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Abstract

Let Vt = P1 × · · · × P1 (t-copies) embedded inPN(N = 2t − 1) via the Segre embedding. Let
(Vt )

s be the subvariety ofPN which is the closure of the union of all the secantPs−1’s to Vt . The
expected dimensionof (Vt )s is min{st + (s − 1), N}.
This is not the case for(V4)3, which we conjecture is the only defective example in this infinite

family. We prove (Theorem 2.3): ifet = [ 2t
t+1] ≡ �t (mod 2) andst = et − �t then(Vt )s has the

expected dimension, except possibly whens = st + 1. Moreover, whenevert = 2k − 1, (Vt )s has the
expected dimension for everys.
© 2005 Elsevier B.V. All rights reserved.

MSC:14M99; 14M12; 14A05

0. Introduction

Theproblemof determining thedimensionsof thehigher secant varieties of the classically
studied projective varieties (and to describe the defective ones) is a problem with a long
and interesting history (see e.g.[7,8,11,12,14]).
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In the case of the Segre varieties there is much interest in this question, and not only
among geometers. In fact, this particular problem is strongly connected to questions in
representation theory, coding theory, algebraic complexity theory (see our paper[6] for
some recent results as well as a summary of known results, and also[2]) and, surprisingly
enough, also in algebraic statistics (e.g. see[9,10]).
We address this problem here; more precisely we will study the higher secant varieties

of the product oft-copies ofP1, i.e. of

Pn = P1 × · · · × P1, n = (1, . . . ,1)
embedded in the projective spacePN(N = 2t − 1) by the complete linear systemOPn(a),
wherea= (a1, . . . , at )= (1,1, . . . ,1). We denote this embedding ofPn by Vt .
In Section 1 we recall some classical results by Terracini regarding such secant varieties

andwealso introduceoneof the fundamental observations (Proposition1.3)whichallowsus
to convert certain questions about ideals of varieties in multiprojective space to questions
about ideals in standard polynomial rings. In this section we also recall some lemmata
which are extremely useful in dealingwith the postulation of non-reduced zero-dimensional
schemes in projective space.
In Section 2 we give our main theorem (Theorem 2.3). We first remark on the cases

t = 2,3,4 separately (showing that fort = 4 there is a defective secant variety). Finally,
if t >4 andt = 2k − 1 we recall (see[6]) that all the higher secant varieties ofVt have
the expected dimension. Ift >4 andt �= 2k − 1, we again show that all the higher secant
varieties have the expected dimension—except, possibly, for one higher secant variety for
each sucht .
Our method is essentially this (see Section 1): we use Terracini’s lemma (as in[5,6]) to

translate the problem of determining the dimensions of higher secant varieties into that of
calculating the value, at(1, . . . ,1), of the Hilbert function of generic sets of 2-fat points in
Pn. Then we show, by passing to an affine chart inPn and then homogenizing in order to
pass toPt , that this last calculation amounts to computing the Hilbert function of a very
particular subscheme ofPt . Finally, we study the postulation of these special subschemes
of Pt (mainly) by using the “differential Horace method’’ introduced by Alexander and
Hirschowitz[1].

1. Preliminaries, the multiprojective-affine-projective method

Let us recall the notion of higher secant varieties.

Defintion 1.1. LetX ⊆ PN be a closed irreducible projective variety of dimensionn. The
sth higher secant varietyof X, denotedXs , is the closure of the union of all linear spaces
spanned bys independent points ofX.

