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Abstract

LetV; = P1 x ... x P1 (¢-copies) embedded iRY (N = 2" — 1) via the Segre embedding. Let
(Vy)’ be the subvariety oPN which is the closure of the union of all the sec&it 1's to ;. The
expected dimensiaof (V;)% is min{sz + (s — 1), N}.

This is not the case fatV,)3, which we conjecture is the only defective example in this infinite

family. We prove (Theorem 2.3): if;, = [I%] = J;(mod 2 ands; = ¢; — d; then(V;)® has the
expected dimension, except possibly wheas; 4+ 1. Moreover, whenever= 2 — 1, (V;)® has the
expected dimension for evesy
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0. Introduction

The problem of determining the dimensions of the higher secant varieties of the classically
studied projective varieties (and to describe the defective ones) is a problem with a long
and interesting history (see €[@,8,11,12,14)].
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In the case of the Segre varieties there is much interest in this question, and not only
among geometers. In fact, this particular problem is strongly connected to questions in
representation theory, coding theory, algebraic complexity theory (see our [Bhger
some recent results as well as a summary of known results, anfPlsmd, surprisingly
enough, also in algebraic statistics (e.g. [ge#0]).

We address this problem here; more precisely we will study the higher secant varieties
of the product ot-copies ofP?, i.e. of

P"=Plx...xPL, n=(,...,1

embedded in the projective spa& (N = 2' — 1) by the complete linear syste€in (a),
wherea= (ay, ...,a;) = (1,1, ..., 1). We denote this embedding Bf' by V;.

In Section 1 we recall some classical results by Terracini regarding such secant varieties
and we also introduce one of the fundamental observations (Proposition 1.3) which allows us
to convert certain questions about ideals of varieties in multiprojective space to questions
about ideals in standard polynomial rings. In this section we also recall some lemmata
which are extremely useful in dealing with the postulation of non-reduced zero-dimensional
schemes in projective space.

In Section 2 we give our main theorem (Theorem 2.3). We first remark on the cases
t = 2, 3, 4 separately (showing that for= 4 there is a defective secant variety). Finally,
if r>4 andr = 2F — 1 we recall (seg6]) that all the higher secant varieties &f have
the expected dimension. 4f- 4 andr # 2* — 1, we again show that all the higher secant
varieties have the expected dimension—except, possibly, for one higher secant variety for
each such.

Our method is essentially this (see Section 1): we use Terracini’s lemma[@8s]ino
translate the problem of determining the dimensions of higher secant varieties into that of
calculating the value, &1, . . ., 1), of the Hilbert function of generic sets of 2-fat points in
P". Then we show, by passing to an affine char®hand then homogenizing in order to
pass toP’, that this last calculation amounts to computing the Hilbert function of a very
particular subscheme 6f . Finally, we study the postulation of these special subschemes
of P’ (mainly) by using the “differential Horace method” introduced by Alexander and
Hirschowitz[1].

1. Preliminaries, the multiprojective-affine-projective method
Let us recall the notion of higher secant varieties.
Defintion 1.1. Let X < PV be a closed irreducible projective variety of dimensioffhe
s'" higher secant varietpf X, denotedX?, is the closure of the union of all linear spaces

spanned by independent points of .

Recall that, foiX as above, there is an inequality involving the dimensiok ©fNamely,
dim X* < min{N, sn +s — 1}

and one “expects” the inequality should, in general, be an equality.
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WhenX?* does not have the expected dimensis said to be{ — 1)-defectiveand the
positive integer

0s—1(X) =min{N, sn +s — 1} — dim X°*

is called the { — 1)-defectof X. Probably the most well-known defective variety is the
Veronese surface, in P° for which 51(X) = 1.
A classical result about higher secant varieties is Terracini’'s lemmdi3¢a):

Terracini’s lemma. Let X be an integral scheme embedde@ih. Then
Tp(X®) = (Tp,(X), ..., Tp, (X)),

wherePy, ..., P; are s generic points on,and P is a generic point ofPy, ..., P;) (the
linear span ofPy, ..., Py ); hereTp, (X) is the projectivized tangent space of XPA

LetZ c X be ascheme afgeneri2-fat pointsthatis a scheme defined by the ideal sheaf
fzzfﬁlm. . -mf%s C Ox,wherePy, ..., Py ares generic points. Since there is a bijection

between hyperplanes of the spd@®& containing the subspac&p, (X), ..., Tp,(X)) and
the elements off°(X, .# 7 (1)), we have:

Corollary 1.2. Let X and Z be as aboythen
dim X* = dim(Tp,(X), ..., Tp, (X)) = N —dim HO(X, .7 ;(1)).

