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a b s t r a c t

A graph is called very well-covered if it is unmixed without isolated vertices such that the
cardinality of eachminimal vertex cover is half the number of vertices.We first prove that a
very well-covered graph is Cohen–Macaulay if and only if it is vertex decomposable. Next,
we show that the Castelnuovo–Mumford regularity of the quotient ring of the edge ideal of
a very well-covered graph is equal to the maximum number of pairwise 3-disjoint edges.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

LetG be a simple graphwith the vertex set V (G) = {x1, x2, . . . , xn} and the edge set E(G). By identifying the vertex xi with
the variable xi in the polynomial ring R = K [x1, . . . , xn] over a field K , one can associate with G the square-free monomial
ideal

I(G) = (xixj | {xi, xj} ∈ E(G)).

The ideal I(G) is called the edge ideal of G.
A graph G is called unmixed if all the minimal vertex covers have the same cardinality. In this case R/I(G) is unmixed, i.e.,

all the associated primes of I(G) have the same height. Assume that the graph G is unmixed without isolated vertices. In this
case it is well-known that 2ht (I(G)) ≥ |V (G)|. See, e.g., [8]. A graph G is called very well-covered if it is unmixed without
isolated vertices and with 2ht (I(G)) = |V (G)|. The class of very well-covered graphs contains unmixed bipartite graphs
without an isolated vertex and grafted graphs. See [6] for the grafted graph.

For an unmixed graph G the following hierarchy is known:

vertex decomposability H⇒ shellability H⇒ Cohen–Macaulayness.

It is known that the implications are strict. We are interested in a class of graphs such that the converses of the above
implications hold for them. For unmixed bipartite graphs the converse of the right implication has been shown by Estrada
and Villarreal [5]. The left converse has been shown by Van Tuyl [15].
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The first main result of this article generalizes these results to very well-covered graphs. Namely:

Theorem 1.1. Let G be a very well-covered graph. Then the following conditions are equivalent:

(1) G is Cohen–Macaulay.
(2) G is shellable.
(3) G is vertex decomposable.

The equivalence between (1) and (2) is already pointed out in [3, Theorem 4.1]. Theorem 1.1 has been proved
independently by Constantinescu and Varbaro in [1, Theorem 2.3], which is a minor extension of their other joint paper
on vertex cover algebras in [2, Theorem 4.7].

Our second topic is the (Castelnuovo–Mumford) regularity of the edge ideal of a very well-covered graph. The regularity
is one of the most important invariants of a minimal free resolution of a graded ring. It is actively studied for edge ideals.
See, e.g., [12,13,15,21].

Let G be a graph. A pair of edges {x, y} and {u, v} of G is called 3-disjoint if the induced subgraph of G on {x, y, u, v} is
disconnected. A set Γ of edges of G is called a pairwise 3-disjoint set of edges if any pair of edges of Γ is 3-disjoint. The
maximum cardinality of all pairwise 3-disjoint sets of edges in G is denoted by a(G).

Then the following lower bound of the regularity is known:

Theorem 1.2 ([12], Lemma 2.2). For a graph G, reg (R/I(G)) ≥ a(G).

The following natural question arises: are there any families of graphs where this inequality is an equality? Zheng [21]
proved the equality for trees. Francisco et al. [7] (resp. VanTuyl [15]) proved that equality holds for Cohen–Macaulay bipartite
graphs (resp. sequentially Cohen–Macaulay bipartite graphs). Note that a tree is a sequentially Cohen–Macaulay bipartite
graph ([6]). Kummini [13] proved that equality holds also for unmixed bipartite graphs. We generalize Kummini’s result to
the class of very well-covered graphs. Namely:

Theorem 1.3. Let G be a very well-covered graph. Then reg (R/I(G)) = a(G).

While Kummini has associated a directed graph with an unmixed graph, we associated a semidirected graph with a very
well-covered graph to reduce to the Cohen–Macaulay case.