Recall that, forXas above, there is an inequality involving the dimension ofXs . Namely,

dim Xs� min{N, sn+ s − 1}
and one “expects’’ the inequality should, in general, be an equality.
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WhenXs does not have the expected dimension,X is said to be (s−1)-defective, and the
positive integer

�s−1(X)= min{N, sn+ s − 1} − dim Xs

is called the (s − 1)-defectof X. Probably the most well-known defective variety is the
Veronese surface,X, in P5 for which�1(X)= 1.
A classical result about higher secant varieties is Terracini’s lemma (see[13,6]):

Terracini’s lemma. Let X be an integral scheme embedded inPN . Then

TP (X
s)= 〈TP1(X), . . . , TPs (X)〉,

whereP1, . . . , Ps are s generic points on X, and P is a generic point of〈P1, . . . , Ps〉 (the
linear span ofP1, . . . , Ps ); hereTPi (X) is the projectivized tangent space of X inPN .

LetZ ⊂ X beaschemeofsgeneric2-fat points, that is a schemedefinedby the ideal sheaf
IZ=I2

P1
∩· · ·∩I2

Ps
⊂ OX, whereP1, . . . , Ps ares generic points. Since there is abijection

between hyperplanes of the spacePN containing the subspace〈TP1(X), . . . , TPs (X)〉 and
the elements ofH 0(X,IZ(1)), we have:

Corollary 1.2. Let X and Z be as above; then

dim Xs = dim〈TP1(X), . . . , TPs (X)〉 =N − dim H 0(X,IZ(1)).

Now, letX = P1 × · · · × P1 (t-times) and letVt ⊂ PN(N = 2t − 1) be the embedding
of X given byOX(1, . . . ,1). By applying the corollary above to our case we get

dim V st =H(Z, (1,1, . . . ,1))− 1,

whereZ ⊂ P1 × · · · × P1 is a set ofsgeneric 2-fat points, and where∀j ∈ Nt ,H(Z, j) is
the Hilbert function ofZ, i.e.

H(Z, j)= dim Rj − dim H 0(P1 × · · · × P1,IZ(j)),

whereR= k[x0,1, x1,1, . . . , x0,t , x1,t ] is the multi-graded homogeneous coordinate ring of
P1 × · · · × P1.
Now consider the birational map

g : P1 × · · · × P1 − −− → At ,

where

((x0,1, x1,1), . . . , (x0,t , x1,t )) �−→
(
x1,1

x0,1
,
x1,2

x0,2
, . . . ,

x1,t

x0,t

)
.

This map is defined in the open subset ofP1 × · · · × P1 given by{x0,1x0,2 . . . x0,t �= 0}.
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LetS=k[z0, z1,1, z1,2, . . . , z1,t ] be the coordinate ring ofPt and consider the embedding
At → Pt whose image is the chartAt0 = {z0 �= 0}. By composing the two maps above we
get

f : P1 × · · · × P1 − −− → Pt ,

with

((x0,1, x1,1), . . . , (x0,t , x1,t ))

�−→
(
1,
x1,1

x0,1
,
x1,2

x0,2
, . . . ,

x1,t

x0,t

)
= (x0,1x0,2 · · · x0,t , x1,1x0,2 · · · x0,t , . . . , x0,1 · · · x0,t−1x1,t ).

Let Z ⊂ P1 × · · · × P1 be a zero-dimensional scheme which is contained in the affine
chart{x0,1x0,2 . . . x0,t �= 0} and letZ′ = f (Z). We want to construct a schemeW ⊂ Pt

such that dim(IW )t = dim(IZ)(1,...,1).
Let Q0,Q1,Q2, . . . ,Qt be the coordinate points ofPt . The defining ideal ofQi ,

(1� i� t), is

IQi = (z0, z1,1, . . . , ẑ1,i , . . . , z1,t ).
LetWi be the subscheme ofPt denoted by(t − 1)Qi , i.e. the scheme defined by the ideal
I t−1
Qi

.

Proposition 1.3. LetZ,Z′ be as above and letW = Z′ +W1 + · · · +Wt ⊂ Pn. Then we
have

dim(IW )t = dim(IZ)(1,...,1).

