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Abstract. The general theory of coordinated table selective substitution systems (cts systems for 
short) (see Rozenberg (1985)), provides a unifying framework for a considerable number of 
grammar and automaton models considered in the literature. This paper is mainly devoted to the 
investigation of a- natural subclass of cts systems (which uses the 'context-free grammar selector' 
for its memory access) and it turns out that this subclass closely corresponds to the Petri net 
model of concurrent processes. 

Introduction 

Selective substitution grammars (s-grammars, for short) (see, e.g., [10, 11]) provide 
a quite natural and useful framework for a general theory of rewriting systems 
(grammars).  Roughly speaking, two basic components of an s-grammar G are: the 
set of context-free productions P and the selector IC This selector is a language over 
the alphabet £ u .~, where .Y is the alphabet of G and ~ = {fi[ a e 2~}, 2 n ~  =~. 
To rewrite directly a word x over 2~, one has to find a word y e K which differs from 
x only by the fact that some occurrences of letters from 2~ in x are replaced by 
their barred ('activated') counterparts from .~. Then, all occurrences of letters in x 
that correspond to activated occurrences in y are rewritten in the usual fashion 
using productions from P. The derivation process consists of a finite number of 
iterations of the direct rewriting process and the language of G is defined in the 
usual way (using the intersection with A*, where A is the terminal alphabet of G). 
If K ___ 2~*~Y*, then K (and, consequently, G) is called sequential. Perhaps the two 
most 'famous'  sequential selectors are 2~*.~ and .~*~.Y*; the first one is called 
right-linear (it underlies fight-linear grammars) and the second one is called 
O-sequential (it underlies context-free grammars). 

The framework of s-grammars was extended in [15] to the so-caUed coordinated 
table selective substitution systems (cts systems, for short); in this framework both 
grammars and automata can easily be modeled and investigated. Roughly speaking, 
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acts system G (and, in the terminology of [15], we will mainly consider sequential 
versions of them with one table on each coordinate) consists of n sequential 
s-grammars G~, . . . ,  Gn, n/> 1, and a set R of rewrites, where R _c/,1 x- • • x P,, and 
each P~ is the set of productions of G~. In G one rewrites n-tuples of words rather 
than single words. Given an n-tuple x = (x~, . . . ,  xn), where each x~ is over the 
alphabet of G~, it can be directly rewritten into an n-tuple y = (y~, . . . ,  yn) if R 
contains a rewrite r = ( r l , . . . ,  r~) such that each xi can be directly rewritten (in Gi) 
into y~ using r~. Then, the derivation (computation) process consists of an iteration 
of the direct rewriting process. 

In the modeling of automata by cts systems, it is often convenient to assume that 
G~ (the grammar of the first coordinate) is a fight-linear grammar, because this 
essentially corresponds to the quite natural and customary process of reading the 
input tape from left to fight, one-way only. 

In this paper we continue the systematic investigation of 2-coordinate models 
(i.e., n = 2) initiated in [2, 3]. Once--as discussed above--the first coordinate (input) 
is fixed as a fight-linear grammar, two very natural choices for the selectors on the 
second coordinate (memory) are: fight-linear selectors and 0-sequential selectors; 
as pointed out already, these selector types are very well understood when used in 
grammars (roughly speaking, grammars correspond to cts systems with one coordi- 
nate only). It is easily seen that using fight-linear selectors as the memory access 
with erasing productions in the second grammar essentially yields pushdown 
automata (see, e.g., [2, 3]). 

The main purpose of this paper is to demonstrate that using 0-sequential selectors 
as the memory access yields systems very closely related to Petri nets---a basic model 
of concurrent processes (see, e.g., [ 1, 13, 14]). We shall indicate how this relationship 
can be exploited to the advantage of both theories. 

To put the results indicated above in a better perspective we also investigate (in 
Section 4)2-coordinate cts systems where the first coordinate is a fight-linear 
grammar and the second coordinate is a OS2-grammar, i.e., a grammar based on 
context-free productions but using the selector of the type 2~*,~,~,Y*, where ? is the 
total alphabet involved. These systems are of independent interest since the used 
selector (called a O-bisequential selector) can be seen as forming the basis of the 
selector used in context-sensitive grammars. 