2. Basic definitions and notation

In this section we recall some definitions and properties that we will use in the paper.
A simplicial complex ∆ on the vertex set V = {x1, . . . , xn} is a collection of subsets of V , with the following two

properties: (1) {xi} ∈ ∆ for all i; (2) if F ∈ ∆, then all subsets of F are also in ∆ (including the empty set). An element
of ∆ is called a face of ∆ and we define the dimension of F by dim F = |F | − 1. The dimension of ∆ is defined by
dim∆ = max{dim F | F ∈ ∆}. A maximal face of ∆ with respect to inclusion is called a facet of ∆.

A simplicial complex ∆ is called shellable if there is a linear order F1, . . . , Fs of all the facets of ∆ such that for all
1 ≤ i < j ≤ s, there exists some v ∈ Fj \ Fi and some l ∈ {1, . . . , j − 1} with Fj \ Fl = {v}.

Let F ∈ ∆ be a face of ∆. The link of F is the simplicial complex

lk∆(F) = {F ′
∈ ∆|F ′

∩ F = ∅, F ′
∪ F ∈ ∆}

and the deletion of F is the simplicial complex

del∆(F) = {F ′
∈ ∆ | F ′

∩ F = ∅}.

If ∆ is the simplicial complex with the facets F1, . . . , Ft , then we write ∆ = ⟨F1, . . . , Ft⟩.
A simplicial complex ∆ on the vertex set V = {x1, . . . , xn} is defined recursively to be vertex decomposable if one of the

following conditions is satisfied:

(i) n = 0 and ∆ = {∅}.
(ii) n > 0 and ∆ = ⟨{x1, . . . , xn}⟩.
(iii) There exists some x ∈ V such that lk∆({x}) and del∆({x}) are vertex decomposable, and every facet of del∆({x}) is a

facet of ∆.

A simplicial complex ∆ on the vertex set V = {x1, . . . , xn} is defined recursively to be semi-nonevasive over a field K if
one of the following conditions is satisfied:

(i) n = 0 and ∆ = {∅}.
(ii) n > 0 and dim∆ = 0.
(iii) There exists some x ∈ V such that lk∆({x}) and del∆({x}) are semi-nonevasive over K , and such that

H̃i(∆; K) ∼= H̃i(del∆({x}); K) ⊕ H̃i−1(lk∆({x}); K)

for each i.

See [11] for detailed information.
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Let G = (V (G), E(G)) be a graph. A subset C of V (G) is called a vertex cover of G if we have C ∩ {x, y} ≠ ∅ for any
{x, y} ∈ E(G). A vertex cover C of G is called minimal if there is no proper subset of C which is a vertex cover. A subset
F of V (G) is called an independent set of G if any subsets of F with cardinality 2 do not belong to E(G). The family of all
independent sets of G is a simplicial complex on the vertex set V (G), which is called the independence complex of G and is
denoted by ∆G. We call a graph G vertex decomposable (resp. shellable, semi-nonevasive etc.) if the independence complex
∆G is vertex decomposable (resp. shellable, semi-nonevasive etc.).

It is known that a graph G is vertex decomposable if and only if its connected components are vertex decomposable. See
[20, Lemma 20].

ForW ⊆ V (G) the subgraph G \ W is defined to be

(V (G) \ W , {{x, y} ∈ E(G) | {x, y} ∩ W = ∅}).

Moreover, for any x ∈ V (G) we denote by NG(x) the neighbor set of x in G, i.e., NG(x) = {y ∈ V (G) | {x, y} ∈ E(G)}. The
following lemma will be crucial in the proof of our main results.

Lemma 2.1 ([4], Lemma 4.2). Let G be a graph and suppose that x, y ∈ V (G) are two vertices such that {x}∪NG(x) ⊆ {y}∪NG(y).
If both G \ {y} and G \ ({y} ∪ NG(y)) are vertex decomposable, then G is vertex decomposable.

LetM be a noetherian graded R-module, and let

0 →


j

R(−j)βt,j(M)
→


j

R(−j)βt−1,j(M)
→ · · · →


j

R(−j)β0,j(M)
→ M → 0

be a minimal graded free resolution ofM over R.
The (Castelnuovo–Mumford) regularity of M , denoted by reg (M), is defined by

reg (M) = max{j − i | βi,j(M) ≠ 0}.

