals exactly to T σ

c in the chiral 
limit. Thus, we get the analogous conclusion that the rapid change 
of DPC near T π

c is driven by the restoration of I3 symmetry. So 
even if the DPC shows order parameter-like behavior, the critical 
temperature extracted from it has nothing to do with the decon-
finement transition.

Second, we find that the DPL displays abnormal thermal prop-
erty for μI > mπ/2, which even decreases with T for T ≤ T σ

c . This 
is quite different from the thin PL, which always increases with T . 
The anomaly arises due to the interplay between the quark and 
pion condensates. We verify that the DPL increases with T if the 
quark condensate (its absolute value) decreases, and vice versa. 
This implies the variation of DPL with T is mainly determined by 
the chiral dynamics rather than the confinement in this situation. 
In addition, we confirm that the maximum slope of DPL is very 
close to T σ

c rather than T P
c extracted from the PL. Actually, the 

critical temperature determined by the DPL is just T σ
c in the chiral 

limit, which is in agreement with [18,19].
We thus conclude that both dual condensates are not appropri-

ate order parameters for deconfinement in PNJL, even if the center 
symmetry is considered. We stress that whether such a conclusion 
also holds true in QCD with physical quark masses is unclear and 
needs further investigation. Our study suggests that the DPL might 
be also quite sensitive to the chiral transition in QCD. This raises 
an interesting question: is the critical temperature from DPL also 
exactly T σ

c in QCD for the chiral limit? This can be checked in lat-
tice calculations by reducing the dynamical quark mass.

Since there is no sign problem at finite μI , our study can be 
performed in the lattice simulation. In addition, the pion conden-
sation has been investigated in the tDSE formalism [28] and other 
effective models of QCD, such as the quark–meson model. It is also 
interesting to investigate the thermal properties of dual conden-
sates at finite μI within these methods.
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