Now, letX = P! x ... x P! (¢-times) and leW, c PV (N = 2' — 1) be the embedding
of X given byOx (1, ..., 1). By applying the corollary above to our case we get

dim V¥ =H(Z, (1,1....,1) — 1,

whereZ c P! x --- x P! is a set ok generic 2-fat points, and whevg € N’, H(Z, ) is
the Hilbert function ofz, i.e.

H(Z,j)=dim Rj —dim HO(P x ... x PL, .7 4())),

whereR = k[xo.1, x1.1, - . ., X0,r, X1.¢] iS the multi-graded homogeneous coordinate ring of
Pl x ... x PL
Now consider the birational map
g:Px. .. xPt——— > A/
where
X1,1 X1,2 X1,
((xo,J.’ xl,l)’ ceey (xo,l7 xl,l)) > (_7 R _> .
X0,1 X0,2 X0,

This map is defined in the open subsefdfx - - - x P! given by{xq 1x02...x0, # 0}.
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LetS=k[zo, z1.1, 712 - - - » 21.¢] be the coordinate ring &' and consider the embedding
A’ — P’ whose image is the chaft, = {zg # 0}. By composing the two maps above we
get

fiPrx .. xPl——— 5 P
with

((x0,1, X1,1), - - -» (x0,1, X1,1))
( X11 X12 M,z)
> 1, e T e, ——
X0,1 X0,2 X0,1
= (X0,1X0,2 " * * X0,r» X1,1X0,2 " * * XO,1» - - - » X0,1 * * * X0,/ —1X1,1)-

Let Z ¢ P! x ... x P! be a zero-dimensional scheme which is contained in the affine
chart{xp1x02...x0, # O} and letZ’ = f(Z). We want to construct a scheniié c P’
such that dintly ), = dim(Iz) ... 1

Let Qo, 01, Q2, ..., Q; be the coordinate points d?’. The defining ideal ofQ;,
(1<i<y),is

IQ,‘ = (ZOﬂ Zl,lv RN a,\iv BRI Zl,l)'
Let W; be the subscheme & denoted byt — 1) Q;, i.e. the scheme defined by the ideal
150
Qi

Proposition 1.3. LetZ, Z' be as above and |6V = Z' + Wy +--- + W; C P". Then we
have

dlm(IW)t :dlm(lz)(l 1)-

Proof. First note that
—s ~ 1-s
Ra...1) = (g1 N1 (xg 3 N2) - - (xg, " No)),

where theN; = xi{i and eithes; = 0 or 1.
By dehomogenizing (vig' above) and then substituting ; for (x; ;/xo ), and finally
homogenizing with respect tp, we see that

Ra,...1n > (zéf“f'"*s’Mle LMy,

whereM; = zy ; and eithers; =0 or 1.

Claim. (Iwyt.tw,)e=Uwy NN Iw,), = (2o "> """ Ma...M;), whereM; =z7; and
eithers; =0 or 1.

Proof (©). Since both vector spaces are generated by monomials, it is enough to show that
the monomials of the left-hand side of the equality are contained in the right-hand side of
the equality.
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ConsiderM =z '~ """ M1M5. .. M, (as above). We now show that this monomial is

in Iy, (for eachi). Notice thatM; € I;; (for j # i) and thatzg ™~ e 1,77,

Thus,M ¢ I(in’”"“"")+(S1+"‘“"+”'“’) =I5, Sinces; <1 we haver — 1< — 5; and
SOM € I’le as well, and that is what we wanted to show.

(2). To prove this inclusion, consider an arbitrary monomiak S;. Such anM can be
written M = z3° M - - - M; whereM; =z7';.

Now, M € ((wy+...+w,)); meansM e (Iw,), for eachi, hence

o+ oG o> —1

fori=1,...,1.
Since

wo+ort+-- o=t

thent — o; >t — 1 for each such and sox; <1 for eachi. That finishes the proof of the
claim. O

Now, sinceZ andZ’ are isomorphic f is an isomorphism between the two affine charts
{zo # 0} and{xp 1x02...x0; # 0}), it immediately follows (via the two different deho-
mogeneizations) that'z) 1, 1) =Uw),. U

WhenZ is given bys generic 2-fat points, we have the obvious corollary:

Corollary 1.4. LetZ c P! x --- x P! be a generic set of 8-fat points and leW c P’
be as in Propositio.3,i.,e. W =2P1 +--- 4+ 2P, + (t — 1) Q1+ ---+ (¢t — 1) Q;. Then
we have

dmV'=H(Z,(1,...,1)—-1=(2" - 1) —dim(y),.

