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Let & be the Clifford algebra constructed over a quadratic n-dimensional real
vector space with orthogonal basis {e, ..., ¢,}, and ¢, be the identity of &7. Further-
more, let M(2; &) be the set of &-valued functions defined in an open subset
2 of R™t1 (1 < m < n) which satisfy D*f = 0 in 2, where D is the generalized
Cauchy-Riemann operator D = ):‘,"';o ¢:(0/0x;) and k € N. The aim of this paper
is to characterize the dual and bidual of M(R2; ). It is proved that, if M (22; &)
is provided with the topology of uniform compact convergence, then its strong
dual is topologically isomorphic to an inductive limit space of Fréchet modules,
which in its turn admits M(2; &) as its dual. In this way, classical results
about the spaces of holomorphic functions and analytic functionals are general-
ized.

1. INTRODUCTION

In his well known paper [9] Kothe has shown that if & is an arbitrary proper
open subset of the Riemann sphere ¢ and #(2) denotes the space of locally
holomorphic functions on & provided with its natural topology, then its dual
may be identified with H# (%), the space of locally holomorphic functions on
U = O\2, and conversely. Let us recall that S (%) is in fact an inductive limit
space and that the respective duals are endowed with the strong topology.

Almost simultaneously Grothendieck has developed in [8] a duality theory
for vector valued holomorphic functions defined on a proper open subset of @,
generalizing in this way Kothe’s result.

Afterwards Tillmann has worked out in [12] and [13] respectively a duality
theory for harmonic functions in #-dimensional Euclidean space, » > 3, and
for analytic functions on Riemann surfaces.

164

0022-1236/80/080164-18$02.00/0

Copyright © 1980 by Academic Press, Inc.
All rights of reproduction in any form reserved.


https://core.ac.uk/display/82210764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DUALITY IN FUNCTION THEORY 165

As to the case of holomorphic functions of several complex variables, we can
cite the work of Lelong [10] and the thesis [2] of Braun, in which a generaliza-
tion of Aizenberg’s result in [1] is given too.

Finally we mention the thesis [3] of Chauveheid, in which he has characterized
the dual of the space of strong solutions in an open subset 2 C R” of an arbitrary
elliptic differential operator with constant coefficients.

In this paper, which is a continuation of [4, 5, 6], we study the dual of the
space M,(£2; o) consisting of those functions f: £ — .o which satisfy D¥f = 0
in @2, where ke N, & > 1, Q2 is an open subset of R™+1, o/ is the Clifford algebra
constructed over an n-dimensional real quadratic vector space (1 < m < n)
and D = Y., e,(8/dx;) is a hypercomplex differential operator generalizing
the classical Cauchy~Riemann operator. In fact the operator D* determines
a strongly elliptic system of 27 homogeneous differential equations, each of
order k. In the particular case that m = n = 1, the solutions of D¥f —= 0 in
are nothing else but the polyanalytic functions in £, so that for £ = 1, the space
of holomorphic functions in £ is obtained. For general m, n and &, M(Q2; &)
constitutes a subclass of the set of R2"-valued polyharmonic functions of order .

As a main result it is proved that if M, (2; &) is equipped with the topology
of uniform compact convergence, then its strong dual M(2; 27)¥ is topologically
isomorphic to an inductive limite space M{’(co 2; /) of Fréchet modules
(Theorem 2.3) and that conversely, the strong dual M{(co 2; o7)¥ is topologi-
cally isomorphic to M,(£2; &) (Theorem 5.1).

It should be noted that the proof of these results relies heavily upon two types
of Runge approximation theorems obtained in [6], whereas in classical function
theory the Runge approximation theorem appears to be a simple corollary to
duality (see [11}).

We have thus generalized classical results concerning the spaces #°(22) and
H'(£2) of respectively holomorphic functions and analytic functionals in Q.