The projective dimension ofM , denoted by pd (M) (sometimes pd R(M)), is defined by

pd (M) = max{i | βi,j(M) ≠ 0 for some j}.

The cover ideal of G, denoted by J(G), is defined to be the square-free monomial ideal

J(G) = (xF | F is a (minimal) vertex cover of G),

where xF =
∏

xi∈F xi.
We require the following result.

Lemma 2.2 ([14]). For a graph G we have reg (R/I(G)) = pd (J(G)).

3. The Cohen–Macaulay case

Throughout the article let R = K [x1, . . . , xh, y1, . . . , yh] be a polynomial ring over a field K .
In this section we first prove that G is Cohen–Macaulay if and only if it is vertex decomposable, following the idea of Van

Tuyl [15].
We next show that if G is Cohen–Macaulay, then the regularity of R/I(G) is equal to the maximum number of pairwise

3-disjoint edges of G. We will use this result to prove the main theorem of the next section.
We reformulate a result in [3] for our purpose.

Lemma 3.1. Let G be a very well-covered graph with 2h vertices. Then the following conditions are: equivalent:

(1) G is Cohen–Macaulay;
(2) There is a relabeling of vertices V (G) = {x1, . . . , xh, y1, . . . , yh} such that the following five conditions hold:

(i) X = {x1, . . . , xh} is a minimal vertex cover of G and Y = {y1, . . . , yh} is a maximal independent set of G;
(ii) {x1, y1}, . . . , {xh, yh} ∈ E(G);
(iii) if {zi, xj}, {yj, xk} ∈ E(G), then {zi, xk} ∈ E(G) for distinct i, j, k and for zi ∈ {xi, yi};
(iv) if {xi, yj} ∈ E(G), then {xi, xj} /∈ E(G);
(v) if {xi, yj} ∈ E(G), then i ≤ j.

Proof. (1) ⇒ (2). Since G is very well-covered, G has a perfect matching (see [9, Remark 2.2]). Hence there is a relabeling of
the vertices in G such that the conditions (i) and (ii) are satisfied. It is shown in [3, Lemma 3.5] that if G is Cohen–Macaulay,
then there exists a suitable simultaneous change of labeling on both xis and yis (i.e., we relabel (xi1 , . . . , xih) and (yi1 , . . . , yih)
as (x1, . . . , xh) and (y1, . . . , yh) at the same time) such that the condition (v) is satisfied. Hence under this relabeling the
conditions (i), (ii) and (v) are fulfilled. Now the conditions (iii) and (iv) are also satisfied by [3, Theorem 3.6], since G is a
Cohen–Macaulay very well-covered graph with the conditions (i), (ii) and (v).

(2) ⇒ (1) is proved by [3, Theorem 3.6]. �
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Note that under the relabeling we have deg(y1) = 1 and {x1, y1} ∈ E(G).

Theorem 3.2. Let G be a very well-covered graph with 2h vertices. Then the following conditions are equivalent:

(1) G is Cohen–Macaulay.
(2) G is vertex decomposable.

Proof. (2) ⇒ (1) always holds for any unmixed graph G. So it suffices to prove (1) ⇒ (2). We prove the assertion by
induction on h = ht I(G). If h = 1, then G is just an edge and there is nothing to prove. So suppose h > 1. By Lemma 3.1 we
may assume the conditions (i), (ii), . . . , (v). We have {y1} ∪NG(y1) ⊆ {x1} ∪NG(x1). By Lemma 2.1 it is enough to show that
G \ {x1} and G \ ({x1} ∪ NG(x1)) are vertex decomposable. It is clear that G \ {x1, y1} has an even number of vertices which
are not isolated with ht (I(G \ {x1, y1})) = h− 1. It follows from the above lemma that G \ {x1, y1} is Cohen–Macaulay. Now
the induction hypothesis implies that G \ {x1, y1} is vertex decomposable. Since {y1} is isolated in G \ {x1}, we know that
G \ {x1} is vertex decomposable.
Now we show that G \ ({x1} ∪ NG(x1)) is vertex decomposable. We first prove the following claims:

Claim 1. If xt ∈ NG(x1), then yt is isolated in G \ ({x1} ∪ NG(x1)).