Now we give some preliminary lemmata and observations (for notation and proofs we
refer the reader tfil, Section 2 and Corollary 9.B8]

Lemma 1.5 (Castelnuovo’s inequalify LetZ € P" be a smooth hypersurface of degree
d, and letZ € P" be a zero-dimensional schenTée schemé&’ defined by the idedll; :
I3) is called the residual of Z with respect f, and denoted byes 4 Z; the schematic
intersectionZ” = Z N & is called the trace of Z o, and denoted by'r4 Z. Then for
t>d

dim([z,ﬂﬂ’")z < dim(lz’,ﬂ]")t—d + dim(lz//’g)t_

Lemma 1.6 (Horace’s differential lemma Let 7 C P" be a hyperplangand letPx, ... .,
P, be generic points if”". LetZ = Z + 2P1 + - -- + 2P, < P" be a(zero-dimensional
schemelet Z' = Resy Z, and 2" = Try Z. Let P, ..., P/ be generic points in HLet
Doy(P))=2P/NH,andZ' = Z' + Do y(P)) + --- + D2 u(P}) (2’ a subscheme of
P"), 2" = 7" + P| + --- + P/(Z" asubscheme "~ ~ H). Thendim(I2), = 0 if the
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following two conditions are satisfied

Degue dim(Iy),_1 =dim(/ 0

Z’+D2,H(P{)+-»-+D2,H(P;))r—l =
and

Dime  dim(Iz), =diM(I;,, o, p)e =0.

The following (obvious) remark is very useful.
Remark 1.7. Let Z, Z' € P", be zero-dimensional schemes such #at Z. Then

(i) if Z imposes independent conditions to the hypersurfacdsg tfien the same is true
for the scheme’;
(i) if Z' #£ Zanddim,), =0, 1, thendin{/z), =0.

2. Secant varieties of the Segre embeddings B x --- x P!

We write (P1)’ for P1 x - .. x P2, (s times). By Corollary 1.4, we know that diffi’ =
2! — 1 —dim(Iy),, whereW is the subscheme & defined by the ideal

1 —
I=pin---npfngi ™ n---ng/™,
wherep; < P;, g; < Q; and{Py, ..., P;} is a set of generic points iR’ and Q; is the

i"" coordinate point of?’ lying on the hyperplangzo = 0}.
Let us start with an example.

Example 2.1. Since the case = 2 is trivial let us begin witlv = 3, andV3 C P’ the
Segre embedding af?%)3. In this case it is well known (e.g. s¢&, Example 2.4 that
dim V32 = 7. But let us check it with our method.

We have dimV32 =7 —dim(ly)3, whereW C P2 is the scheme defined by the ideal
I'=pfNp3Naingsnas
It suffices to show thai; = 0. But this is well known (sefl]).

Example 2.2. Now letr =4. In this casé/4 c P1°. From[6] (Proposition 2.3 and Example
3.2) we have dimV? = 9 andVv, = P*°.

Let us now considevf. Its expected dimension is 14 but we will show that this variety
is defective, and has dimension 13, be(Vs) = 1.
To see why this is so, recall that

dim V2 = 15— dim; (Iw)a,
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whereW is the subscheme &* defined by
Iw = pf NP5 N P3N g3 Ng5NasNa3.

In this case, the 7 points in the supportWflie on a rational normal curve i#** and
by results in[4] we obtain that dim(/w)4 = 2 and hence dian =13 (and not 14, as
expected).

We now come to the main theorem of this section (and of the paper). We coisiger
(PYH! ¢ PV, N =2' — 1 and its higher secant varieties. We show that for each satth
the higher secant varietids’, have the expected dimension (exceptdbmostones for
each such).

Theorem 2.3. LetV; be the Segre embedding@f‘l)’ inPY, N=2'—1,and Ie@,:[%] =
d; (mod 2),0; € {0, 1}; s; = ¢; — ;. Then we have the following

(1) If s<s;, thendim VP =s(r +1) — 1,
(2) If s=s, + 2,thendim V = N.
Thatis fors # s; + 1,

dim vV =min{s(t + 1) — 1; N}.