2. PRELIMINARIES

In this section we repeat briefly some notions and resuits from [4]-[6] to
which frequent appeal will be made in the sequel. Let .7 be the Clifford algebra
constructed over a quadratic n-dimensional real vector space with orthogonal
basis {¢; ,..., &,} such thate? = —¢,, fori = |,..., n, ¢, being the identity in .<7.
Furthermore, let an arbitrary basic element of %7 be denoted by e, = €, e
where 4 = {i; ..., 55,3 CN = {1, 2,..., n} with 7, < i, < -+ <4, and put for
anyA =3 Ae e, | A5 =273, A2 Then | - |, is a norm on &/ (see [4]).

Let m < n, m £ 0, and let 2 be an open non empty subset of R”™+1. Then in
[4] we have studied properties of the solutions of the equation D*f = 0 (fD* = 0)
in Q, where keN, k> 1, feCy2; ) and D = Y, e(d/dx;). These
solutions have been called left (right) k-monogenic functions in 2; their set

’
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constitutes a right (left) «/-module My(Q; o) M{¥(Q; 7)) which becomes
a right (left) Fréchet .«/-module for the topology of uniform compact conver-
gence (see [4, Theorem 3.1]). Moreover, note that, since DED¥ — DDt — g A%
where 4 = 37", (82/éx?) is the Laplacian in (m + 1)-dimensional Euclidean
space, M(L2; /) is a submodule of the .2/-valued polyharmonic functions of
order & in Q,

If K CR™* is compact, we have introduced in [5] the right (left) <7~-module
M(co K; )Y MP(co K; o)) consisting of those elements in M(co K; )
(M{P(co K; o)) which are regular at infinity with respect to the fundamental
solution E;, of D*. It has been proved that M(co K; 2)(M{P(co K; 2))is a closed
submodule of M;(co K; 2)(M{P(co K; 2)) (see [5, Theorem 3.17).

Finally, three Runge type approximation theorems have been obtained in
[6], to wit

(1) If Kis a compact subset of R™+1 and d is a subset of co K having one
point in each bounded component of co K, then the set of “rational”’ functions
M(R™; o7y @ #*(d) is uniformly dense in M(K; o), the latter being the
s/-module of functions which are (k)-monogenic in some open neighborhood
of K (see [6, Lemma 3.3]).

(ii) If « is a subset of co £2 having one point in each component of co £,
then the set of ““rational” functions M, (R™1; o7) @ #*(«) is dense in M(2; )
for the topology of uniform compact convergence (see [6, Theorem 3.1]).

(i) If K is a compact subset of R™*! and « is a subset of K having one
point in each component of K, then the set of ““rational” functions Z*(«) is dense
in My(co K; oZ) for the topology of uniform compact convergence (sce [6,
Theorem 4.1]).

3. THE INDICATRIX OF FANTAPPIE

In the sequel we assume that £2 is an open non empty subset of R™+, (K,)2,
is the compact exhaustion of £ given by

K, =ixecf:|x]| <jandd(x,co.Q)>—]l.—

and {px_:jeN} is the proper system of seminorms on M,(f2; %) associated
to it, i.e. for each j €N,

e (f) =sup [ f(®)lo,  feM$2; )

zeK,
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Now let T be a bounded right «/-linear functional on M (£2; &), that is, there
exist C > 0 and j € N such that for all fe M, (2; &)

[T(N)lo < Cpx(f)-

Then by the Hahn-Banach and Riesz representation theorems (see [5]) there
exists an 7/-valued measure p in R™*! supported on K; such that for all
fe M(&; o)

T(f) = [ du(x) (.

Furthermore, let ¢ € 2.(2; R) with ¢(t) = 1 on an open neighborhood w, C 2
of K; . Then by virtue of the representation formula established in [5, Theorem
4.1], for each x € K

f(x) = [ Eulw — 0) D(fo)(2) dems,

Hence, using Fubini’s theorem,
T(f) = [ du(#) [ Elx — 1) DX(fo)(t) demss

= [ |f dut) Bt — 1) DH(f)2) dtmr.
Put
() = [ dul®) Ey(x — 1)

= (—1)* [ du(x) Byt — )
= (—1fuxE,.