Claim 2. If yt ∈ NG(x1), then xt is isolated in G \ ({x1} ∪ NG(x1)).

Proof of Claim 1. Suppose xt ∈ NG(x1). If yt is not isolated in G \ ({x1} ∪ NG(x1)), then there exists an integer k such that
{xk, yt} ∈ E(G \ ({x1} ∪ NG(x1))). From Lemma 3.1, we get that {x1, xk} ∈ E(G) and hence xk ∈ NG(x1). This implies that
xk /∈ V (G \ ({x1} ∪ NG(x1))) but {xk, yt} ∈ E(G \ ({x1} ∪ NG(x1))) which is impossible.

Proof of Claim 2. Suppose yt ∈ NG(x1) but xt is not isolated in G \ ({x1} ∪ NG(x1)). If {xk, xt} ∈ E(G \ ({x1} ∪ NG(x1))) for
some k, then we get {x1, xk} ∈ E(G) and so xk ∈ NG(x1), a contradiction.
If {xt , yk} ∈ E(G \ ({x1} ∪ NG(x1))) for some k, then we must have {x1, yk} ∈ E(G) and hence yk ∈ NG(x1). This shows that
yk /∈ V (G \ ({x1} ∪ NG(x1))) but {xt , yk} ∈ E(G \ ({x1} ∪ NG(x1))) which is impossible.

The above statements show that

H = (G \ ({x1} ∪ NG(x1))) \ {isolated vertices of G \ ({x1} ∪ NG(x1))}

has an even number of vertices which are not isolated and its height is half of the number of vertices. It follows from the
above lemma that H is Cohen–Macaulay and so it is vertex decomposable by induction. Therefore G \ ({x1} ∪NG(x1)) is also
vertex decomposable. �

Remark 3.3. Since a grafted graph is very well-covered and Cohen–Macaulay, we get that if G is a grafted graph, then it
is vertex decomposable. Note that it is not very difficult to prove it directly. Also it is known that vertex decomposability
implies the semi-nonevasive property, while shellability does not imply it, in general. See [11, Propositions 5.12 and 5.13].
But we know by Theorem 3.2 that if G is a shellable very well-covered graph, then G is semi-nonevasive.

Now we study the Castelnuovo–Mumford regularity of Cohen–Macaulay very well-covered graphs.

Lemma 3.4. Let G be a very well-covered graph with 2h vertices. If G is Cohen–Macaulay, then reg (R/I(G)) = a(G).

Proof. By Theorem 1.2 and Lemma 2.2 it is enough to show that pd (J(G)) ≤ a(G), where J(G) denotes the cover ideal of the
graph G. We proceed by induction on the ht I(G) = h. If h = 1, then G just has the single edge {x1, y1} and J(G) = (x1, y1).
Therefore pd (J(G)) = 1 = a(G). Now suppose h > 1. By Lemma 3.1 we may assume that deg(y1) = 1, NG(y1) = {x1},
and NG(x1) = {xi1 , . . . , xik , y1, yj1 , . . . , yjs} with {i1, . . . , ik} ∩ {1, j1, . . . , js} = ∅. Note that there is no minimal vertex
cover of G containing both x1 and y1 and that any minimal vertex cover of G not containing x1 must contain NG(x1). Set
G1 = G \ ({x1} ∪ NG(x1)) and G2 = G \ ({y1} ∪ NG(y1)). Let J(G1)R and J(G2)R be ideals of R = K [x1, . . . , xh, y1, . . . , yh]
generated by the elements in J(G2) and in J(G2) respectively. Then using the same arguments as in [15, Theorem 3.3], we
have:

(1) J(G) = x1J(G2)R + xi1 · · · xiky1yj1 · · · yjs J(G1)R.
(2) x1J(G2)R


xi1 · · · xiky1yj1 · · · yjs J(G1)R = x1xi1 · · · xiky1yj1 · · · yjs J(G1)R.

The above statements imply that there is an exact sequence

0 −→ x1xi1 · · · xiky1yj1 · · · yjs J(G1)R −→ x1J(G2)R ⊕ xi1 · · · xiky1yj1 · · · yjs J(G1)R −→ J(G) −→ 0.

