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ABSTRACT Although knowledge of the pKa values and charge states of individual residues is critical to understanding the
role of electrostatic effects in protein structure and function, calculating these quantities is challenging because of the sensitivity
of these parameters to the position and distribution of charges. Values for many different proteins which agree well with ex-
perimental results have been obtained with modified Tanford-Kirkwood theory in which the protein is modeled as a sphere
(reviewed in Ref. 1); however, convergence is more difficult to achieve with finite difference methods, in which the protein is
mapped onto a grid and derivatives of the potential function are calculated as differences between the values of the function
at grid points (reviewed in Ref. 6). Multigrid methods, in which the size of the grid is varied from fine to coarse in several cycles,
decrease computational time, increase rates of convergence, and improve agreement with experiment. Both the accuracy and
computational advantage of the multigrid approach increase with grid size, because the time required to achieve a solution
increases slowly with grid size. We have implemented a multigrid procedure for solving the nonlinear Poisson-Boltzmann
equation, and, using lysozyme as a test case, compared calculations for several crystal forms, different refinement procedures,
and different charge assignment schemes. The root mean square difference between calculated and experimental pK,, values
for the crystal structure which yields best agreement with experiment (1 LZT) is 1.1 pH units, with the differences in calculated
and experimental pK values being less than 0.6 pH units for 16 out of 21 residues. The calculated titration curves of several
residues are biphasic.

INTRODUCTION

Because electrostatic effects play a central role in protein
structure and function and are at best only partially accessible
through experiment, methods for modeling electrostatic in-
teractions in crystal structures are of great interest. Both mi-
croscopic and macroscopic models have been developed and
applied to a variety of systems. Recent reviews include Refs.
1-8.
Methods in which the protein is mapped onto a grid have

the advantage of allowing the protein-solvent interface to be
treated. Warwicker and Watson (9) showed that the method
of finite differences, in which derivatives are approximated
as differences between values at grid points, can be used to
calculate the potential function of the grid. This approach has
since been further developed and applied to a number of
systems (cf. Refs. 6, 9, 10-16).

Extending the method of finite differences to calculating
PKa values and titration curves that can be compared with
experimental results and used to develop models of protein
function has proven challenging because of the sensitivity of
these functions to errors in the estimated potential at titrating
sites. Approaches that have been used to improve the accu-
racy of these estimates includefocusing, in which fine grids
on the order of0.25 A are used in the vicinity of titrating sites,
rotational averaging, in which potentials are averaged over
several orientations of the molecule relative to the grid (12),
and a hybrid statistical mechanical/Tanford-Roxby approach
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(17). The multigrid method (18-23 and references therein)
is a mathematically rigorous approach which increases sub-
stantially the speed and accuracy of finite difference calcu-
lations. Its use to solve the linear Poisson-Boltzmann equa-
tion has recently been reported (24). We have developed a
self-consistent approach in which multigrid methods are used
to solve the nonlinear Poisson-Boltzmann equation and to
calculate potentials, pKa values, and titration curves. The
nonlinear Poisson-Boltzmann equation eliminates the ap-
proximations that invalidate the linearized form of the
Poisson-Boltzmann equation at higher ionic strengths, but
converges much less readily. This approach has been applied
to crystal structures of lysozyme as a test case.

METHODS

Potentials
We use the nonlinear Poisson-Boltzmann equation (25)

V * [(e(r)V4(r)] - .?2(r)sinh[4(r)] + 4iifp(r) = 0 (1)

where +(r) is the electrostatic potential expressed in units of kTIe. It depends
on E(r), the dielectric constant; R, the modified Debye-Huckel parameter,
and p(r), the charge density function. The modified Debye-Huckel param-
eter is given by

K = E K

where 1IK is the Debye screening distance.

(2)

The multigrid algorithm
Multigrid methods in which partial differential equations (PDEs) are dis-
cretized into sets of equations on grids of different sizes are used to ac-
celerate convergence of numerical solutions of the PDEs. The resulting
system of discrete equations is solved at each grid level, an operation known
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as smoothing the error. The residual from the solution at a given level is
transferred to the next level where it is solved to provide the correction for
the previous grid. Convergence is accelerated because the residual equations
are solved on coarse grids, where the computational cost is negligible (18).
Moreover, iterations at each level need not be carried to the point where
convergence becomes slow (cf. Ref. 18).