Then, up to the constant (—1)¥, t; equals the right Cauchy transform of u
defined in [5]. Let us recall that u x Ej is right k-monogenic in co[u] and
regular at infinity with respect to E, so that t, € M{(co K ; 7).

In analogy with classical function theory, ¢, is called the indicatrix of Fantappié
associated to 7"in co K .

In view of the foregoing considerations we have

PropositioN 3.1. Let T be a right o/-linear functional on M (2; o) which

s bounded by Pk, and let t,, be its associated indicatrix of Fantappié in co K; .
Then if p € 2.,(2; R) with o(t) = 1 on some open neighborhood w, of K; ,

T(f) = [ tt) DH(fo)) dmia

and this for all f € M(82; ).
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In the sequel, for j € N fixed, @; will stand for the set of functions ¢ € Z,(2; R)
such that ¢(f) = 1 on some open neighborhood w,, of K; which is contained in £2.
Now take u € M{"(co K; ; &), p € D; and call for each fe M(Q; ),

() = [ ut) DHfp)e) . (3.1)

Then T is well defined on M (2; 7). Moreover, its definition does not depend
on the choice of p € @; . Indeed, if @, , p, € D;, then b = @, — @, € D,(AN\K; ; R)
so that, using Green's identity (see [4]),

[, 0 DHCAbE) demet = (=1 |

uD" - (ff)@) dtm+
[vlcaik,

=0

We now claim that 7, given by (3.1), is 2 bounded right .27-linear functional
on M(£2; o7). It is obvious that T is right <7-linear on M (£2; <Z). To prove
that T'is bounded, we proceed as follows. As # determines a right «/-distribution
7, in co Kj (see [5]) where

T = [ g dni, g Dofeo K ),

we have that for any distributional extension %" of u — that is, %' is a right
&/ -~distribution in R™! with %7 = 7, in co K; — and each i of the form

¥ = DH(fp),
@, DXfey = [ ult) DAfp)(e) dem

= 1(f).

Now let € > 0 be such that K ={xeQ:d(x, K;) < 2e}Cw,. Then, as
" D* is a right .o7-distribution in R”*! with compact support contained in Kj ,
we have that there exist M/ € N and C > 0 such that for all € Z_(R"+; <),

K%ODY plo < C sup sup | &)l -

fal<M

In particular, for = fp

KU DE, fodly < € lsup sul? | *(fe)()lo

al<M

= C sup sup | ¥ (x),.

lal<M  xek
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Since the components of f are polyharmonic in £, a suitable compact neighbor-
hood K, of K (K, C w,) may be found such that

K#7D%, fo)lo < C* sup L F()lo -

As

UNDY, foy = (—1Y<U™, D'(fe))
= (=B* T(f),

we get finally that

[ T(f)lo < C* j:KP | f#®)o»

which implies that T is bounded on M(£2; £7).
In view of the foregoing considerations we have

PropositiON 3.2. Let jeN be fixed, ue M{P(co K; ; /) and o ®@;. Then
T : M($2; &) — S given by

T(f) = J u(t) D¥(fo)(8) di™t,  fe My($2; ),

is a bounded right <Z-linear functional.

Remark. 1f ue M{(co K, ; o/) and @& ®; are given, then a compact
neighborhood K, C w,, of K; may be found such that the right o7-linear functional
T on My(82; o) defined by (3.1) is bounded by px . Note that in the definition
of T the domain of integration may be restricted tO"[tp]\K,, so that, using Green’s
identity, we obtain that

() = (V[ D fpdim

k—1

(=1 f Y (—1)yuD-1-ideDi( fip).

alloD\Ky) ;20

Since D" = 0 in [p]\K,, , ¢(¢) = 0 on §[¢] and ¢(t) = 1 on 9K, , we get finally
that

T(f) = L ) T (—1y+uD-1-idoDif. (3.2)

n j=0

Conversely, let T be a right .o/-linear functional on M, (2; 27) which is bounded
by p, and let #; be its associated indicatrix of Fantappié. Furthermore, choose
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p€®; and let K be a suitable compact neighborhood of K satisfying K C
[¢] C @, . Then, applying once again Green’s identity, we have that

k—1

T(f) = fa § 20 (— 1y+ke, D¥1-3doDif.