Proof. First notice that, for every, s, (and hence, + 2) is an even integer.
By Corollary 1.4, to find dimV;® we have to compute ditdy,, , );, whereW, ) is the
subscheme dP’

Wien=0C—-1D014 -+ @¢—1Q;+2P1+---+2P; C P,

where theQ; are the coordinate points & in the hyperplaneg = 0 andPy, ..., P, are
s generic points ifP’, and show it has the expected dimension in the two cases considered
by this theorem, i.e., far # s, + 1:

2 —s(it+1) fors<ss

: _ t . _
dim(lw,,); = max2 —s(t +1); 0} = {0 fors>s, + 2.

As far as Case (1) is concerned, it suffices (by Remark 1.7) to prove the theorem only for
s = ;. As far as Case (2) is concerned, the claim is thak fes; + 2 we haveV;’ = PV,
Thus it suffices, again by Remark 1.7, to prove the theorem in this case onlyfgr+ 2.

Since we need to consider schemes likg ;) for s; ands; + 2 (both even integers) we
will proceed, for a while, by considering schemes likg. ;) wheres is ANY even integer.

We start by letting” be a hyperplane dP’ which containg Q», ..., Q,} but does not
containQ1. We placePy, ..., Py on that hyperplane (generically) amdi”’ ..., P; off

2
that hyperplane (generically).
Now consider the scheme (which is a specialization of a schemé&iikg)

Zin=(=DO1+ -+ =D + 2P+ + 2P} ) + 2Py g+ + 2P,

Our goal will be to show that far (even), as in the theorem, the ideal of the scheipe,
(in degreer) has the same dimension as the ideal of the sch&meg, in degree.
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We now perform the processesidégueandDimeon this scheme, with our fixed scheme
being(r = 1)Q1+---+ (¢ —1DQ; + 2P + - -- + 2P, and obtain:
2
(Degue) Z/=Zés,,)=(t—1)Q1+(t—2)Q2+---+(t—2)Qz+Pi+---+Pé
+ Dz,H(P§+1) + -+ Dou(P) C P,
2

whereP; JUTRERE P| are generic points i, and
2

(Dime) 2" =Z( ,y =t =1 Q2+---+(t =1 Q; +2P{+~-~+2Pé

+%H+m+ﬂcH:W?

Lemma 2.4. Let Z’ and Z” be as abovef we let
2" =70, y==2)Q2+ + (=20 +2R1+ -+ 2R,
+Rgi1+- -+ Ry
be the subscheme &f ~ [P'~! whereR;, . .., R, are generic points of Hhen

dim(1z/),—1 =dim(Iz»), = dim(Iz»),_1.

Proof. We first considet/z),_,. Notice that any form of degree- 1 containingz — 1) Q1
has to be a cone with vertex @4. SinceQ1 ¢ H we have

dimy(Iz/),—1 =dimy(Izng, H)i—1.
But Z’ N H, considered as a subschemabf P'~1, is the scheme
(t—2)Q2+--~+(t—2)Qz+P1’+~-~—I—Pé+2P%+1+~-~—|—2PS’

and this has the form ¢f”” above. That shows one of the equalities of the lemma.
As for the other equality, one first notes that every fornifizr), has to have the linear
form H’ (which describes the hyperplane®f ! containingQs, . .., Q;) as a factor.
Thus, dim(Iz»), = dim(IResH,(Zu)),_l. But,
Resy(Z')y =1t —2)Q2+ -+ —2Q,+2P[ +--- + ZP%

+ P g+t B
and this also has the form &’ above. [

Since the schemg&’” of the lemma is of the typeW(% -yt R%+1 + .-+ R, and

W(% 1) is precisely the scheme we have to consider if we wish to find the dimension of
S

(V;—1)2, the stage is set for an induction argument on

In order to start the induction argument we need to establish some base cases. The cases
t =2 andr = 3 are trivial.
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t = 4: In this case, = s4 = 2 and we have already seen (Example 2.2) that the theorem
is true fors <2 ands >4. Notice that (in this case) the missing valwe<(3) actually gives
a defective secant variety.
t = 5: We will do this case in some detail as it shows the general method of the proof.
We haves; =s5=4 ands, +2=s5+2=6. So, it will be enough to show that: diiis' =23
and thatv$ = P3L.
For V54 we need to consider the scheme