There are two basic schemes for transferring information between grids.
The most commonly used is the non-nested Vor W cycle, which begins with
the fine grid and proceeds through the coarser levels to correct low frequency
errors before cycling back to the fine grid (Fig. 1). The second scheme,
nested iteration, begins at the coarsest level and proceeds to successively
finer grids, using aV cycle at each stage (cf. Refs. 18, 19, 22). We have used
a slightly modified variant of the standard nested iteration technique de-
scribed in Refs. 19 and 26 in which the number of iterations at each level
is chosen adaptively during the calculations.

The robustness and efficiency of multigrid calculations are strongly in-
fluenced by the choice of a smoother (27). Commonly used smoothers are
GS (Gauss-Seidel), SGS (Symmetrical Gauss-Seidel), LGS (Line Gauss-
Seidel), ILU (incomplete LU decomposition) (22). Successive Overrelax-
ation (SOR) (28) is an accelerated form of Gauss-Seidel that has been widely
used in finite difference calculations; however, it is not suitable as a
smoother for multigrid, because it damps out the crucial high frequency
correction. We have used nonlinear point Gauss-Seidel with natural ordering
(19, 22).

Implementation
The set of equations that result from discretization of Eq. 1 on a uniform
mesh of grid size h with dimension N3 can be written as

LhUh = Fh (3)

where L is the coefficient matrix derived from the finite difference form of
the Poisson-Boltzmann equation, u is a vector whose elements are the values
of 4) at the N3 grid points, and F is derived from the source term containing
the charge density p and the nonlinear terms from sinh[4)(r)] (cf. Refs. 29
and 30).

Let uh be some approximate solution to Eq. 1, let the error in Uh or the
correction be vh and the residual or defect be rh. Then

Uh = Uh + Vh

The operation performed by P is a weighted trilinear interpolation of neigh-
boring grid points. The restriction step R is a straight injection which fills
each coarse grid point from the corresponding fine grid point.

Given a residual rh from a fine grid, the residual equation for a coarser
grid is

(8)LHUH - LHRiIh = - Rrh.
The new value of the potential Uh on the fine grid is

Uh h + P(UH - Rih()-

The smoothing operator is applied at each grid level, and convergence
is checked by calculating the Euclidian norm of the residual.

Free energies

As shown previously (31, 32), the standardfree energy change, AGi, for
protonating a site on the protein is given by

AGi = AGint, i + AGinteract, i (10)

where AGint is the standard association free energy site i would have ifother
sites were electrically neutral, and AGinteract, is the free energy of interaction
of the charge of this site with all other titrating groups on the protein. AG,t.,i
can in turn be expressed as

AGi,t, i = AGBon ji + AGdipole0i (1 1)

where AGBO.r is the Born solvation energy or the work required to add a
charge to the site, and AGdipe, is the standard free energy of interaction
of the charge at the site with the partial charges that represent the dipoles
of the protein. The interaction term is

AGinteract i = 2 Wij (12)

where Qi is the charge at the titrating site and Wij is the site-site coupling
resulting from the potential produced at site rj by a unit charge at ri, a second
titrating site (31, 32). A thermodynamic cycle describing the behavior of the
site with reference to a model compound allows the Born, dipole, and site-
site terms to be partitioned (Fig. 2).

(4)

Titration curves
Lh (ih + Vh) - Lhih = Fh - Lhih= -rh. (5)

The residual on a coarse mesh of size H (rH) is defined by a restriction
operator R that restricts rh to the coarser grid

rH = Rrh

We have used two different procedures to calculate the fractional protonation
of each site.

(6)

Similarly a prolongation operator P interpolates the correction to the finer
grid

Vh = PVH

\\R /s

E

V Cycle

(7)

s. ~~~~~~~s

44E/ E

W Cycle

FIGURE 1 Vand Wmultigrid cycles. Both begin at the top of the diagram
with the finest grid. S denotes smoothing while E denotes an exact solution,
routinely replaced by a two-grid iteration. Descending arrows denote re-

striction R; ascending arrows denote prolongation P. The P operator is a

weighted bilinear interpolation, while the R operator is the adjoint to P.