The above exact sequence yields

pd (J(G)) ≤ max{pd (x1xi1 · · · xiky1yj1 · · · yjs J(G1)R) + 1, pd (x1J(G2)R), pd (xi1 · · · xiky1yj1 · · · yjs J(G1)R)}.

Note that for anymonomial ideal I andmonomial f with property that supp(f )∩ supp(g) = ∅, for all g ∈ G(I) (the minimal
generating set of I), we have pd (fI) = pd (I). Therefore

pd (J(G)) ≤ max{pd (J(G1)R) + 1, pd (J(G2)R)}.
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As explained in the proof of Theorem 3.1, G1 \ {isolated vertices of G1} and G2 have an even number of vertices which are
not isolated and their heights are half of the number of vertices. Since isolated vertices change neither value of reg (R/I(G))
nor a(G) for any graph G, our induction hypothesis implies that pd (J(G1)R) + 1 = pd R1(J(G1)) + 1 ≤ a(G1) + 1 and
pd (J(G2)R) = pd R2(J(G2)) ≤ a(G2), where R1 = K [x | x ∈ V (G1)] and R2 = K [x | x ∈ V (G2)]. One can see that
a(G2) ≤ a(G) and a(G1)+ 1 ≤ a(G) (adding the edge {x1, y1} to any pairwise 3-disjoint set of edges in G1 is a set of pairwise
3-disjoint edges in G). Therefore pd (J(G)) ≤ a(G). �

4. Regularity in the unmixed case

In this section we prove Theorem 1.3. First we quote some known results.

Lemma 4.1 ([9], Remark 2.2). Let G be a very well-covered graph with 2h vertices. Then there is a relabeling of vertices V (G) =

{x1, . . . , xh, y1, . . . , yh} such that the following two conditions hold:

(i) X = {x1, . . . , xh} is a minimal vertex cover of G and Y = {y1, . . . , yh} is a maximal independent set of G;
(ii) {x1, y1}, . . . , {xh, yh} ∈ E(G).

Lemma 4.2 ([3], Proposition 2.3). Let G be a graph with 2h vertices, which are not isolated, and with ht (I(G)) = h. We assume
the conditions (i) and (ii) in Lemma 4.1. Then G is unmixed, i.e., G is very well-covered if and only if the following conditions hold:

(iii) if {zi, xj}, {yj, xk} ∈ E(G), then {zi, xk} ∈ E(G) for distinct i, j, k and for zi ∈ {xi, yi};
(iv) if {xi, yj} ∈ E(G), then {xi, xj} /∈ E(G).

To prove Theorem 1.3 we follow the basic idea of Kummini [13] for unmixed bipartite graphs, but to treat a very well-
covered graph we need to introduce a notion of a semidirected graph.

Set [h] = {1, 2, . . . , h}. Let

[h]
2


be the family of all subsets of [h] with cardinality 2. Let Eu be a subset of


[h]
2


. Let Ed be a

subset of [h]× [h] \D, where D = {(i, i) | i ∈ [h]}. We have the canonical forgetful map f : [h]× [h] \D −→

[h]
2


((i, j) −→

{i, j}). We call d = ([h], Eu, Ed) a semidirected graph if f (Ed) ∩ Eu = ∅. We call an element {i, j} of Eu an undirected edge of d

and Eu(d) = Eu the undirected edge set of d. We call an element (i, j) of Ed a directed edge from i to j of d and Ed(d) = Ed the
directed edge set of d. We denote (i, j) by ij.

We say that a set A ⊆ [h] is an independent set in d if {i, j} ∉ Eu(d) and ij, ji ∉ Ed(d) for any i, j ∈ A. And ∆d denotes the
set of all independent sets in d, which is a simplicial complex on the vertex set [h] called the independence complex of d.