O. Preliminaries 

We assume the reader to be familiar with basic formal language theory, in 
particular basic grammar models (see, e.g., [16]) and with basic Petri net theory 
(see, e.g., [1, 13, 14]). 

We mostly use standard notation and terminology; perhaps only the following 
points require some additional attention. 

For a set A, # A denotes its cardinality. For sets .4, B, A - B  denotes their 
n 

difference. If K I , . . . ,  K~, n ~> 1, is a sequence of sets, then X~.~1 Ki denotes their 
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cartesian product. For  a set A and a positive integer n, A (n) denotes the cartesian 
power. 

Unless stated otherwise, we only consider finite nonempty alphabets. For a word 
x, # a(x) denotes the number  of occurrences of  a in x and alph(x) denotes the set 
of letters occurring in x. A denotes the empty word. 

Throughout this paper,  barred versions of  symbols are used with a 'special' 
reserved meaning. All symbols to be used are elements of an arbitrary but fixed 
infinite alphabet ~g u ~ ,  where ~ = {~[ a e ~ }  and ~ and .~ are disjoint. Whenever 
we consider an alphabet  .Y and the alphabet £ = {~[ a e ~}, it is assumed that Z ~ ~ .  
Moreover, iden:~ denotes the homomorphism from (.Y u £ ) *  into .~* defined by: 
iden~(~)=a and idenr(a)=a for all a e £ .  

A labeled marked Petri net, abbreviated ImPN, will be specified as a 6-tuple 
= (P, T, F, ~, l, Mo), where P is the set of  places, T is the set of transitions, F is 

the flow relation, .Y is the alphabet, I is the labeling function (from T into .Y u {A}) 
and Mo is the initial marking such that there exists a p e P with Mo(p) ~ O. For an 
ImPN ~ = (P, T, F, .Y, l, Mo), P, T, F, .$, l, and Mo will be denoted by pl(~),  tr(~), 
f l (~ ) ,  a l (~ ) ,  lab(~),  and inm(~),  respectively. The language of  an ImPN ~,  denoted 
by L ( ~ ) ,  is then the set of all ' labeled' firing-sequences of  ~ from inm(~) to the 
final zero-marking of  ~ (denoted by f zm(~) ) ;  L (~ )  is referred to as an lmPNfz 
language and the class of all lmPNfz languages is denoted by ~( lmPNfz) .  

1. B a s i c  d e f i n i t i o n s  

In this section we introduce the class of  (RL; 0S)-systems, which forms a subclass 
of  the (sequential) cts systems considered in [15]. 

Definition 1.1. (1) Let Z be an alphabet. A selector (over .Y,) is a subset of (.Y u 
u £)*.  

(2) A table is a triple T = (£, h, K ) ,  where £ is an alphabet, h _ • x .Y* is a finite 
nonempty set, and K is a selector over £. The alphabet .Y is referred to as the 
alphabet of T (denoted by al( T)), h is called the set of productions of  T (denoted 
by prod(T)), and K is called the selector of  T (denoted by sel(T)). 

(3) Let T = (£,  h, K )  be a table. For x, y e £ *  we say that x directly derives y in 
T, denoted by x=~ry, if x = b~ . . .  bn, n I> 1, b h . . . ,  bn e Z, y = tim.-- tin, ti~, • • . ,  tin 
,~* and if there exists a z ~ K ,  z = a ~ . . .  an, a ~ , . . . ,  an ~ Z u ,~ such that idenz(z) = x 
and, for 1 ~< i<~ n, if  ai e ~,, then bi = t i  and if ai e ~, then (bi, t i )  e h. Furthermore, 
if S = {(bs t~) ~ h[at ~ ,~ and 1 <~ i<~ n}, then we also say that x directly derives y in 
T using S, denoted by x ~ s  y. 