But, since in co K, t;,D*-1-7 = t;,, (see [4]), we get at last that

k-1

T(f) = [T (1Y "H;0doDf (33)

The formulas (3.2) and (3.3) should be compared with their analogues in
classical duality theory, where the relationship between an analytic functional
and its indicatrix of Fantappié is usually given by an integral taken over the
boundary of a domain. We describe this relationship in the Propositions 3.1
and 3.2 by an integral taken over the whole of R™*! and this by using Schwartz’s
space D,(2; R). The question arises of course whether or not 7 is uniquely
determined by u € M{"(co K; ; .«7). To this end we introduce.

DeriniTION 3.1 .Let jeN be fixed. Then we define the following subset
L; of M{(co K; ; &) : an element u € M{P(co K; ; &) is said to belong to L;
if and only if there exists g € @; such that for all f e M (2; &)

f u(t) DX(fo)(t) diml = 0.

It is clear that L; is a submodule of M{(co K ; &/) and that for any ueL,,
its associated bounded right 7-linear functional is nothing else but the zero
functional.

Moreover, if # € L; then we have in fact that for each ¢p* € @;,

[ ut) D p*)e) demer = 0

and this for all f e M(2; o).

The meaning of Definition 3.1 will become clear from
PropostTION 3.3. Let jeN be fixed. Then ucL; if and only if there exists
ig > j such that u = 0 in co K, .

Proof. Let ue M{(co K;; /) be zero outside some K; (i, >j) and
@ € Do(2; /) be such that e P, . Then obviously ¢ € @; and for any
fe M(Q2; ),

[ ey D)oy dmst = 0

which proves that # e L; .
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Conversely, suppose that # € L; . Then for some g€ ®;

[ ue) Dfe)@) dimer = 0

and this for all f € M (2; o).

Now let 7, > j be the least index such that [p] C Ii’io . Then we prove that
# =01inco Kio .

Indeed, let K be a compact subset of w, such that K;C K and choose i €
C..(2; R) such that #(¢) = 0 on an open neighborhood w,, of K; contained in K
and ¢(t) = 1in co K. Then uh € C(R™; &7) and wifi(t) = u(t) in co K. Hence,
if K, is a suitable compact subset of w, with K C K, , we have that for all
fe M($2; )

[0 D demit = | be) D)) et

= 0.

Furthermore, in view of Runge’s theorem (see [6, Lemma 3.3]), for any f* €
My(K;, ; <), asequence (h)sen of left (k)-monogenic functions may be found, all
of them having their singularities off K, , such that (k)N converges uniformly
on K; to f*. Hence, for each multiindex o e N+l (8%h,),en cOnverges uni-
formly on any compact subset H C K to 0% *. Thus we obtain that the relation

[ ey DH( o)y demir = 0
[oliK,

o}iKy,

is valid for all f* € My(K, ; &).
Now take a € co K;_; then clearly Ex(t — a) € My(K;_ ; &) so that

@

T
Using Green’s identity, we find that
(—l)kf (uwf)DF - Eyt — a) ¢(t) dtm+1 =0
[el\K 5

or

(1P f @D D*- Byt — aydemst — (1 [ () D

ol\Ky,

Ey(t — a)1 — o(f)) dml = 0.
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As in co K () D¥* = uD* =0 and 1 — ¢(t) = 0, the second term in the left
member of the last equality vanishes. As to its first term, remark that w} is a
Co(R™; of)-function which extends # so that, # being regular at infinity with
respect to E ,

0 = (—1)t f () D* - Ey(t — a) dim+1

= ((wp) D* x E;)(a)
= (wf)()
= u(a).