Proof. First note that

R(1,...,1) = 〈(x1−s10,1 N1)(x
1−s2
0,2 N2) · · · (x1−st0,t Nt )〉,

where theNi = xsi1,i and eithersi = 0 or 1.
By dehomogenizing (viaf above) and then substitutingzi,j for (xi,j /x0,j ), and finally

homogenizing with respect toz0, we see that

R(1,...,1) � 〈zt−s1−···−st
0 M1M2 . . .Mt 〉,

whereMi = zsi1,i and eithersi = 0 or 1.

Claim. (I(W1+···+Wt))t = (IW1 ∩· · ·∩ IWt )t =〈zt−s1−···−st
0 M1 . . .Mt 〉, whereMi = zsi1,i and

eithersi = 0 or 1.

Proof (⊆). Since both vector spaces are generated bymonomials, it is enough to show that
the monomials of the left-hand side of the equality are contained in the right-hand side of
the equality.
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ConsiderM = zt−s1−···−st
0 M1M2 . . .Mt (as above). We now show that this monomial is

in IWi (for eachi). Notice thatMj ∈ I siQi (for j �= i) and thatzt−s1−···−st
0 ∈ I t−s1−···−st

Qi
.

Thus,M ∈ I (t−s1−···−st )+(s1+···+ŝi+···+st )
Qi

= I t−siQi
. Sincesi�1 we havet − 1� t − si and

soM ∈ I t−1
Qi

as well, and that is what we wanted to show.
(⊇). To prove this inclusion, consider an arbitrary monomialM ∈ St . Such anM can be

writtenM = z�00 M1 · · ·Mt whereMi = z�i1,i .
Now,M ∈ (I(W1+···+Wt))t meansM ∈ (IWi )t for eachi, hence

�0 + �1 + · · · + �̂i + · · · + �t� t − 1

for i = 1, . . . , t .
Since

�0 + �1 + · · · + �t = t
thent − �i� t − 1 for each suchi and so�i�1 for eachi. That finishes the proof of the
claim. �

Now, sinceZ andZ′ are isomorphic (f is an isomorphism between the two affine charts
{z0 �= 0} and{x0,1x0,2 . . . x0,t �= 0}), it immediately follows (via the two different deho-
mogeneizations) that(IZ)(1,...,1)�(IW )t . �

WhenZ is given bys generic 2-fat points, we have the obvious corollary:

Corollary 1.4. LetZ ⊂ P1 × · · · × P1 be a generic set of s2-fat points and letW ⊂ Pt

be as in Proposition1.3, i.e.W = 2P1 + · · · + 2Ps + (t − 1)Q1 + · · · + (t − 1)Qt . Then
we have

dim V st =H(Z, (1, . . . ,1))− 1= (2t − 1)− dim(IW )t .

Now we give some preliminary lemmata and observations (for notation and proofs we
refer the reader to[1, Section 2 and Corollary 9.3]).

Lemma 1.5(Castelnuovo’s inequality). LetD ⊆ Pn be a smooth hypersurface of degree
d, and letZ ⊆ Pn be a zero-dimensional scheme. The schemeZ′ defined by the ideal(IZ :
ID) is called the residual of Z with respect toD, and denoted byResD Z; the schematic
intersectionZ′′ = Z ∩ D is called the trace of Z onD, and denoted byT rD Z. Then for
t�d

dim(IZ,Pn)t� dim(IZ′,Pn)t−d + dim(IZ′′,D)t .

Lemma 1.6(Horace’s differential lemma). LetH ⊆ Pn be a hyperplane, and letP1, . . . ,
Pr be generic points inP

n. LetZ = Ž + 2P1 + · · · + 2Pr ⊆ Pn be a(zero-dimensional)
scheme, let Ž′ = ResH Ž, and Ž′′ = T rH Ž. Let P ′

1, . . . , P
′
r be generic points in H. Let

D2,H (P
′
i ) = 2P ′

i ∩ H , andZ′ = Ž′ + D2,H (P
′
1) + · · · + D2,H (P

′
r ) (Z

′ a subscheme of
Pn), Z′′ = Ž′′ + P ′

1 + · · · + P ′
r (Z

′′ a subscheme ofPn−1 � H ). Thendim(IZ)t = 0 if the
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following two conditions are satisfied:

Degue dim(IZ′)t−1 = dim(I
Ž′+D2,H (P

′
1)+···+D2,H (P

′
r )
)t−1 = 0

and

Dime dim(IZ′′)t = dim(I
Ž′′+P ′

1+···+P ′
r
)t = 0.