Note that if T is a table such that sel(T) c_ (al( T) )* al-i-(-T~( al( T) )* and if x ~ s  y 
for some x , y~ (a l (T ) )* ,  then S={s}  for some s~prod(T);  we will write x ~ - y  

rather than x = ~ }  y. 
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Definition 1.2. (1) A right-linear grammar, abbreviated RL-grammar, is a 5-tuple 
G = (Z, h, S, A, K), where: 

(a) (.Y, h, K) is a table, called the table of G and denoted by tab(G), 
(b) A _ .Y is the terminal alphabet of G, denoted by term(G); .Y, - A  is called the 

nonterminal alphabet of G and is denoted by nterm( G), 
(c) S~ nterm(G) is the axiom of G, denoted by ax(G), 
(d) (X, a)  e h implies: 

(i) X c nterm(G), and 
(ii) a ~ Z w {A} u (term(G). nterm(G)), and 

(e) K =(term(G))*. (nterm(G)). 
(2) A O-sequentialgrammar, abbreviated OS-grammar, is a4-tuple G = (.Y, h, S, K), 

where: 
(a) (~S, h, K) is a table, called the table of G and denoted by tab(G), 
(b) S~.Y is the axiom of G, denoted by ax(G),  and 
(c) K = .~*$.~*. 

All the terminology and notations concerning tables carry over to RL- and 
0S-grammars (through their tables) in the obvious way. 

Furthermore, we will use the following notations. If G is an RL- or an 0S-grammar, 
then al~,(G) denotes the set al(G)u {A}. If G is an RL-grammar, then terms(G) 
denotes the set term(G) u {A} and nterm~(G) denotes the set nterm(G) u {A}. 

Definition 1.3. (1) A right-linear O-sequential system, abbreviated ( RL; OS)-system, 
is a triple G = (Gh G2, R), where: 

(a) G~ is an RL-grammar, 
(b) G2 is an 0S-grammar, and 
(c) R ~prod(G~)xprod(G2) is referred to as the set of rewrites of G, denoted 

by rew( G). 
(2) Let G = (G~, G2, R) be an (RL; 0S)-system. 
(2.1) Let x = (xl, x2), y = (y~,)'2) ~ (al(G1))* x (al(G2))*. We say that x directly 

r 1 derives y in G, denoted by x ~ y, if there exists an r = (rl, r2) ~ R such that Xl ~ o ,  Yl 
r2 r and x2 =~6, Y2. We then say that x directly derives y in G using r and write x ~ G  Y. 

As usual, 3 "  is the reflexive transitive closure of ~ ;  if x 3 "  y, then we say that 
x derives y in (3. 

(2.2) The language generated by G, denoted by L(G), is defined by L ( G ) =  
{w ~ (term(G1))*l(ax(G1), ax (G2) )~ (w ,  A)}; L(G) is referred to as an (RL; OS)- 
language. 

The class of all (RL; 0S)-languages is denoted by ~(RL; 0S). 
Since one may view the effects of a derivation process in an (RL; 0S)-system on 

the second coordinate as (a special sort of) counting (of occurrences of symbols), 
one can establish a relationship between (RL; 0S)-systems and multicounter 
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automata (satisfying particular restrictions). In the last section we shall say more 
about this relationship. 

Furthermore, the following notations turn out to be very useful. If G = (G~, G2, R) 
is an (RL; 0S)-system and r = ((X, trY), (A, a))  ~ R, where X ~ nterm(G1), Y e  
nterm~, ( G1), o" ~ terma ( G1), A ¢ at(G2), and ote ( al( G2) )*, then 

lhsl(r) = X, 

gtl( r) = or 

gnh(r) = Y 

lhs2( r) = A 

rhsl(r)=o'Y, 

(gt abbreviates generated terminal), 

(gnt abbreviates generated nonterminal), 

and rhs2(r)=a. 

Clearly, without loss of generality (as far as the class of generated languages is 
concerned) we may and will assume that whenever we consider an (RL; 0S)-system 
G = (Gt, G2, R), al(G1) and al(G2) are disjoint. 

2. Main theorem 

In the previous sections we defined two classes of languages, namely 2~(RL; 0S) 
and ~(lmPNfz) .  As the following theorem shows, these classes are equal. 

Theorem 2.1. ~(RL;  0S) = ~(lmPNfz).  

Proof. The proof consists of two steps, each taken care of by a lemma. 

Lemma 2.2..Y(RL; 0S) _ ~(lmPNfz).  