W=Wgas =401+ +405+2P1+--- + 2P4,
wherePs, ..., P4 are general points d?° and show that
dim(Iy)s = (2° — 1) — 23=8.
To do that, it would be enough to show that a scheme like
Z=Zas5 =401+ +405+ 2P + 2P, +2P3+ 2Py

(where P, P, are general points in a hyperplaie > (Q>, ..., Os) such thatQ; ¢ H,
and P3, P4 are generic points if?®) satisfies dini/z)s = 8. But, to prove that, it is enough
to show that by adding 8 points @ we get a schemg™ for which dim(/,+)s = 0.

Choose 8 point$T1, ..., Tg} so that the first four are generically chosenf@rand the
last four are generically chosen |P. If we performDegueandDimeon Z* we get (see
Lemma 2.4 above)

(ZYY =401 +3Q2+ -+ 305+ P{ 4+ P54+ D2y (Py) + D21 (Py)
+T54---+Ts
=Z'+Ts5+--+Ts
and

(Z+)N=4Q2+"'+4Q5+2P1/+2P2/+P3/,+PA+T1+...+T4
=7"+Ty+ -+ Ta.

By Lemma 2.4 we have
dim(Iz)4 = dim(Iz»)s = dim(Iz»)a,

whereZ’ = ZE4’5), 7" = Z(’4)5), andZ” is the subscheme @#* given by 3> + - - - +
305+ 2R1 + 2R2 + R3 + R4 whereRy, ..., Rq are 4 generic points i,

_But, we already know that foW 4y = 302 + -+ + 305 + 2R1 + 2R, we have
dim(Zw 4)a = 6.

Thus, dim{Iz/)4 = 4 and dim(/z»)5 = 4. It follows that

dim(l(z+)’)4=0 and diml(z+)//)5:0_

By Lemma 1.6 we thus have diify+)s = 0 as we wanted to show. That finishes this
calculation.
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We now need to show thzi/taf5 = P3L, As before, we consider a scherfief the type
Z=2Z65 =401+ - +405+2P{ + -+ 2P, +2P4+ --- + 2Ps,

whereP;, P;, P} are generically chosen on the hyperpla&heandPs, Ps, Ps are generically

chosen inP®. By Lemma 2.4, (and also using Lemma 1.6) we will be done if, considered
as a subscheme &,

Zi3ay=2"=302+ --+305+2R1+2R2 + 2R3+ R4+ Rs + R

satisfieg1z»), = 0.

But, for W = W3 4) we know that dint/w )4 = 2 (see Example 2.2). It then follows that
dim(Iz»)4 = 0, which is what we wanted to show.

It is worth mentioning that although the theorem does not cover the{cas8, s =5}
we were able to show, using the computer algebra sy§te@oA[3], that dim VE? =29,
the expected dimension.

Now we prove the theorem by induction onWe proceed to the general caser &f6,
noting that the theorem has been proved:fer2, 3, 4, 5. In fact, and we will use this, for
t =5 we have the expected dimension everivf@rsomething not mentioned in the theorem.

To studyV,” (¢ >6) we need to consider the schemes

W=Wsn)=>0t—1D01+ -+t —-10Q,+2P1+ -+ 2P, C P,

where theP; are generic points dP’ and theQ, are the coordinate points f on the
hyperplane; = 0.
We want to show that

dim(Iy), =2' — s;(t + 1).

We write Z — s, (t + 1) = 2r.
We follow the procedure outlined in the case 5. We first form the scheme

Z=Zn=0=D01+ -+ -DQ+2P +---+2Py
+2P%+1+"'+2Ps, C[pty

whereP, ..., Pg_, are generically chosen dil ~ P~ H > (05 ...,0,), 01 ¢ H and
2

Psi 4. ..., Py are generically chosen points (.

It will be enough to show that diiz), = 2r. In order to do that it will be enough to show
that adding 2 simple points ofP’ to Z gives a scheme whose defining ideal, in degree
is 0.

We choose 2 simple points ofP” and call them(Ty, ..., T,, Ty41, ..., T>.} where
Ty, ..., T, are chosen generically ilf and7,1, ..., T». are chosen generically .