The following (obvious) remark is very useful.

Remark 1.7. LetZ,Z′ ⊆ Pn, be zero-dimensional schemes such thatZ′ ⊆ Z. Then
(i) if Z imposes independent conditions to the hypersurfaces ofIt , then the same is true

for the schemeZ′;
(ii) if Z′ �= Z and dim(IZ′)t = 0,1, then dim(IZ)t = 0.

2. Secant varieties of the Segre embeddings ofP1 × · · · × P1

We write(P1)t for P1 × · · · × P1, (t times). By Corollary 1.4, we know that dimV st =
2t − 1− dim(IW )t , whereW is the subscheme ofPt defined by the ideal

I = ℘2
1 ∩ · · · ∩ ℘2

s ∩ qt−1
1 ∩ · · · ∩ qt−1

t ,

where℘i ↔ Pi , qi ↔ Qi and{P1, . . . , Ps} is a set of generic points inPt andQi is the
ith coordinate point ofPt lying on the hyperplane{z0 = 0}.
Let us start with an example.

Example 2.1. Since the caset = 2 is trivial let us begin witht = 3, andV3 ⊂ P7 the
Segre embedding of(P1)3. In this case it is well known (e.g. see[6, Example 2.4]) that
dim V 2

3 = 7. But let us check it with our method.

We have dimV 2
3 = 7− dim(IW )3, whereW ⊂ P3 is the scheme defined by the ideal

I = ℘2
1 ∩ ℘2

2 ∩ q21 ∩ q22 ∩ q23.
It suffices to show thatI3 = 0. But this is well known (see[1]).

Example 2.2. Now lett=4. In this caseV4 ⊂ P15. From[6] (Proposition 2.3 and Example
3.2) we have dimV 2

4 = 9 andV 4
4 = P15.

Let us now considerV 3
4 . Its expected dimension is 14 but we will show that this variety

is defective, and has dimension 13, i.e.�2(V4)= 1.
To see why this is so, recall that

dim V 3
4 = 15− dimk(IW )4,
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whereW is the subscheme ofP4 defined by

IW = ℘2
1 ∩ ℘2

2 ∩ ℘2
3 ∩ q31 ∩ q32 ∩ q33 ∩ q34.

In this case, the 7 points in the support ofW lie on a rational normal curve inP4 and
by results in[4] we obtain that dimk(IW )4 = 2 and hence dimV 3

4 = 13 (and not 14, as
expected).
We now come to the main theorem of this section (and of the paper). We considerVt =

(P1)t ⊂ PN , N = 2t − 1 and its higher secant varieties. We show that for each sucht all
the higher secant varietiesV st , have the expected dimension (except forat mostones for
each sucht).

Theorem 2.3. LetVt be theSegreembeddingof(P1)t inPN ,N=2t−1,and letet=[ 2t
t+1] ≡

�t (mod2),�t ∈ {0,1}; st = et − �t . Then we have the following:

(1) If s�st , thendim V st = s(t + 1)− 1;
(2) If s�st + 2, thendim V st =N .
That is, for s �= st + 1,

dim V st = min{s(t + 1)− 1;N}.