AGmMSH to MS + HS
IAGMH IAGMtransfer transfer

MpH AGP Mp + Hs
ion

FIGURE 2 Thermodynamic cycle relating free energy changes associated
with deprotonating a residue, M, in the protein (Mp) and in solution (Ms)
(AGPO, and AGT , respectively). AGMster and AGW fer are the free energy
changes associated with the desolvation of a residue in the protonated and
deprotonated state, respectively. AAGBOm, the solvation contribution to the
free energy change, is given by AGMHsfer - AGm sfr with charges located
only on titrating sites. AAGdipole, the contribution of fixed charges, is ob-
tained in a similar calculation in which only static or nontitrating charges
are included. AGtrasfer is the difference in the electrostatic free energy of
the group in protein and in solution.
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(a) The procedure of Tanford and Roxby (33) iterates to a set of self-
consistent partial charges on titrating sites at a given pH. The fractional
protonation state, Oi, is estimated from the Henderson-Hasselbach equation

log l pK,-pH. (13)

The pK of site i is given by

1 N

PK,i PKadj,i 2.303kT ij(Qj J) (14)

,=I

where Q° is the charge of site j in the unprotonated state, and pKadj, is the
pKa of the residue in the protein with all other sites unprotonated and is given
by

pKadj,i= pKa (AAGBo + AAGdiol). (15)2.303kT Born dipol

ALGBOrn and AAGdipole are calculated as described in the legend of Fig.
2 and Ref. 34.

(b) The "reduced-site" approach of Bashford and Karplus (34) calculates
the protonation state of a molecule with N titrating sites by taking a

Boltzmann-weighted sum over all possible protonation states at each pH.
The fractional protonation of site i is

Exl,,ei3AG(x) - v(x)2.303 pH

0i E{x e- IAG(x)-x)2.303 pH (16)

where (x} is an N-element protonation state vector whose elements xi are

zero or one depending on whether site i is unprotonated or protonated,
respectively. v(x) is the number of protons added in bringing the molecule
to state x. AG(x) is the standard free energy of the reaction P + v(x)H -*

PH,,X,), where PH,X) is the protein in protonation state x. {x} indicates the
summation over all 2N possible protonation states, and ,3 = l/kT (31, 34).

Equation 15, though more rigorous than Eq. 12, is computationally ex-

pensive; in a protein with N titrating groups, the summation contains 2N
terms. The "reduced-site" approximation is based on the observation that at
a given pH many of the 2N sites are fully unprotonated, so the Boltzmann
summation can be taken over a reduced set of sites. We find that for
lysozyme the approach of Tanford and Roxby (33) yields results that are not
significantly different from those obtained with the reduced site approach.

The protein model

The protein was modeled as a rigid object with a dielectric constant of 4;
the solvent was assigned a dielectric constant of 80 and the ionic strength
was set at 0.1 M. The boundary between solvent and the molecule and the
ion exclusion shell were defined with probes of 1.4 A (35) and 2.0 A (16),
respectively. Polar hydrogen positions were generated using the HBUILD
facility of X-PLOR (36). For titrating groups the formal charge was placed
on a single atom with the atom selected primarily on the basis of solvent
accessibility and secondarily on proximity of nearby titrating sites. Calcu-
lations in which the charge was distributed over two or more atoms were

also carried out; however, as discussed in Results, this procedure resulted
in poorer agreement with experiment. Atomic radii and charges on nonti-
trating groups were taken from the CHARMM charge set (37) in X-PLOR,
and the protein coordinates were obtained from the Protein Data Bank (PDB)
(38).The final grid size of the whole protein was 1813, corresponding to a

resolution of 0.28 .

RESULTS

Comparison of multigrid and optimal successive
overrelaxation (OSOR)

Recently an SOR application for the Poisson-Boltzmann
equation termed optimal successive over-relaxation (OSOR),

in which the optimal over-relaxation parameter was deter-
mined through an adaptive procedure, has been described
(30). Fig. 3 shows two calculations carried out on a IBM
RS6000 550 using our multi-gridding algorithm and an im-
plementation of OSOR. The limiting fine and coarse grids
used in the multigrid calculation were 1113 and 33; the OSOR
calculation used a grid of 11 13. A value of 10' for the norm
of the residual is generally considered adequate. As shown,
our algorithm achieves this value within approximately 10 s,

while OSOR requires approximately 108 s. Discretization
times are not included in these results. Our algorithm con-

verges to a minimum of 10-", while the residuals calculated
by OSOR do not converge within the time of the calculation.
Multigrid is intrinsically more efficient than SOR; in addi-
tion, multigridding eliminates the need to determine the over-

relaxation parameter required for OSOR (39) .