We call a semidirected graph d acyclic if there are no directed cycles in d, and transitively closed if the following two
properties are satisfied for any distinct i, j, k ∈ [h]:

(1) if ij, jk ∈ Ed(d), then ik ∈ Ed(d);
(2) if ij ∈ Ed(d) and {j, k} ∈ Eu(d), then {i, k} ∈ Eu(d).
LetG be a verywell-covered graphwith 2h vertices. SupposeG satisfies the conditions (i) and (ii) in Lemma 4.1.We define

a semidirected graph dG = ([h], Eu, Ed) associated with G as follows:

Eu =


{i, j} ∈


[h]
2


| {xi, xj} ∈ E(G)


.

Ed = {ij ∈ [h] × [h] | i ≠ j, {xi, yj} ∈ E(G)}.

Note that the condition f (Ed)∩ Eu = ∅ is satisfied by the condition (iv) in Lemma 4.2. And dG is transitively closed by the
condition (iii) in Lemma 4.2. If G is also Cohen–Macaulay, then dG is acyclic. This fact can be checked by the condition (v) in
Lemma 3.1.

Now we interpret a(G) in terms of the semidirected graph dG.

Lemma 4.3. Let G be a very well-covered graph with 2h vertices. Suppose G satisfies the conditions (i) and (ii) in Lemma 4.1. Then

a(G) = dim∆dG + 1.

Proof. We first show that a(G) ≥ dim∆dG + 1. For A ∈ ∆dG , set B = {{xi, yi} | i ∈ A}. Then it is easy to see that B is a set of
pairwise 3-disjoint edges in G.

We next show that a(G) ≤ dim∆dG + 1. Let B be a set of pairwise 3-disjoint edges in G. Set

A = {i | {xi, yj} ∈ B for some j} ∪ {i | {xi, xk} ∈ B for some k > i}.

We show that A is an independent set in dG. Suppose to the contrary that A is not an independent set in dG. If A contains an
undirected edge {i, j}, this contradicts the fact that B is a set of pairwise 3-disjoint edges in G. Hence there is a directed edge
ijwith i, j ∈ A. We must consider the following three cases.

(1) Suppose {xi, yk}, {xj, yℓ} ∈ B for some k, ℓ. We may assume that {xi, yj} ∈ E(G). Since {xi, yj}, {xj, yℓ} ∈ E(G) we have
{xi, yℓ} ∈ E(G) by the condition (iii) in Lemma 4.2. This contradicts the fact that B is a set of pairwise 3-disjoint edges in G.

(2) Suppose {xi, xk}, {xj, yℓ} ∈ B for some k, ℓ. We first assume that {xi, yj} ∈ E(G). Since {xi, yj}, {xj, yℓ} ∈ E(G) we have
{xi, yℓ} ∈ E(G) by the condition (iii) in Lemma 4.2. This contradicts the fact that B is a set of pairwise 3-disjoint edges in G.
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Wenext assume that {xj, yi} ∈ E(G). Since {xj, yi}, {xi, xk} ∈ E(G)we have {xj, xk} ∈ E(G) by the condition (iii) in Lemma 4.2.
This contradicts the fact that B is a set of pairwise 3-disjoint edges in G.

(3) Suppose {xi, xk}, {xj, xℓ} ∈ B for some k, ℓ. We may assume that {xi, yj} ∈ E(G). Since {xi, yj}, {xj, xℓ} ∈ E(G) we have
{xi, xℓ} ∈ E(G) by the condition (iii) in Lemma 4.2. This contradicts the fact that B is a set of pairwise 3-disjoint edges in G.

Hence A is an independent set in dG. This implies that a(G) ≤ dim∆dG + 1. �

Remark 4.4. Let G be a Cohen–Macaulay very well-covered graph with 2h vertices. Suppose G satisfies the conditions
(i) and (ii) in Lemma 4.1. Then {x1 − y1, x2 − y2, . . . , xh − yh} is a regular sequence for R/I(G) (see [3]). Set T =

R/(I(G) + (x1 − y1, x2 − y2, . . . , xh − yh)), which is an artinian ring. The socle Soc T of T is defined to be the ideal
(0 :T T+) of T , where T+ is the irrelevant maximal ideal of the k-algebra T . See, e.g., [18, Lemma 4.3.3]. Then it is known that
reg R/I(G) = max{k; (Soc T )k ≠ 0}. See, e.g., [18, Lemma 4.3.3]. It is shown that max{k; (Soc T )k ≠ 0} = dim∆dG + 1 in
[3, Lemma 4.3]. Hence, taking this together with Lemma 4.3, we have reg R/I(G) = a(G). This is another proof of Lemma 3.4.