Proof idea. For an arbitrary (RL; 0S)-system G we can construct an ImPN ~ with 
L(G) = L(~ )  as follows. If G = (G1, G2, R), then each letter of nterm(GO u al(G2) 
uniquely corresponds to a place of ~. Furthermore, each rewrite of R uniquely 
corresponds to a transition of ~. More specifically, R contains a rewrite r if and 
only if  ~ contains a transition t labeled by gt~(r) with inputs lhst(r) and lhs2(r) 
and outputs gntl(r) (if gntl(r) # A) and aiph(rhs2(r)). Hence, the use of a rewrite 
((X, trY), (Z, 7)) in G, where o-~ termA(G1) and Y ~  ntermx(Gl), uniquely corre- 
sponds to the firing of a transition in ~, which is labeled by or, consumes one token 
from the place in ~ corresponding to X and one token from the place in 
corresponding to Z and produces one token in the place in ~ corresponding to Y 
(if Y #  A) and, for all A e  ai(G2), #A(7)  tokens in the place in ~ corresponding 
to /L In this way the correspondence between letters of nterm(Gt)u al(G2) and 
tokens in appropriate places in ~ becomes obvious. This may be graphically 
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represented as follows: 

( (X,  o 'Y) ,  (Z, Di, .. . Di.)) ~ R if and only if  

~ . ~  Y (if Y f~.)  

Xl o- 

Di 1 

is a transition (with its input and output places, where output places appearing 
more than once mean multiple arcs) in ~. 

The easy but tedious formal details concerning the above construction and the 
proof of the lemma are left to the reader. [] 

Lemma 2.3. ~( lmPNfz)  G .Le(RL; OS). 

P r o o f  idea.  For an arbitrary lmPN ~ we can construct an (RL; 0S)-system G = 

(Gt, (32, R) with L ( ~ )  = L ( G )  as follows. Each place of P uniquely corresponds 
to an element of al (G2) -{S2} ,  where $2 is a distinguished element of al(G2), and 
the number of tokens in each place (at a step in the firing process) equals the number 
of occurrences of the corresponding symbol on the second coordinate (from the 
corresponding step in the derivation process). Furthermore, each transition uniquely 
corresponds to a subset of  rewrites of R --{rb, re}, where rb and r, are two different 
distinguished elements of R which take care of an appropriate I~eginning and ending 
in (3, respectively. More specifically, the firing of a transition t ~ t r (~ )  uniquely 
corresponds to the use of a sequence of rewrites which generate l a b ( ~ ) ( t )  on the 
first coordinate, consume, for every place p ~ p l ( ~ ) ,  f l ( ~ ) ( p ,  t) occurrences of the 
letter from a1((32) - {$2}  corresponding to p on the second coordinate, and generate, 
for every place p ~ p l ( ~ ) ,  f l ( ~ ) ( t ,  p)  occurrences of the letter from a1((32) - {$2} 
corresponding to p on the second coordinate. This may be graphically represented 

as follows: 

t t t t 

is a transition (with its inputs and outputs, where input places or output places 
appearing more than once mean multiple arcs) in ~, if and only if 

((S'1, Ti, o),'(S2, S~)),((T~,o, Ti,,), (p,,, X)),. • •, 

'(( To,,_,, T~,,,), ( p,,,, A ) ), ( ( T~m, O'S'O, ( S2, S2p~, . . . pj.) ) 

is a sequence of elements of R for some pairwise distinct elements $I, Tw, . . . ,  Tim 
in nterm( Gl).  
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The easy but tedious formal details concerning the above construction and the 
proof of the lemma are left to the reader. [] 

Theorem 2.1 follows from Lemmas 2.2 and 2.3. [] 

Since it is well known that ~( lmPNfz)  equals the class of languages generated 
by labeled marked Petri nets with an arbitrary final marking different from the initial 
marking, denoted by ~ ,  and since it is proved in [8] (see also [9]) that ~ equals 
the class of languages generated by zero-testing-bounded multicounter machines, 
denoted Z~, we get the following result. 

Corollary 2A. .T(RL;  OS) = .~'. 

3. Subclasses 

In this section we demonstrate that the relationship between (RL; 0S)-systems 
and Petri nets is even deeper than indicated by Theorem 2.1. It turns out that a 
natural subclass of the class of (RL; 0S)-systems corresponds to a natural subclass 
of the class of lmPN's. 