Timing considerations

Although multigrid methods have been demonstrated to be
optimal and to solve general elliptic equation in O(N) op-

erations, where N is the number of unknowns, the theory is
not applicable to model problems with discontinuous coef-
ficients (22). However, one can show empirically that the
time spent is proportional to N, in this case the number of grid
points, as illustrated in Fig. 4. Whereas solution time in-
creases sharply with grid size for OSOR; it is a shallow func-
tion of grid size in multigridding, and the increased time is
almost solely a function of setup time. Hence the advantage
of the multigrid approach grows with increasing size of the
grid.

Lysozyme

We have carried out calculations for the structures of three
crystal forms of lysozyme deposited in the Protein Data Bank
(Table 1) (Hodsdon, J. M., G. M. Brown, L. C. Sieker, L. H.
Jensen, 1985. Private communication. PDB entry lLZT; and
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FIGURE 3 Comparison of rates of convergence with OSOR (A) and one

three-level Multigrid V cycle (-). The norm of the residual is defined as

(I irk)I12 where rk is the residual at the kth iteration (17). CPU time is in
seconds. Discretization time is not included in these results.
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FIGURE 4 Comparison of OSOR (optimal successive overrelaxation)
(A) and (A) with Multigrid (0) and (0). Open symbols include setup time,
while filled symbols represent solution time. Convergence was assumed
when the relative residual changed less than 10-7. The CPU time was ob-
tained from the C clock subroutine. Discretization time on the finest grid
(O) and the time required for setting up the coarse grids are included in the
reported time to account for the overhead of setting up the problem on
different grid levels in multigrid.

TABLE 1 Standard deviations and means of absolute
differences between calculated and experimental pK values*

PDB entry ILZT4 lLYZj 1LYMT
Unit cell Triclinic Tetragonal Monoclinic
Resolution (A) 1.9 2.0 2.5
Refinement Blocked Without Constrained

least-squares refinement least-squares
Standard deviation 1.14 2.97 5.85
Mean 0.65 2.17 3.39
* Experimental values from Refs. 31 and 44.
i PDB entries lLZT (J. M. Hodsdon, G. M. Brown, L. C. Sieker, and J. H.
Jensen. 1985. Private communication); 1LYZ (41) and 1LYM (42).
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FIGURE 5 Effects of choice of charge scheme on the correlation of cal-
culated pK112 and experimental pKa values. Since calculated pK values are

pH-dependent, pKj/2 is defined as the pH at which the group is half pro-

tonated. (A) 1LZT, charge placed on a single atom selected on basis of
solvent accessibility and proximity to other charged groups, correlation co-

efficient 0.97. (B) I LZT, charge distributed over two or more atoms, cor-

relation coefficent 0.78. (C) 1LYZ, charge placed on a single atom selected
on the basis of solvent accessibility and proximity to other charged groups,

correlation coefficient 0.81. (D) LYZ, charge distributed over two or more

atoms, correlation coefficent 0.67.

proximity of nearby titrating sites, when two atoms have
equal solvent accessibility.

Refs. 41 and 42). The root mean square (RMS) deviation of
all of the atoms in these structures is 1.8 A, with the largest
differences being in sidechain positions and orientations of
carbonyl oxygens. Experimental pKa values for 21 ionizable
groups have been determined by Kurimatsu and Hamaguchi
(43) and Dobson et al. (unpublished data; cited in Ref. 31).
We also compared results for five structures of tetragonal

lysozyme, one derived without refinement and the other four
using different refinement procedures (PDB entries 1-5
LYZ). Differences between these results are a measure of the
effects of conformational differences independent of crystal
packing. The variation in the calculated pK112 values is
smaller than between the three crystal forms (3.25 vs. 0.76).

Choice of ionizable atom

Fig. 5 compares agreement with experiment when the charge
on a given sidechain is placed on a single atom rather than
being distributed over two or more atoms. As the correlation
coefficients indicate, agreement with experiment is best with
the formal charge placed on a single atom, with the atom
selected on the basis of solvent accessibility and, secondarily,

Comparison with experiment

Deviations of calculated pK112 values from experiment are

shown in Fig. 6. Differences between calculated and exper-

imental values have the same sign for all three crystal forms.
The best agreement with experiment is for the triclinic crystal
structure (PDB entry 1LZT). The calculated pK values for 16
of the 21 groups (amino terminus, Asp-66, -87, -101, -119;
Glu-7, -35; His-15; Lys-13, -97, -116; Tyr-20, -23; carboxyl
terminus) for which experimental pK values are known (cf.
Refs. 31 and 43) differ from the experimental values by less
than 0.6 pH units. In general, agreement with experiment is
best when the pK is close to the pH at which the crystal
structure was determined. This is to be expected since the
calculations do not take into account pH-induced changes in
conformation. Other factors that may be important include
crystal packing, bound solvent or ions, and conformational
variability in solution.