Since a € co K; has been taken arbitrarily, we thus have proved that « =0
incoK; . |

It is clear that if &, and u, , both belonging to M{"(co K ; &) for some fixed
je€N, determine the same bounded &/-linear functional, then u; — u,€L;.
Conversely, let T be a right .2/-linear functional on M(2; </) bounded by py
and let #, € M (co K ; &) be its associated indicatrix of Fantappié. Then
in view of the foregoing considerations, any element of the form ¢, 4 4, heL;,
determines the same 7.

The aim of the following section is to explore this relationship more deeply.

4. THe DuaL oF M (2; &)

Let again £ be an open non empty subset of R+, (K)?, be the compact
exhaustion of £ and {pK :7eN} be its associated system of seminorms on
M,(Q; 7). Furthermore, let for jeN fixed, L, be the submodule of N
(co K; ; s#) given in Definition 3.1. Then we assert that L; is closed in M o
(co K; ; ), the latter being provided with the topology of uniform compact
convergence.

Indeed, suppose that for some sequence (#,);en in L; which converges to u
in M{(co K; ; ), u ¢ L; . Take ¢ € @, ; then there ought to exist f € M(2; o)
such that

[ ue) DX(fo)e) dimer = 0.
Since for each se N,

[ ity DM foxie) demr =
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where the integral is taken over the compact set [¢]\w C co K, we obtain by
a classical argument that

[ utt) D(fpy dtm = o,

clearly a contradiction.

For each jeN, we may thus consider the quotient left o/-module M’
(co K; ; &)/L; , consisting of the elements [u] = u +- L;, ue M§(co K; ; o).
Equipped with the system of seminorms &; = { 4 : # C co K; compact},
where Py ([#]) = infrepu) pr(B), MP(co K ; oZ)/L; becomes a left Fréchet
&/-module.

For convenience we put & = M (co K; ; o/)[L; , j € N. Now we claim that
&; may be continuously embedded in &, .

Clearly L; CL;,;, jeN. Furthermore, define I; : & — &;,, by I([u]) =
# 4 L; ., . Then obviously the definition of I([u«]} is independent of the re-
presentative chosen. Moreover, I; is injective.

Indeed, assume that I([«]) = I([#]). Then u — v € L;,; so that, if
fe M(2; &) and p € Dy, ,

f (1 — v) - D¥(f) dim+1 = 0.

But, as u — v € M{M(co K; ; o), this implies that u — v €L; or [u] = [v].
Finally I; is continuous since for each " C co K, compact,

Bl (@) = inf por(u + ) < inf por(u + h) = por((s]).
Thus it makes sense to introduce

DEerFINITION 4.1. Let £ and (K,)?, be as described until now. Then we
call M (co 2; /) = Z&; the inductive limit of the left .&/-modules &;.
Endowed with its inductive limit topology, we denote this left »/-module by
M (co Q5 o )ing -

Let us recall that, if 2 denotes the proper system of seminorms defining the
inductive limit topology on M{(co 2; =), an arbitrary element Q € 2 is given
by (see [7])

) = ot 5 P,

LT

where for eachje N, ¢; > 0 and P, e &;.
Now call M, (2; «)* the left .o/-module consisting of all bounded right
&/-linear functionals on M(2; «/). Then our main objective is to show that

580/37/2-4



174 DELANGHE AND BRACKX

M,($2; &7)*, provided with the strong topology, is topologically isomorphic to
MP(co 2; o), i.e. My(Q; )5 ~ MP(co 2; o )ing -

Let us repeat that an arbitrary seminorm pp from the system defining the
strong topology on M, (£2; &7)* is given by

pe(T) = sup [ T(lo»

B being a bounded subset of M (£2; 27).
Combining the results of the foregoing section with the previous considera-
tions, we get immediately

THEOREM 4.1. Let | : My(2; £)* — MY (co Q; o) be defined by J(T) =
[%], where t;, is the indicatrix of Fantappié associated to T € M,($2; &Z)*. Then J
18 an isomorphism between these left .of -modules.