First we recall (see, e.g., [6]) the definition of an often considered subclass of 
lmPN's. 

Definition 3.1. Let ~ be an ImPN. ~ is a A-free ImPN if lab(~) ( t )#  A for every 
t ~ tr(~). 

Next we define a natural subclass of the class of (RL; 0S)-systems. 

Definition 3.2. (1) Let G be an RL-grammar. G is real-time if  (X, w)eprod(G) 
implies w ~ term(G),  nterm• ( G). 

(2) Let G = (G1, G2, R) be an (RL; 0S)-system. G is real-time if G1 is real-time. 

Analyzing the proof of Lemma 2.2 one easily gets the following result. 

Lemma 3.3. Let K be a language. I f  K is generated by a real-time (RL; OS)-system, 
then K is also generated by a A-free ImPN. 

The proof of the 'converse' of the above lemma is somewhat more involved. 

Lemma 3.4. Let K be a language. I f  K is generated by a A-free lmPN, then K is 
generated by a real-time (RL; OS)-system. 

Proof. For an arbitrary A-free ImPN • we will construct a real-time (RL; 0S)-system 
G such that L([P) = L(G). 
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The idea behind the construction is as follows. Let ~ be a A-free ImPN, let 
n = # p l ( ~ )  and let G = (G~, (32, R) be the constructed real-time (RL; 0S)-system. 
Every nonterminal of G~ is an (n+l)-dimensional  vector over N(n)x 
{ 1 , . . . ,  n}--such a nonterminal represents a marking of ~ together with a distin- 
guished place of ~ (by suitably alternating the distinguished last field one assures 
that each place becomes 'pointed out' once during n consecutive steps of a derivation 
process). However, if ~ has an infinite number of different reachable markings, 
then not every reachable marking can be represented by a n0nterminal of G1 since 
nterm(G~) has to be finite. This representation problem (as far as G~ is concerned) 
is taken care of by G2, which arranges the second coordinate to be an infinite store 
of ('packages' of) tokens (each 'package' consisting of tokens from the same place). 
At each step of a derivation process, only the place 'pointed out' by the (last field 
of the) nonterminal from the first coordinate is able to get from or to deposit on 
the second coordinate (a 'package' of) tokens. Getting tokens is only allowed if 
there is a possibility that these tokens are needed on the first coordinate during the 
next n steps of the derivation process; depositing tokens is only allowed if it is 
certain that these tokens will not be needed on the first coordinate during the next 
n steps of the derivation process. Consequently, getting tokens is only allowed if 
the current nonterminal on the first coordinate represents less than a certain fixed 
amount of tokens in the distinguished place and depositing tokens is only allowed 
if the current nonterminal on the first coordinate represents more than a (possibly 
different) fixed certain amount of tokens in the distinguished place. 

Formally, the construction is as follows. Let • = (P, T, F, 1", I, Mo) be a A-free 
lmPN, where P = { p l , . . . ,  Pn}, n >/1 (the case n =0  is impossible). Define for all 
l<~ i~n :  
- in, = n max{F(t, Pi)lt ~ T} (hence, in, is greater or equal to the maximal increase 

of the number of tokens in place p, resulting from a firing sequence of length n), 
- o u t , = n  max{F(p, ,  t)] t~ T} (hence, out, is greater or equal to the maximal 

decrease of the number of tokens in place p, resulting from a firing sequence of 

length n), and 
- m a x , = m a x { i n , , o u t i }  (hence, max, is greater or equal to the maximal 

change of the number of tokens in place Pi resulting from a firing sequence of 

length n). 
Note that if M1 and M2 are markings of ~, s is a firing sequence of length n 

from M~ to M2, and, for some 1 <~ i <~ n, p, ~ P is such that out, ~ M~(p,) <~ out, + max~ 
then 0~<M2(pi)~out~+max~+in,.  Moreover, if 0~M2(p~)<outs  then out ,~  < 
M2(p,) + max, ~ out, + maxi and if out, + max, < M2(p,) ~< out, + max~ + in,, then 
out, ~< M2(p,) - maxi <~ outi + max,. Hence, if we have to our disposal an infinite store 
of 'packages" (each one of size max,) of tokens, then the 'working region' for place 
p~ can stretch from 0 to (out~+maxi+in~), because getting from or depositing on 
the store at most one 'package' of tokens every n steps can give us a value between 
out~ and (out, +max , )  for place p~ again. 