Bashford and Karplus reported differences between cal-
culated and experimental pKa values for Tyr-53 of 9.2 and
11.2 for the tetragonal and triclinic forms, respectively (31).
Our calculated value for Tyr-53 in the triclinic structure
(1LZT) differs from experiment by only 2 pH units, although

G-( Multigrid total time
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FIGURE 6 Differences between calculated and ex-
perimental pKj/2 values at ionic strength 0.1 M. (A)
Three crystal forms. (B) structures 1-5LYZ obtained
with different refinement procedures. The dotted lines
connect values for the structures which agree best with
experiment (lLZT and lLYZ). Residues in order are:
amino terminus, Glu-7, Lys-13, His-15, Asp-18, Tyr-
20, Tyr-23, Lys-33, Glu-35, Asp-48, Asp-52, Tyr-53,
Asp-66, Asp-87, Lys-96, Lys-97, Asp- l0l, Lys-l 16,
Asp- l 19, carboxyl terminus.
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the differences are 6-13 pH units larger for the ILYZ and
1LYM structures, respectively.

Glu-35

Glu-35 at the active site has been shown experimentally to
have an anomalously high pKa (6.1 compared to 4.4 for
model compounds). Two explanations have been advanced.
Blake et al. (44) attributed this anomalous pKa to the location
of Glu-35 in a highly nonpolar region formed by residues
Ala-110, Gln-57, and Trp-108. Later Kurimatsu and
Hamaguchi (43) focused on the electrostatic interaction of
Glu-35 with Asp-52, 7 A away. Our calculations indicate that
the nonpolar local environment of Glu-35 is the major de-
terminant. The calculated values of pKadj (6.2 and 6.5 for
ILZT and ILYZ crystals, respectively) are within 0.5 pH
units of the experimentally determined pKa value, while W11
terms are small (0.6 and 0.9 for the tetragonal and triclinic
forms, respectively). Hence the dominant terms appear to be
the Born solvation and protein background terms, rather than
the site-site interaction term.

0
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TABLE 2 Comparison of calculated and experimental pK
values of His-15 as a function of ionic strength

calc

Ionic strength pKeXP* lLZT lLYZ

M
0.4 6.00 ± 0.05 6.1 7.3
0.21 5.84 ± 0.03 6.2 6.4
0.11 5.73 ± 0.04 5.5 6.3
0.059 5.66 ± 0.05 5.4 6.4

* Experimental values from Ref. 45.

Potential surface

Fig. 8, A and B, shows the potentials at a contour level 2 kT/e
at the active site of lysozyme when the net charge on the
protein is +8 and -8, respectively. The asymmetric distri-
bution of charge is apparent. These figures were produced
with the program DAMPS, written in this laboratory.

His-15

The pKa of His- 15 has been determined as a function of ionic
strength (45). These data are shown in Table 2 with calculated
values for the lLZT and lLYZ data sets. There is good agree-
ment between calculated and experimental values for the
1LZT data set.

Biphasic titration curves

The calculated titration curves for some residues are biphasic
in certain crystal forms. Typical examples are shown in Fig.
7, where titration curves for Asp-52 (lLTZ) and Tyr-20
(lLTZ) are biphasic.

DISCUSSION

Multigridding

Although multigrid algorithms are the subject of intensive
research and have been shown rigorously through model
problems to be frequently the method of choice for solving
partial differential equations, they are not yet in general use.
Because a general approach for applying multigrid to a va-
riety of problems has not been developed, very few robust
implementations exist; those that are available are generally
designed around a specific problem.
We have developed a method for the rapid calculation of

titration curves of large macromolecules using a multigrid
procedure and the nonlinear Poisson-Boltzmann equation.
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FIGURE 7 Representative biphasic titration curves. These calculations
required approximately 3 h of CPU time on an IBM RISC 6000.