Form the scheme

Zt=Z+Ti+ -+ Ty CP.
If we let ( )’ denote the operation @fegueand( )” the operation oDime, we get

(Z7)Y =Z'+Try1+--+Tx and (ZV)'=Z"4+T14---+T,. (t)
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By Lemma 2.4 we have
dim(Iz),_1 =dim(Iz»), =dim(Izm),_1,
where
Z///:(t—Z)Q2+~-~+(t—2)Qt+2R1+~-~+2R%¢
+ Ry 4+ + Ry P

for Ry, ..., Ry, generic points of*' 1,
IfweletW = Wi g then we can rewrit&”” as
-

Z///:W+R%+1+"'+Rst'

Suppose, for the moment, that the dimension/gf),_1 is as expected, i.e.

dim(zy;),_ =21 - %’ ).
It follows that
d. I/// :2[_1_s—t t _S_t
im(Izm),—1 > () >

Using (1) we conclude that

St
2
Hence we can apply Lemma 1.6 X0, which finishes the theorem in this case.
As far as Case (2) is concerned, to show that

. . _ N
d|m(1(Z+)’)l,1 = d|m(1(z+)”)t = [Zt 1 —_ ([) —_ Et:l — = 0

vitr=p¥ (N=2' -1
we need to consider the schemes
W=Wgion=0—-—D01+ -+ —-1Q;+2P1+---+ 2P, 2 C P,

where theP; are generic points d?’ and theQ; the coordinate points on the hypersurface
z0 = 0. We want to show that

dim(Iw), =0.
We follow the procedure we described above (slightly simpler in this case) by forming
Z:Z(Sﬁz’t):(t—1)Q1+-~-+(t—1)Q,+2P{+~-~+2P;T+2
+ ZP#Jrl + 4 2P 40,

wherePy, ..., P, ., are generic points o ~ Pl H > (0o ..., 0, 01¢ H and

2

P#J’_lv""PS/"rz

are generic points if®’.
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Using the same procedure as above, we seek to apply Lemma 1.6. To do that it is enough
(by Lemma 2.4) to prove that if

Z/”z(l—2)Q2+"'+(t_Z)Qf+2R1+"‘+2R%
T Rygz g+ + Ry2

(whereRyq, ..., R,,+2 are generic points dP"l), then dim(Iz»),_1 = 0.
But, if we letW = W ss2

1) then we can rewrit&”” as
2 ’

Z///:W+R#+1+'.'+Rst+2'
If we assume for the moment that (ﬁn;tv)t,l is as expected, i.e.

Sl+2

dim(7:), 1 = 21 5

()

we then have

2 2
dim(Iz»),_1 = max{O, [2’_1 _ -2’_ (t)] _ _2'— } =0

and we are done.

We now deal with the final step of the induction argument. We saw above that to prove
thatV,” and Vf’+2 have the correct dimensions it is enough to show that:

(V,—1)*/? and(V,_1)“*T?/2 have, respectively, the expected dimensions.

t = 6: In this cases = 8 and forVs = V,_1 we have already observed thats)* and
(Vs)® have the expected dimensions. So, the theorem is proved=ér.

t =7: In this case7 = 16 and so’% =8=yss. SinceVé‘ has the expected dimension then
Case (1) holds for = 7 and we have

dim V37 =16(7+1) —1=2"-1=N.

It follows that dim V7 = N for all s > 16. In particular, Case (2) holds also fo& 7.
t >8: To use the induction hypothesis it would be enough to have

Sinces7 = 16, sg = 28, andsg = 50, we have these inequalities foe 8, 9.
For > 10 notice that

¢ r—1
—¢ (0<e1<2) and s;1 =

S = — &2 (0<ep < 2).

t+1
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s+ 2 1 &1 2!
= 2 — ——-1>— -3
2 2t(t + 1) K 2 2t(t + 1)

This last is>0 if and only if

Si—1—

2> 61t + 1)

and this last happens always when 10.
This computation finishes the proof of Theorem 2.81

Remark 2.5. In analogy with the case= 7, if r = 2 — 1 thenV," = PN(N = 2! — 1),
henceV} = PV forall s >s,. So, forr = 2¥ — 1 ALL the s-secant varieties t®, have the
expected dimension (see also our pdpg.

Given the results we have seen above, it makes sense to conjecture:

Conjecture. For V; = PYH c PV, (N=2' - 1), except for the casg =4, s = 3}, the
dimension o is always that expected

From our computations above, the first open cases of the conjecture are fyr s =9},
{t=8, s=29},and{r =9, s =51].
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