Define for all 1 ~ i ~ n: 
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- ~ = outi + maxi + in~ + Mo(p~) (the size of the 'working region' of p~ is enlarged 
with Mo(p~), because the initial marking of pi can be arbitrary large and one 
wants the initial marking of Pi to be in the 'working region' of p~), 

- W~ = {0, 1 , . . . ,  ~} (hence, W~ is the set of all integers from the 'working region' 
of p~), and, for all t ~ T, 

- Ai(t) = F(t, Pi) - F(p~, t) (hence, A~(t) denotes the change of the marking of Pi 
resulting from the firing of t). 

Let W = { 1 , . . . ,  n}. 
In the following construction of the real-time (RL; 0S)-system G = (G1, G2, R), 

GI takes (by its nonterminals) care of the 'working regions' of the places of • and 
G2 takes care of the infinite store of ('packages' of) tokens. 

Let G = (G1, G2, R) be the (RL; 0S)-system such that: 
- aI(G1)=Fu((X'{=a W~)x W), where Fc~ ((X~'=l W/)x W)=O, 
- al(G2)= {S2}u {T1, . . . ,  T,}, where $2, TI , . . . ,  T, are all different elements, 

- term (G1) = F, 
- a x ( G t ) = [ M o ( p x ) , . . . ,  Mo(p.) ,  1], 
- ax(G2)= $2, and, 

for all t ~ T and w e W, R contains the following rewrites: 

( i )  ( ( [ i l , . . . , i , , w ] , l ( t ) [ i l + A l ( t ) , . . . , i , + A , ( t ) , ( w m o d n ) + l ] ) , ( S 2 ,  S2)) 

if, for all j  e W, F(pj, t) <~ i~ <~ l~ and 0<~ ij + Aj(t) <~ k~ (rewrites ofthis group simulate 
the firing of a transition t of ~ without storing a 'package' of tokens on or getting 
a 'package' of tokens from the second coordinate), 

( i i )  (([il,. • •, in, w], l ( t ) [ i~+A~(t ) , . . . , iw_a+Aw_~(t ) , iw+Aw(t ) -max~,  
iw+l + Aw+l(t), . . . ,  i~ + An(t), (w rood n) + 1]), ($2, $2 Tw)) 

if, for all j e W ,  F(pj, t)<<-ij<~k~ and 0~</ j+Aj( t )<~  and iw+A~(t)> 
Mo(pw) +out~ +max~ (rewrites of this group simulate the firing of a transition t of 

and store a 'package' of maxw tokens from place p~ on the second coordinate), 

(iii) ( ( [ i l , . . . , i , ,  w] , i ( t )[ i~+A~(t) , . . . , i~_~+Aw_~(t) , iw+A~(t)+maxw,  
i~+~ + A,+l(t), .  . . ,  /, + A.(t), (w rood n)+ 1]), (r~, A)) 

if, for allj  ~ W, F(pj, t) <~ i~ <~ k~ and 0~  < ~ + Aj(t) <~/9. and/~ +A~(t) < Mo(p~) + outw 
(rewrites of this group simulate the firing of a transition t of ~ and get a 'package' 
of max~ tokens for place Pw from the second coordinate), and 

( i v )  ( ( [ - A l ( t ) , . . . , - A , ( t ) , w ] , l ( t ) ) , ( S 2 ,  A)) 

if F(p~, t ) = - A j ( t )  for all j ~  W (rewrites of this group simulate the firing of a 
transition t of ~ resulting in the final zero-marking; they end the simulation of the 
system). 

R contains no rewrites other than those described under (i), (ii), (iii), and (iv). 
It is obvious that G is real-time and it is not difficult to prove that L(G)  = L(~) .  

Consequently, the lemma holds. [] 
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Lemma 3.3 together with Lemma 3.4 yields the following characterization theorem. 