Note that J remains an isomorphism between M (22; 2/)* and M (co 2; /)
when these spaces are considered as real vector spaces. This property will be
used implicitly in the proof of Theorem 4.2 below.

Now we assert that [ is a topological isomorphism. In order to prove this
assertion we proceed as follows. First of all remark that M(2; o), considered
as a real vector space, is a Schwartz space.

Indeed, as each component f, of fe M, (82; &) satisfies 4*fy =0 in £,
M(82; o) is a subspace of [ ] 4cpn Harmy(2; R) where

Harm(2; R) = {g: 2 > R : 4% = 01in £}.

Equipped with the topology of uniform compact convergence, Harm,(2; R)
becomes a real Schwartz space and so does [],.#nx Harm,(2; R). Since on
M($2; o) the induced product topology is equivalent with the natural topology,
we obtain that M,(2; &7) is a real Schwartz space. Consequently, M(£2; <)
being a Fréchet space too, we find that its real dual M (Q; «/),—that is the
space of bounded real linear functionals on M(2; &/), endowed with the
strong topology—becomes a sequentially complete bornological space (see [7]).

As a second step, note that M,(2; &/)* may always be provided with an
inductive limit topology since M (Q2; &)* = LM (2; Jz()l’l‘f”j , where for each
JeN, M (£; &/)ﬁ'f”j is the left Banach .2/-module of right .«7-linear functionals
T on M(82; /) which are bounded by py .

Let us repeat that '

I Tl; = sup |T(f)ly-
(f:zsz(f)<1}

Denote this inductive limit space by M(2; o)} -

As is well known, the strong topology is weaker than the inductive limit
topology on M;(2; oZ)*. In the following proposition, we shall prove that these
two topologies are in fact equivalent.
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ProrosiTiON 4.1. If considered as real convex spaces, we have that
(i) My, o )na =~ MyQ; 7Y,
(il) My Q, o)) ~ M(Q; ), .
Hence
(i) M@, o)y ~ My(Q; A )ipa -

Proof. To prove these assertions, let us first recall that the function
0 My(2; o)* — M(Q; o) defined by (T) = 7, T, T € M(Q; &)*, is an
isomorphism between these real vector spaces.

Here 7, T(f) = 2"[Tf],, [Tf], being the e,-component of Tfe€ o/ and this
for any fe M(£2; o). Moreover, if F € M(2; ), then 6-Y(F) = T* is
completely determined by (see [4])

THf) =2 eaT (fea),  fe MyQ; 7).

(1) We show that 8 is a topological isomorphism between M, (2; )4
and M,(2; ), .

Indeed, let B be a bounded subset of M(2; /). Then for each
Te MQ; ),

pa((T)) = sup 7o, TP < | & losfgg LTS lo = | & 1o 25(T)-

As there exist C > 0 and ¢ such that pp(T) << Cg(T) for all T e M(2; «7)*,
g being a seminorm from the system which defines the inductive limit topology,
we obtain that

p0(T) < Clelog(T),  TeMyQ; )~

Consequently 4 is continuous.

Since M(2; o/ )fhq1s an inductive limit of real Banach spaces and M (Q; /),
is a real sequentially complete bornological space, a classical corollary to the
closed graph theorem yields that 6~ is continuous.

(i) We prove that # is a topological isomorphism between M (£2; o)
and My(Q; &), .