Let d be a semidirected graph on the vertex set [h]. A pair {i, j} of vertices in d is called strongly connected if ij, ji ∈ Ed(d).
A strong component of d is a maximal induced subgraph satisfying the property that every pair of vertices in it is strongly
connected. The vertex sets of the strong components of d give a partition of [h].

We define a new semidirected graph dG. Let G be a very well-covered graph with 2h vertices. Suppose G satisfies
the conditions (i) and (ii) in Lemma 4.1. Let Z1, . . . , Zt be the vertex sets of the strong components of dG. We define a
semidirected graphdG = ([t], Eu, Ed) as follows:

Eu =


{a, b} ∈


[t]
2


| {i, j} ∈ Eu(dG) for some i ∈ Za and for some j ∈ Zb


.

Ed = {ab ∈ [t] × [t] | a ≠ b, ij ∈ Ed(dG) for some i ∈ Za and for some j ∈ Zb}.

First we observe that {i, j} (resp. ij) is an undirected (resp. a directed) edge in dG for all i ∈ Za and all j ∈ Zb if {a, b} (resp.
ab) is an undirected (resp. a directed) edge indG.

Suppose {a, b} (resp. ab) is an undirected (resp. a directed) edge indG. Take i ∈ Za and j ∈ Zb. There are i′ ∈ Za and
j′ ∈ Zb such that {i′, j′} (resp. i′j′) is an undirected (resp. a directed) edge in dG. Since ii′ is a directed edge in dG, {i, j′} (resp.
ij′) is an undirected (resp. a directed) edge in dG by the transitively closed property of dG. Since jj′ (resp. j′j) is a directed edge
in dG, we have that {j, i} (resp. ij) is an undirected (resp. a directed) edge in dG by the transitively closed property of dG again.

Nowwe check the condition f (Ed)∩ Eu = ∅, where f is the canonical forgetful map from [t]× [t] \ {(i, i) | i ∈ [t]} to

[t]
2


.

Suppose to the contrary that there are both an undirected edge {a, b} and a directed edge ab in dG. By the above
observation this means that for i ∈ Za and j ∈ Zb the semidirected graph dG has both the undirected edge {i, j} and the
directed edge ij, which contradicts the definition of a semidirected graph.

It is easy to see thatdG is also transitively closed by the above observation since dG is transitively closed.
We now check thatdG is acyclic. Suppose to the contrary that there is a directed cycle a1a2, a2a3, . . . , ar−1ar , ara1 for

r ≥ 2 indG. SincedG is transitively closed, we can show that a1ar is a directed edge indG. Since both a1ar and ara1 are
directed edges, Za1 ∪ Zar is a vertex set of a strong component in dG, which contradicts the fact that Za1 is a vertex set of a
maximal strong component in dG.

We write b ≻ a if ab ∈ Ed(dG). By b < a (and, equivalently, a 4 b) we mean that b ≻ a or b = a. It is easy to see that 4
defines a partial order on [t] sincedG is transitively closed and acyclic.

For A ⊆ [t], we write b < A if there exists a ∈ A such that b < a.
We define the acyclic reduction of G to be the graphG = (V (G), E(G)) where

V (G) = {u1, . . . , ut} ∪ {v1, . . . , vt};

E(G) = {{ua, va} | 1 ≤ a ≤ t} ∪ {{ua, ub} | {a, b} ∈ Eu(dG)} ∪ {{ua, vb} | ab ∈ Ed(dG)}.
Lemma 4.5. Let G be a very well-covered graph. Suppose G satisfies the conditions (i) and (ii) in Lemma 4.1. ThenG is a Cohen–
Macaulay very well-covered graph.