Theorem 3.5. Let K be a language. K is generated by a A-free ImPN i f  and only if K 
is generated by a real-time (RL; OS)-system. 

It turns out that the real-time restriction on (RL; 0S)-systems restricts the class 
of languages obtained. To prove this we make use of the following known result 
from the theory of Petri nets (see [7, 9]). 

Proposition 3.6. There exists a language K ~ ~(lmPNfz),  such that K -  {A } cannot 
be generated by a A-free ImPN. 

Thus, from Theorems 2.1 and 3.5, and the above result, we immediately get the 
following result. 

Theorem 3.7. There exists a language K ~ ~(RL;  0S), such that K - { A }  cannot be 
generated by a real-time (RL; OS)-system. 

4. (RL; OSZ)-.systems 

As we have already indicated, one of the basic motivations to investigate (RL; 0S)- 
systems was to investigate the power of a well-established selector (0S) when it is 
used as a selector for memory access (that is, on the second coordinate with the 
first coordinate being a fight-linear grammar). 

Another natural selector is the selector of the form ?*.f.~.Y*--to which we refer 
as a O-bisequential or 0S2-selector. Such a selector lies at the very basis of context- 
sensitive grammars. 

Consequently (following the line of investigation that compares the power of 
various classes of selectors used in 'grammatical' and in 'storage' mood, see [15]), 
it is natural to investigate the power of the 0SLselector used as a selector for memory 
access. Such an investigation sets the results we have obtained so far in a better 
perspective. 

We start with formally defining 0S2-grammars and (RL; 0S2)-systems. 

Definition 4.1. A O-bisequential grammar, abbreviated OS2-grammar, is a 5-tuple 
G = (Z, h, $1, $2, K), where: 

(a) • (,Y, h, K) is a table, called the table of G and denoted by tab(G), 
(b) $1 ~ -Y ($2 ~ -~ respectively) is the left (right respectively) axiom of G, denoted 

by axe(G) (axr(G) respectively), and 
(c) K=,Y*~,Y,Y*. 

All the terminology and notations concerning tables carry over to 0S2-grammars 
(through their tables) in the obvious way. 
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Definition 4.2. (1) A right-linear O-bisequential system, abbreviated (RL; OS2)-system, 

is a triple G = (Gx, G2, R), where: 
(a) G1 is an RL-grammar, 
(b) (92 is a 0S2-grammar, and 
(c) R, called the set of rewrites Of G and denoted by rew(G), is a set of  pairs of 

the form (r, U), where reprod(G1) and Uc_prod(G2) such that 1<~ # U<~2. 
(2) Let G = (G~, (92, R) be an (RL; 0S2)-system. 
(2.1) Let x = (xl, x2), y = (Yl,)2) e (al(G1))* x (al(G2))*. We say that x directly 

r 1 derives y in G, denoted x 3 ~ y ,  if  there exists an r = (r~, U) e R such that x, ~ ,  yl, 
and, for some S _  U, x2 3 s :  Y2- We then say that x directly derives y in G using r 
and write x ~ y. As usual, 3 "  is the reflexive transitive closure of 3 o ;  if  x 3 "  y, 
then we say that x derives y in (9. 

(2.2) The language generated by (9, denoted by L(G), is defined by L(G)= 
{we (term(G1))*l(ax(G1), axt(G2)aXr(G2)) 3 "  (w, A)}; L(G) is referred to as an 
(RL; OS2)-language. 

The class of all (RL; 0S2)-languages is denoted by ~(RL;  0S2). 
For an (RL; 0S 2) system G we have required that 1 <~ # U<~ 2, whenever (r, U)e  

few(G). The reason for this restriction is rather 'esthetical': in a single derivation 
step of a 0S2-grammar, at most two different productions can be applied. 

In the rest of this section we demonstrate that using the 0S2-selector as a selector 
for memory access yields all (and nothing but) recursively enumerable languages. 
(The class of all recursively enumerable languages will be denoted by -~RE.) 

The following well-known result (see, e.g., [4]) will help us to establish the 
above-mentioned result. 

Proposition 4.3. Let .Z be a family of languages, such that: 
(i) {a"b"ln>~ l } e ~ ,  and 

(ii) ,~ is closed under union, concatenation, +, intersection with regular sets, arbitrary 
homomorphism, inverse homomorphism, and intersection. 