Proof. First notice that, for everyt, st (and hencest + 2) is an even integer.
By Corollary 1.4, to find dimV st we have to compute dim(IW(s,t) )t , whereW(s,t) is the

subscheme ofPt

W(s,t) = (t − 1)Q1 + · · · + (t − 1)Qt + 2P1 + · · · + 2Ps ⊂ Pt ,

where theQi are the coordinate points ofPt in the hyperplanez0 = 0 andP1, . . . , Ps are
s generic points inPt , and show it has the expected dimension in the two cases considered
by this theorem, i.e., fors �= st + 1:

dim(IWs,t )t = max{2t − s(t + 1);0} =
{
2t − s(t + 1) for s�st ;
0 for s�st + 2.

As far as Case (1) is concerned, it suffices (by Remark 1.7) to prove the theorem only for
s = st . As far as Case (2) is concerned, the claim is that fors�st + 2 we haveV st = PN .
Thus it suffices, again by Remark 1.7, to prove the theorem in this case only fors = st + 2.

Since we need to consider schemes likeW(s,t) for st andst + 2 (both even integers) we
will proceed, for a while, by considering schemes likeW(s,t) wheres is ANY even integer.
We start by lettingH be a hyperplane ofPt which contains{Q2, . . . ,Qt } but does not

containQ1. We placeP ′
1, . . . , P

′
s
2
on that hyperplane (generically) andP s

2+1, . . . , Ps off

that hyperplane (generically).
Now consider the scheme (which is a specialization of a scheme likeW(s,t))

Z(s,t) =
(
(t − 1)Q1 + · · · + (t − 1)Qt + 2P ′

1 + · · · + 2P ′
s
2

)
+ 2P s

2+1 + · · · + 2Ps .

Our goal will be to show that fors (even), as in the theorem, the ideal of the schemeZ(s,t)
(in degreet) has the same dimension as the ideal of the schemeW(s,t), in degreet .
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We now perform the processes ofDegueandDimeon this scheme, with our fixed scheme
being(t − 1)Q1 + · · · + (t − 1)Qt + 2P ′

1 + · · · + 2P ′
s
2
, and obtain:

(Degue) Z′ = Z′
(s,t) = (t − 1)Q1 + (t − 2)Q2 + · · · + (t − 2)Qt + P ′

1 + · · · + P ′
s
2

+D2,H (P
′
s
2+1)+ · · · +D2,H (P

′
s ) ⊂ Pt ,

whereP ′
s
2+1
, . . . , P ′

s are generic points inH , and

(Dime) Z′′ = Z′′
(s,t) = (t − 1)Q2 + · · · + (t − 1)Qt + 2P ′

1 + · · · + 2P ′
s
2

+ P ′
s
2+1 + · · · + P ′

s ⊂ H � Pt−1.

Lemma 2.4. LetZ′ andZ′′ be as above. If we let

Z′′′ = Z′′′
( s2 ,t−1) = (t − 2)Q2 + · · · + (t − 2)Qt + 2R1 + · · · + 2Rs

2

+ Rs
2+1 + · · · + Rs

be the subscheme ofH � Pt−1 whereR1, . . . , Rs are generic points of H, then

dim(IZ′)t−1 = dim(IZ′′)t = dim(IZ′′′)t−1.

Proof. Wefirst consider(IZ′)t−1. Notice that any form of degreet−1 containing(t−1)Q1
has to be a cone with vertex atQ1. SinceQ1 /∈H we have

dimk(IZ′)t−1 = dimk(IZ′∩H,H )t−1.

ButZ′ ∩H , considered as a subscheme ofH � Pt−1, is the scheme

(t − 2)Q2 + · · · + (t − 2)Qt + P ′
1 + · · · + P ′

s
2

+ 2P ′
s
2+1 + · · · + 2P ′

s

and this has the form ofZ′′′ above. That shows one of the equalities of the lemma.
As for the other equality, one first notes that every form in(IZ′′)t has to have the linear

formH ′ (which describes the hyperplane ofPt−1 containingQ2, . . . ,Qt ) as a factor.
Thus, dim(IZ′′)t = dim(IResH ′ (Z′′))t−1. But,

ResH ′(Z′′)= (t − 2)Q2 + · · · + (t − 2)Qt + 2P ′
1 + · · · + 2P ′

s
2

+ P ′
s
2+1 + · · · + P ′

s

and this also has the form ofZ′′′ above. �

Since the schemeZ′′′ of the lemma is of the typeW
(
s
2 ,t−1) + Rs

2+1 + · · · + Rs and
W
(
s
2 ,t−1) is precisely the scheme we have to consider if we wish to find the dimension of

(Vt−1)
s
2 , the stage is set for an induction argument ont .