The multigrid method has a number of advantages. It con-
verges rapidly, because iterations at each grid level are not
carried beyond the stage of rapid convergence. It does not
"saturate"; that is, the global error continues to decrease es-
sentially without limit as the computation prcoeeds (18), be-
cause the use of multiple grids minimizes errors due to both
discretization and truncation. In contrast to the "rapid" solv-
ers that have been used to solve specific elliptic equations in
O(N log N) operations where the coefficients in the equations
are constant over most of the domain of the problem, mul-
tigrid methods solve general elliptic equation with noncon-
stant coefficients in O(N) operations (22, 26). Because the
limiting time is roughly the time taken for smoothing on the
finest grid, the time required versus grid size is almost in-
dependent of grid size even when the time required for setting
up the coarse grid coefficients is included. Furthermore,
comparison of our results with those of Holst and Saied (24)
indicates that the dependence of solution time on grid size is
very similar for both the linear and nonlinear Poisson-
Boltzmann equations. Hence this method provides the ca-
pability of using the nonlinear Poisson-Boltzmann equation
to model large molecules and macromolecular assemblies
while incorporating the effect of the protein-solvent inter-
face.
The results for lysozyme presented above represent the

best agreement between calculated and experimental pK val-
ues and titration curves reported to date. Fixed charges were
neglected in calculations based on the Tanford-Kirkwood
model (e.g., Ref. 1) and finite difference calculations of pKa
shifts resulting from site-directed mutations (14, 15). Errors
in background terms were relatively large in previous cal-
culations of titration curves for lysozyme by the finite dif-
ference method, because only site-site terms were calculated
at high resolution (31, 46). Multigridding further increases

FIGURE 8 Potential surfaces of the active site of lysozyme at 2 kTIe.
Positive potentials are in blue and negative potentials are in red. Net charge
on protein +8 at pH 6.6 (A) and net charge -8 at pH 12 (B).

the speed and accuracy of finite difference calculations be-
cause potentials are calculated at high resolution throughout
the protein, reducing the errors in subsequent calculations of
pKj/2 values and individual site titration curves.

At the same time, these results demonstrate the sensitivity
of calculated pK values to details of the structure. While the
calculated pKvalues for data set 1LZT agree with experiment
to within an RMS error of 1.1 pH units, the RMS error for
the 1LYZ structure, which was solved at comparable reso-
lution (2.0 A vs. 1.95 A) but with a different refinement
algorithm is 2.9 pH units. There are also significant differ-
ences in the values calculated from structures that differ only
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in the method used to refine the data. The ILYM structure,
which has the largest RMS error between calculated and ex-
perimental pKj/2 values (5.80), is at relatively low resolution,
and several residues, generally in loops, have high temper-
ature factors. Accurate pK1/2 values probably require struc-
tures solved at resolutions of at least 1.9 A.

These results are reminiscent of those of Wendoloski and
Matthew (47) and Northrup et al. (48), who examined the
effects of protein flexibility on the calculated electrostatic
properties and showed that families of structures generated
by molecular dynamics simulations have substantial differ-
ences in local electrostatic interactions. The variations of
0.3-2.0 pK units that they observed for individual sites are
analogous to the results presented here for lysozyme struc-
tures generated by using different refinement strategies to
solve a single set of x-ray data.

Future prospects

You and Harvey (40) have recently used an alternative nu-
merical approach, the finite element method, to solve the
linear Poisson-Boltzmann equation. While superior in terms
of accuracy in both representing the geometry and in solving
the Poisson-Boltzmann equation, it is computationally more
expensive. A hybrid technique that uses finite elements at the
protein boundary and finite difference elsewhere is feasible
within the formulation of the multigrid method, and may
ultimately be the solution of choice, since it would combine
the speed of multigrid with the accuracy of finite elements
where they are required.

Regardless of the numerical method used, it will be im-
portant to include both molecular dynamics and bound sol-
vent and ions. Discrepancies between observed and calcu-
lated values have several sources: the influence of crystal
packing on the crystal structure, the existence of several con-
formers in solution, changes in the structure in solution in-
duced by changes in pH, and the effects of "structural" water
and bound ions in solution. Molecular dynamics will make
it possible to model an ensemble of solution structures and
to simulate changes in the structure induced by pH. Including
bound solvent molecules and ions is equally important in
terms of simulating changes in pK values induced by solvent
and ion binding, although methods to do this well have yet
to be developed.

We thank B. K. Lee and J. V. White for helpful comments that improved
the quality of the presentation.
Supported by National Institutes of Health grant DK-17335 (to N. M. Al-
lewell), IBM, and the University of Minnesota. The Minnesota Supercom-
puter Institute provided time on the Cray-2 for some of the calculations.

REFERENCES
1. Matthew, J. B., and F. R. N. Gurd. 1986. Enzyme structure: calculation

of electrostatic interactions in proteins. Methods Enzymol. 130:413-
436.