Indeed, from the first part in the proof of (i) it follows already that 6 is con-
tinuous.
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Now let B be a bounded subset of M,(£2; &), F~ be an arbitrary element of
M(2; 7Y and T* = 6-17. Then, since |e, |, = 2%/? for each A e PN,
we find that for all f € M (2; &7)

| T*flo <27 ) T ealo | T(fea)l
= 2‘"”% | 7 (feq)-

Put B, = Bé,, Ae PN, and call B* = (J .oy B, . Then B* is a bounded
subset of M, (2; /) and

sup | T%f lo < 2%/ sup | 7(g),

feB

which implies that -1 is continuous.
(ii1) of course follows immediately from (i) and (ii). [
Finally, we arrive at
THEOREM 4.2. Let J : M(RQ; /)% — M (co Q; s7) be defined as in Theorem
4.1. Then ] is a topological isomorphism between M (Q; oZ)f and M (co Q; 7).

Proof. From Theorem 4.1 we know that J is an isomorphism. To prove the
continuity of J, by Proposition 4.1(iii) it suffices to show that [ restricted to each
M($2; /), is continuous.

Let 2 be an arbitrary element of 2. Then for each T e M (2; M)I"‘f”]_, we
have that

QU(T)) < ;P J(T))

= ¢ jinf (sup | h(£)lo)

< ¢;sup | B y)lo
yeX”

<esup | [ du(x) Ei(y — %)
yexX | [ul 0

<LGCO(K;) sup | Ex(w)l,
wek ;—X"

< C(K;; ),

Here o is the compact subset of co K; to which the seminorm P; on &; is
associated and C(K; ; ") is a positive constant depending on Q.
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Hence, for each T € M,(£2; Jﬂ)ﬂ“”j

0 (7)) < € )
O((T)) < C(K;; #) || Tl

Of course this implies that J is continuous.

As M(82; o Yoq and MM (co 2; o )ing are both inductive limits of Fréchet
spaces, a classical corollary to the closed graph theorem implies that J is
continuous. [

5. THE DuaL oF M{(co Q; .o7)

The main objective of this section is to characterize M{V(co Q; 22)*, the
right .2/-module consisting of all bounded left &/-linear functionals on N
(co 2; A )ina -

We claim that M (co 2; <#)F is topologically isomorphic to M,(82; 7).
To this end we proceed as follows. Associate to each fe M (£2; o7) the o/-
functional T, : M{P(co 2; /) — o defined by

T(t)) = T(f) = [ 16) D(fo)e) dem+t (5:1)

where T = J-([#,]), J being the topological isomorphism given in Theorem 4.2.

Recall that the integral representation in (5.1) is independent of the representa-
tive chosen in {#;] and of p € D; .

Furthermore, note that for f and ¢ fixed, there exists a positive constant C;
such that

| T(flo < C; sup | £(t)lo
telol\wg

Obviously T is a left /-linear functional on M{"(co Q; <&¢). Moreover T, is
bounded.

Indeed, let [t,] e MP(co 2; o7) and let [t,] =3 [t]; be an arbitrary
decomposition of [#;], [%], € &; . Taking u; € [¢,]; and putting u =T (; #; and
T; = J([t;];), we obtain that

| TA[teDlo = ) T, (2; [tk]i)
G
<3 TAI
7

= z | Tj(f)’ﬂ .

()

0
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If for each j occurring in the above decomposition, ¢, € @; is taken arbitrarily
but fixed, we have that there exist positive constants C; such that

FTA o < C; sup | uy(t)y,

telo; \ww,-
whence, putting % = [p;]\w,, »

| T o < C; inf  sup [u#)l, .

u;eltgh; teX;
Consequently

| To([telo < z C; inf sup [ut)ly

) ueltyl; teX;
so that, since the decomposition of [#,] has been taken arbitrarily,

P Te(ltDlo < inf ) CP{([t)y),

=Sl o)

where for each j, P; is a seminorm on M{"(co K; ; «7) determined by

Pi([t);) = inf sup [ui(f)lo-

ujelty]; ted;

Hence T, € M (co 2; oZ)*.