In order to start the induction argument we need to establish some base cases. The cases
t = 2 andt = 3 are trivial.
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t = 4: In this casest = s4 = 2 and we have already seen (Example 2.2) that the theorem
is true fors�2 ands�4. Notice that (in this case) the missing value (s = 3) actually gives
a defective secant variety.
t = 5: We will do this case in some detail as it shows the general method of the proof.
We havest=s5=4 andst+2=s5+2=6. So, it will be enough to show that: dimV 4

5 =23
and thatV 6

5 = P31.
ForV 4

5 we need to consider the scheme

W =W(4,5) = 4Q1 + · · · + 4Q5 + 2P1 + · · · + 2P4,

whereP1, . . . , P4 are general points ofP5 and show that

dim(IW )5 = (25 − 1)− 23= 8.

To do that, it would be enough to show that a scheme like

Z = Z(4,5) = 4Q1 + · · · + 4Q5 + 2P ′
1 + 2P ′

2 + 2P3 + 2P4

(whereP ′
1, P

′
2 are general points in a hyperplaneH ⊃ 〈Q2, . . . ,Q5〉 such thatQ1 /∈H ,

andP3, P4 are generic points inP5) satisfies dim(IZ)5 = 8. But, to prove that, it is enough
to show that by adding 8 points toZ we get a schemeZ+ for which dim(IZ+)5 = 0.
Choose 8 points{T1, . . . , T8} so that the first four are generically chosen onH and the

last four are generically chosen inP5. If we performDegueandDimeonZ+ we get (see
Lemma 2.4 above)

(Z+)′ = 4Q1 + 3Q2 + · · · + 3Q5 + P ′
1 + P ′

2 +D2,H (P
′
3)+D2,H (P

′
4)

+ T5 + · · · + T8
=Z′ + T5 + · · · + T8

and

(Z+)′′ = 4Q2 + · · · + 4Q5 + 2P ′
1 + 2P ′

2 + P ′
3 + P ′

4 + T1 + · · · + T4
=Z′′ + T1 + · · · + T4.

By Lemma 2.4 we have

dim(IZ′)4 = dim(IZ′′)5 = dim(IZ′′′)4,

whereZ′ = Z′
(4,5), Z

′′ = Z′′
(4,5), andZ

′′′ is the subscheme ofP4 given by 3Q2 + · · · +
3Q5 + 2R1 + 2R2 + R3 + R4 whereR1, . . . , R4 are 4 generic points inP4.
But, we already know that forW(2,4) = 3Q2 + · · · + 3Q5 + 2R1 + 2R2 we have

dim(IW(2,4) )4 = 6.
Thus, dim(IZ′)4 = 4 and dim(IZ′′)5 = 4. It follows that

dim(I(Z+)′)4 = 0 and dim(I(Z+)′′)5 = 0.