2. Warshel, A., and S. T. Russell. 1984. Calculation of electrostatic in-
teractions in biological systems and in solution. Quart. Rev. Biophys.
17:283-422.

3. Matthew, J. B. 1985. pH dependent processes in proteins. CRC Crit.
Rev. Biochem. 18:91-197.

4. Rogers, N. K. 1986. The modeling of electrostatic interactions in the
function of globular proteins. Prog. Biophys. Mol. Biol. 48:37-66.

5. Harvey, S. C. 1989. Treatment of electrostatic effects in macromolecular
modeling. Proteins. 5:78-92.

6. Sharp, K. A., and B. H. Honig. 1990. Electrostatic interactions in mac-
romolecules: theory and applications. Annu. Rev. Biophys. Biophys.
Chem. 19:301-332.

7. Davis, M. E., and J. A. McCammon. 1990. Electrostatics in biomo-
lecular structure and dynamics. Chem. Rev. 90:509-521.

8. Allewell, N. M., and H. Oberoi. 1991. Electrostatic effects in protein
folding and function. Methods Enzymol. 202:3-19.

9. Warwicker, J., and H. C. Watson. 1982. Calculation of electric potential
in the active site cleft due to a-helix dipoles. J. Mol. Biol. 155:53-62.

10. Klapper, I., R. Hagstrom, R. Fine, K. A. Sharp, and B. H. Honig. 1986.
Focusing of electric fields in the active site of Cu-Zn superoxide dis-
mutase: effects of ionic strength and amino-acid modification. Proteins.
1:47-59.

11. Davis, M. E., and J. A. McCammon. 1990. Calculating electrostatic
forces from grid-calculated potentials. J. Comp. Chem. 11:401-409.

12. Gilson, M. K., K. A. Sharp, and B. H. Honig. 1988. Calculating elec-
trostatic interactions in biomolecules: method and error assessment. J.
Comp. Chem. 9:327-335.

13. Warwicker, J. 1986. Continuum dielectric modelling of the protein-
solvent system, and calculation of the long range electrostatic field of
the enzyme phosphoglycerate mutase. J. Theor Biol. 121:199-210.

14. Gilson, M. K., and B. H. Honig. 1987. Calculation of electrostatic po-
tentials in an enzyme active site. Nature. (Lond.). 330:84-86.

15. Stemnberg, M. J. E., F. R. F. Hayes, A. J. Russell, P. G. Thomas, and A.
R. Fersht. 1987. Prediction of electrostatic effects of engineering of
protein charges. Nature. (Lond.). 330:86-88.

16. Gilson, M. K., and B. H. Honig. 1988. Energetics of charge-charge
interactions in proteins. Proteins. 3:32-52.

17. Yang, A-S., M. R. Gunner, R. Sampogna, K. A. Sharp, and B. H. Honig.
1983. On the calculation of pKas in proteins. Proteins. 15:252-265.

18. Brandt, A. 1977. Multi-level adaptive solutions to boundary-value prob-
lems. Math. Comput. 31:333-390.

19. Douglas, C. C. 1984. A multigrid optimal solver for elliptic boundary
value problems: the finite difference case. In Advances in Computer
Methods for Partial Differential Equations. V. R. Vichnevetsky and R.
S. Stepleman, editors. IMACS. New Brunswick, NJ. 369-374.

20. Ortega J. M., and R. G. Voigt. 1985. Solution of partial differential
equations on vector and parallel computers. SIAM Rev. 27:149-240.

21. Briggs, W. L. 1988. A multigrid tutorial. SIAM. Philadelphia, PA. 1-90.
22. Hackbusch, W. 1985. Multi-grid methods and applications. Springer-

Verlag, Berlin. 1-377.
23. Hackbusch, W. 1988. A new approach to robust multi-grid solvers. In

ICIAM: Proceedings of the First International Conference on Industrial
and Applied Mathematics. SIAM. Philadelphia. 114-126.

24. Holst, M., and F. Saied. 1993. Multigrid solution of the Poisson-
Boltzmann equation. J. Comp. Chem. 14:195-113.

25. McQuarrie, D. A. 1976. Statistical mechanics. Harper & Row, New
York. 1-641.

26. Douglas, C. C., and J. Douglas. 1993. A unified convergence theory for
abstract multigrid or multilevel algorithms, serial and parallel. SIAM J.
Numer. Anal. 30:136-158.