THueoREM 5.1. Let I: My(Q; ) — M{NRQ; )5 be defined by I(f) = T,,
T, being given by (5.1). Then I is a topological isomorphism between these right
A -modules.

Proof. Obviously I is right .o/-linear. Now we show that I is injective or
equivalently, that from T(f) = 0 for all T'e M(2; 2/)* it follows that f = 0.
To this end, choose an arbitrary a € £, take the least index j€ N such that
ac K, and consider the function E(a —x), xeco K;. Then Ey(a —x)e
M®(co K; ; 7).

Since we assume that T(f) = 0 for all T e My(2; o7)*, we have that for
@ € D, fixed

f Ey(a — x) D¥(fo)(x) dxm+1 = 0.

Hence, if K, is a suitable compact neighborhood of K; such that K, C w,,
we get by Green’s identity that

L Z_: (_1)j+kEk(a o x) DZ—I*J' dchjf(x) =0

Kn j=0
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or
fax 2 (—1YE;,(x — a) do,Dif(x) = 0.

But, in view of Cauchy’s formula (see [4]), the left hand side equals f(a) so
that f(a) = 0. Since a € £2 has been taken arbitrarily, f = 0 in .

Next we prove that [ is surjective.

Let T € M{(co Q; o)* be given. Then we show that there exists
fe M(2; &) such that T = T;.

For each a € 2, call again j € N the least index such that a € K; and put

f(a) = T([Ex(a — x)]).

Then clearly f is well defined in £2. Moreover, using classical arguments, we may
easily check that fe C(2; /) and that for each multiindex o € N™+!

&f(a) = T(0*[Exla — x))) = T([e"E(a — #))).
Hence by virtue of the left o7-linearity of T
D'f(a) = T([DMEx(a — x)])

=0
which implies that f e My(82; o).
Now we prove that T = T,.
Note that in any case
(Ty — T[Ex(a — x]) = 0. (5:2)

Take j e N fixed and consider the restriction of T, — T to &;. If [u} € &; and
h € [u], by Runge’s theorem there exists a sequence (h,),.x of functions belonging
to M (co K; , o) with singularities in K; , each of the form

OPOBY(x — 4) (3
oxy, - 390110 betelp

@ (geeenaly) B

where a; € K; for each i, such that (,),cy converges to £ in MP(co K; ; o).

From (5.2) it then follows that for any r € N, (T; — T)([%,]) = O so that also
(T; — T)([#]) = 0. Hence T; — T = 0 on each &; and thus T; — T =0 on
M{»(co Q; ).

As a final step, we show that I is bicontinuous. On the one side, let # be
bounded in M{(co 2; )i and put F* = J1%. Then #* is bounded in
My(82; ). Since M(82; o) is bornological, #* is equicontinuous and hence
contained in the polar of a semiball, say #* C bf,K]_(r) (see [7]).
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Consequently, if f € M;(2; &) and I(f) = T;,
2#(Ty) = sup | T([ul)lo
[ule®
= sup | T(f)lo
TeB*
sup | T(f)ly

Teprj('r)

< L oelf)

N

or I is continuous.

To prove that I~ is continuous, remark first that the real convex space
M(L; &) is evaluable and has representable seminorms. Hence its natural
system of seminorms is equivalent with the system {mg: # bounded in
M(Q; )}, where for cach &, ng(f) = supseq | T(F), f € My(2; )
(see [7])-

Consequently, for any natural seminorm Px, on M(82; &), there exist
C > 0 and #Z b-bounded in M(2; &Y such’ that for all e M(2; &),
prf) < Cm(F).

Putting 0‘1.% #*, where 6 is the topological isomorphism from Proposition
4.1 (iii), we obtain that

P (IHT)) = px,(f)
< Crg(f)
= Cﬁ;‘},’* | T(f Mo

= C sup | T([#])l
[tJe (%)

= Cpyan(T),

where J is the topological isomorphism given in Theorem 4.2. This proves the
continuity of I71. ||
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