Then, -~x~ ~- ..~. 

Theorem 4.4. ~pj~ = .~(RL; 0S2). 

Proof. Clearly, .~(RL; 0S 2) c_ -~Re. Thus, it suffices to show the 'converse' inclusion. 
This will be done in two steps, each taken care of by a lemma. 

Lemma 4.5. {a"b" [ n >~ 1} e ~ (RL;  0S 2) and  ~(RL;  0S 2) is closed under union, 
concatenation, intersection with regular sets, arbitrary homomorphism, inverse homo- 
morphism, and intersection. 

Proof. The straightforward constructions proving this lemma are left to the 
reader. O 
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Lemma 4.6. .T(RL; 0S 2) is closed under +. 

Proof. Let G=(G~, G2, R) be an arbitrary (RL;0S2)-system. The constructed 
(RL; 0S2)-system G ' =  (G~, G[, R') which generates (L(G)) + works as follows. In 
its first step it 'switches' from (axG~), axe(G[)axr(G~)) to 
(ax(G1), axe(G[)axe(G2)axr(G2)axr(G[)) and then it runs according to rewrites of 
R. Then at some point of its computation, G' introduces a special 'choice' symbol 
Z on the first coordinate. The choice symbol gives a possibility of: 
either, to end the computation by using the rewrite 

((z, x), {(ax,(G[), x), (axr(G[), X)}), 

or, to 'start all over again' by using the rewrite 

((Z, ax(G~)), {(axt(G~), axe(G~)), (axr(G~), axr(G~))}). 

It is easily seen that a given derivation in G' produces a on the second coordinate 
if and only if  each occurrence of the choice symbol Z on the first coordinate 
corresponds to completing (the simulation of) a 'successful derivation' in G, where 
the nonterminal on the first coordinate disappears and the corresponding word on 
the second coordinate equals A. [] 

From Lemmas 4.5 and 4.6, and Proposition 4.3 it follows that .Tp.E C _ 
-T(RL; 0S2). [] 

Directly from the above result, from Theorem 2.1, and from the well-known fact 
(see, e.g., [9]) that ~(lmPNfz) ~ -~RE we get the following result. 

Corollary 4,7. .T(RL; 0S) ~ .T(RL; 0S2). 

5. Discussion 

The present paper directly continues the results in [ 15] in the sense that it elaborates 
in depth (in more detail) on the flexibility of cts systems to model various types of 
grammars and automata discussed in the literature. 

The particular purpose of this paper has been to investigate a very specific instance 
of cts systems, namely (RL; 0S)-systems. It turns out that these systems are very 
closely related to Petri nets which form an established model of concurrent processes. 

As indicated in (the remarks preceding) Corollary 2.4 it is well known that there 
is a close relationship between (specific kinds of) counter machines and Petri nets 
(see, e.g., [5, 8, 9]). And, as indicated in the remarks following Definition 1.3, it is 
also quite evident that (RL; 0S)-systems are well suitable for simulating (special 
kinds of) multicounter machines. So, in this way, there is quite a close relationship 



Cts systems and Petri nets 161 

between our Theorem 2.1 and the results in [5, 8, 9]. However, we have aimed at 
showing direct relationships between Petri nets and (RL; 0S)-systems (rather than 
to use multicounter machines as a 'bridge' for showing these relationships). Also, 
as opposed to [5], we have obtained an explicit characterization for all labeled Petri 
net languages (and not only for A-free labeled variants) and, as opposed to [5, 8] 
as well as to [9], we have obtained a close relationship between subclasses. Although 
the basic idea (counting tokens) behind the main correspondence theorem is common 
to [5, 8, 9] and our paper, our proof seems different from those in the references 
just mentioned. 

In Section 4 we have investigated another specific instance of cts systems, namely 
(RL; 0S2)-systems. It is interesting to notice that we have been able to establish that 
0S2-selectors on the second coordinate (used for memory access) are more powerful 
that 0S-selectors on the second coordinate, because the question whether or not 
grammars using 0S2-selectors are more powerful than grammars using 0S-selectors 
is an intriguing open problem of grammatical formal language theory (see [12]). 
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