By Lemma 1.6 we thus have dim(IZ+)5 = 0 as we wanted to show. That finishes this
calculation.
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We now need to show thatV 6
5 = P31. As before, we consider a schemeZ of the type

Z = Z(6,5) = 4Q1 + · · · + 4Q5 + 2P ′
1 + · · · + 2P ′

3 + 2P4 + · · · + 2P6,

whereP ′
1,P

′
2,P

′
3 are generically chosen on the hyperplaneH , andP4,P5,P6 are generically

chosen inP5. By Lemma 2.4, (and also using Lemma 1.6) we will be done if, considered
as a subscheme ofP4,

Z′′′
(3,4) = Z′′′ = 3Q2 + · · · + 3Q5 + 2R1 + 2R2 + 2R3 + R4 + R5 + R6

satisfies(IZ′′′)4 = 0.
But, forW =W(3,4) we know that dim(IW )4 = 2 (see Example 2.2). It then follows that

dim(IZ′′′)4 = 0, which is what we wanted to show.
It is worth mentioning that although the theorem does not cover the case{t = 5, s = 5}

we were able to show, using the computer algebra systemCoCoA[3], that dimV 5
5 = 29,

the expected dimension.
Now we prove the theorem by induction ont . We proceed to the general case oft�6,

noting that the theorem has been proved fort = 2,3,4,5. In fact, and we will use this, for
t=5we have the expected dimension even forV 5

5 , something notmentioned in the theorem.
To studyV stt (t�6) we need to consider the schemes

W =W(st ,t))= (t − 1)Q1 + · · · + (t − 1)Qt + 2P1 + · · · + 2Pst ⊂ Pt ,

where thePi are generic points ofPt and theQi are the coordinate points ofPt on the
hyperplanez0 = 0.
We want to show that

dim(IW )t = 2t − st (t + 1).

We write 2t − st (t + 1)= 2r.
We follow the procedure outlined in the caset = 5. We first form the scheme

Z = Z(st ,t) = (t − 1)Q1 + · · · + (t − 1)Qt + 2P ′
1 + · · · + 2P ′

st
2

+ 2Pst
2 +1 + · · · + 2Pst ⊂ Pt ,

whereP ′
1, . . . , P

′
st
2
are generically chosen onH � Pt−1,H ⊃ 〈Q2, . . . ,Qt 〉,Q1 /∈H and

Pst
2 +1, . . . , Pst are generically chosen points inPt .

It will be enough to show that dim(IZ)t =2r. In order to do that it will be enough to show
that adding 2r simple points ofPt to Z gives a scheme whose defining ideal, in degreet ,
is 0.
We choose 2r simple points ofPt and call them{T1, . . . , Tr , Tr+1, . . . , T2r} where

T1, . . . , Tr are chosen generically inH andTr+1, . . . , T2r are chosen generically inPt .
Form the scheme

Z+ = Z + T1 + · · · + T2r ⊂ Pt .

If we let ( )′ denote the operation ofDegueand( )′′ the operation ofDime, we get

(Z+)′ = Z′ + Tr+1 + · · · + T2r and (Z+)′′ = Z′′ + T1 + · · · + Tr . (†)
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By Lemma 2.4 we have

dim(IZ′)t−1 = dim(IZ′′)t = dim(IZ′′′)t−1,

where

Z′′′ = (t − 2)Q2 + · · · + (t − 2)Qt + 2R1 + · · · + 2Rst
2

+ Rst
2 +1 + · · · + Rsi ⊂ Pt−1

for R1, . . . , Rst generic points ofPt−1.
If we let W̃ =W

(
st
2 ,t−1) then we can rewriteZ′′′ as

Z′′′ = W̃ + Rst
2 +1 + · · · + Rst .

Suppose, for the moment, that the dimension of(I
W̃
)t−1 is as expected, i.e.

dim(I
W̃
)t−1 = 2t−1 − st

2
(t).

It follows that

dim(IZ′′′)t−1 = 2t−1 − st
2
(t)− st

2
.

Using(†) we conclude that

dim(I(Z+)′)t−1 = dim(I(Z+)′′)t =
[
2t−1 − st

2
(t)− st

2

]
− r = 0.