27. Bramble, J. H., and J. E. Pasciak. 1992. The analysis of smoothers for
multigrid algorithms. Math. Comp. 58:467-488.

28. Young, D. M. 1971. Iterative solution of large linear systems. Academic
Press, New York. 1-570.

29. Jayaram, B., K. A. Sharp, and B. H. Honig. 1989. The electrostatic
potential of B-DNA. Biopolymers. 28:975-993.

30. Nicholls, A., and B. H. Honig. 1991. A rapid finite difference algorithm
utilizing successive over-relaxation to solve the Poisson-Boltzmann
equation. J. Comp. Chem. 12:435-445.

31. Bashford, D., and M. Karplus. 1990. PKa5 of ionizable groups in pro-
teins: atomic detail from a continuum electrostatic model. Biochemistry.
29:10219-10225.



Oberoi and Allewell Multigrid Nonlinear Poisson-Boltzmann 55

32. Tanford, C., and J. G. Kirkwood. 1957. Theory of protein titration
curves. I. General equations for impenetrable spheres. J. Am. Chem.
Soc. 79:5333-5339.

33. Tanford, C., and R. Roxby. 1972. Interpretation of protein titration
curves. Application to lysozyme. Biochemistry. 11:2192-2198.

34. Bashford, D., and M. Karplus. 1991. Multiple-site titration curves of
proteins: an analysis of exact and approximate methods for their cal-
culation. J. Phys. Chem. 95:9556-9561.

35. Lee, B. K., and F. M. Richards. 1971. The interpretation of protein
structures: estimation of static accessibility. J. Mol. Biol. 55:379-400.

36. Brunger, A. T. 1992. X-PLOR Manual, Version 3.0. Yale Univ. New
Haven, Connecticut. 1-403.

37. Brooks, B. R., R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swa-
minathan, and M. Karplus. 1983. CHARMM: a program for macro-
molecular energy, minimization, and dynamics calculations. J. Comp.
Chem. 4:187-217.

38. Bernstein, F. C., T. F. Koetzle, G. J. B. Williams, E. F. Meyers, Jr., M.
D. Brice, J. R. Rodgers, 0. Kennard, T. Shimanouchi, and M. Tasumi.
1977. The protein data bank: a computer-based archival file for mac-
romolecular structures. J. Mol. Biol. 112:535-542.

39. Davis, M. E., and J. A. McCammon. 1989. Solving the finite difference
linearized Poisson-Boltzmann equation: a comparison of relaxation and
conjugate gradient methods. J. Comp. Chem. 10:386-391.

40. You, T. J., and S. C. Harvey. 1983. A finite element approach to the

electrostatics of macromolecules with arbitrary geometries. J. Comp.
Chem. 14: 484-501.

41. Diamond, R. 1974. Real-space refinement of the structure of hen egg-
white lysozyme. J. Mol. Biol. 82:371.

42. Rao, S. T., J. Hogle, and M. Sundaralingam. 1983. Studies of mono-
clinic hen egg white lysozyme. II. The refinement at 2.5 angstroms
resolution - conformational variability between the two independent
molecules. Acta. Crystallogr C39:237.

43. Kurimatsu, S., and K. Hamaguchi. 1980. Analysis of acid-base titration
curve of hen lysozyme. J. Biochem. 87:1215-1219.

44. Blake, C. C. F., L. N. Johnson, G. A. Mair, A. T. C. North, D. C. Philips,
and V. R. Sarma. 1967. Crystallographic studies of the activity of hen
egg-white lysozyme. Proc. R. Soc. Lond. Ser. B. Biol Sci. 167:378-388.

45. Takahashi, T., H. Nakamura, and A. Wada. 1992. Electrostatic forces in
two lysozymes: calculations and measurements of histidine pKa values.
Biopolymers. 32:897-909.

46. Beroza, P., D. R. Fredkin, M. Y. Okamura, and G. Feher. 1991. Pro-
tonation of interacting residues in a protein by a Monte Carlo method:
application to lysozyme and the photosynthetic reaction center of
Rhodobacter sphaeroids. Proc. Natl. Acad. Sci. USA. 88:5804-5808.

47. Wendoloski, J. J., and J. B. Matthew. 1989. Molecular dynamics effects
on protein electrostatics. Proteins. 5:313-321.

48. Northrup, S. H., T. G. Wensel, C. F. Meares, J. J. Wendoloski, and J.
B. Matthew. 1990. Electrostatic field around cytochrome c: theory and
energy transfer experiment. Proc. Natl. Acad. Sci. USA. 87:9503-9507.