Hence we can apply Lemma 1.6 toZ+, which finishes the theorem in this case.
As far as Case (2) is concerned, to show that

V
st+2
t = PN (N = 2t − 1)

we need to consider the schemes

W =W(st+2,t) = (t − 1)Q1 + · · · + (t − 1)Qt + 2P1 + · · · + 2Pst+2 ⊂ Pt ,

where thePi are generic points ofPt and theQi the coordinate points on the hypersurface
z0 = 0. We want to show that

dim(IW )t = 0.

We follow the procedure we described above (slightly simpler in this case) by forming

Z = Z(st+2,t) = (t − 1)Q1 + · · · + (t − 1)Qt + 2P ′
1 + · · · + 2P ′

st+2
2

+ 2Pst+2
2 +1 + · · · + 2Pst+2,

whereP ′
1, . . . , P

′
st+2
2

are generic points onH � Pt−1, H ⊃ 〈Q2, . . . ,Qt 〉, Q1 /∈H and

Pst+2
2 +1, . . . , Pst+2

are generic points inPt .
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Using the same procedure as above, we seek to apply Lemma 1.6. To do that it is enough
(by Lemma 2.4) to prove that if

Z′′′ = (t − 2)Q2 + · · · + (t − 2)Qt + 2R1 + · · · + 2Rst+2
2

+ Rst+2
2 +1 + · · · + Rst+2

(whereR1, . . . , Rst+2 are generic points ofPt−1), then dim(IZ′′′)t−1 = 0.

But, if we let ˜̃
W =W

(
st+2
2 ,t−1) then we can rewriteZ′′′ as

Z′′′ = ˜̃
W + Rst+2

2 +1 + · · · + Rst+2.

If we assume for the moment that dim(I ˜̃
W
)t−1 is as expected, i.e.

dim(I ˜̃
W
)t−1 = 2t−1 − st + 2

2
(t)

we then have

dim(IZ′′′)t−1 = max

{
0,

[
2t−1 − st + 2

2
(t)

]
− st + 2

2

}
= 0

and we are done.
We now deal with the final step of the induction argument. We saw above that to prove

thatV stt andV st+2
t have the correct dimensions it is enough to show that:

(Vt−1)
st /2 and(Vt−1)

(st+2)/2 have, respectively, the expected dimensions.
t = 6: In this cases6 = 8 and forV5 = Vt−1 we have already observed that(V5)4 and

(V5)
5 have the expected dimensions. So, the theorem is proved fort = 6.
t = 7: In this cases7 = 16 and sos72 = 8= s6. SinceV 8

6 has the expected dimension then
Case (1) holds fort = 7 and we have

dim V s77 = 16(7+ 1)− 1= 27 − 1=N .

It follows that dimV s7 =N for all s�16. In particular, Case (2) holds also fort = 7.
t�8: To use the induction hypothesis it would be enough to have

st

2
� st + 2

2
�st−1.

Sinces7 = 16, s8 = 28, ands9 = 50, we have these inequalities fort = 8,9.
For t�10 notice that

st = 2t

t + 1
− �1 (0��1<2) and st−1 = 2t−1

t
− �2 (0��2<2).
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Thus

st−1 − st + 2

2
= 1

2t (t + 1)
2t − �2 + �1

2
− 1� 2t

2t (t + 1)
− 3.

This last is�0 if and only if

2t�6t (t + 1)

and this last happens always whent�10.
This computation finishes the proof of Theorem 2.3.�

Remark 2.5. In analogy with the caset = 7, if t = 2k − 1 thenV stt = PN(N = 2t − 1),
henceV st = PN for all s�st . So, fort = 2k − 1 ALL the s-secant varieties toVt have the
expected dimension (see also our paper[6]).

Given the results we have seen above, it makes sense to conjecture:

Conjecture. For Vt = (P1)t ⊂ PN , (N = 2t − 1), except for the case{t = 4, s = 3}, the
dimension ofV st is always that expected.

From our computations above, the first open cases of the conjecture are for{t=6, s=9},
{t = 8, s = 29}, and{t = 9, s = 51}.
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