Proof. By definition G has an even number of vertices, which are not isolated, and with 2ht (I(G)) = |V (G)|. Clearly G
satisfies the conditions corresponding to (i) and (ii) in Lemma 4.1. Since dG is transitively closed, the condition (iii) in
Lemma 4.2 is satisfied. SincedG is a semidirected graph, the condition (iv) in Lemma 4.2 is satisfied. ThenG is a very well-
covered graph. SincedG is acyclic, its vertex set can be relabeled such that every directed edge ofdG is of the form ij with
i < j. Under this relabeling the condition (v) in Lemma 3.1 is fulfilled, while the conditions (i)–(iv) are preserved. Hence by
Lemma 3.1,G is Cohen–Macaulay. �

Remark 4.6. Let G be a very well-covered graph. Suppose G satisfies the conditions (i) and (ii) in Lemma 4.1. It is easy to see
thatdG = dG. Moreover, if G itself is Cohen–Macaulay, then G = G.
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Next we show that a(G) = a(G).

Lemma 4.7. Let G be a very well-covered graph. Suppose G satisfies the conditions (i) and (ii) in Lemma 4.1. LetG be the acyclic
reduction of G. Then

dim∆dG = dim∆dG .
Proof. First we show that dim∆dG ≤ dim∆dG . Take A = {i1, . . . , ir} ∈ ∆dG . Suppose ij ∈ Zaj for all 1 ≤ j ≤ r . SetA = {a1, . . . , ar}. It is easy to see thatA ∈ ∆dG .

Next we show that dim∆dG ≥ dim∆dG . Take A = {a1, . . . , ar} ∈ ∆dG . Take ij ∈ Zaj for all 1 ≤ j ≤ r and set
A = {i1, . . . , ir}. Then A is an independent set in dG. �

In the next lemma, Ass(R/I) denotes the set of all associated prime ideals of I .

Lemma 4.8. Let G be a very well-covered graph with 2h vertices. Suppose G satisfies the conditions (i) and (ii) in Lemma 4.1. For
all p ∈ Ass(R/I(G)), if yi ∈ p and ij is a direct edge in dG, then yj ∈ p.

Proof. Set I = I(G). Now let k ∈ [h]. Since xkyk ∈ I ⊆ p, xk ∈ p or yk ∈ p, but since ht (p) = h, we have that xk ∈ p if and
only if yk /∈ p. Now yi ∈ p implies that xi /∈ p, which together with xiyj ∈ p shows that yj ∈ p. �

Let G be a very well-covered graph with 2h vertices. Suppose G satisfies the conditions (i) and (ii) in Lemma 4.1. For an
independent setA ≠ ∅ ofdG we define

ΩA = ∪b<AZb.

For ∅ we define Ω∅ = ∅.

Lemma 4.9. Let G be a very well-covered graph. Suppose G satisfies the conditions (i) and (ii) in Lemma 4.1. Then ΩA does not
contain any undirected edge in dG for any independent setA ofdG.
Proof. Suppose to the contrary that {i, j} ⊆ ΩA is an undirected edge in dG. Suppose i ∈ Za and j ∈ Zb. Then {a, b} is an
undirected edge indG. By the definition of ΩA there are elements a′, b′

∈ A such that a < a′ and b < b′. We claim that
{a′, b′

} is an undirected edge indG, which is a contradiction to the fact that A is an independent set. Now we prove the
claim. Since a′a ∈ Ed(dG) and {a, b} ∈ Eu(dG), we have {a′, b} ∈ Eu(dG). Since b′b ∈ Ed(dG) and {b, a′

} ∈ Eu(dG), we have
{b′, a′

} ∈ Eu(dG). �

Lemma 4.10. Let G be a very well-covered graph with 2h vertices. Suppose G satisfies the conditions (i) and (ii) in Lemma 4.1.
Then

Ass(R/I(G)) = {(xi | i /∈ ΩA) + (yi | i ∈ ΩA) | A ∈ ∆dG}.
Proof. Set I = I(G). Let p ∈ Ass(R/I). Since I is unmixed, just one of xi and yi belongs to p for all i = 1, . . . , h. Let
U = {b | yj ∈ p for some j ∈ Zb}. Since Z1, . . . , Zt are the vertex sets of the strong components of dG, from Lemma 4.8
it follows that yj ∈ p for all j ∈ ∪b∈UZb, and that if b′

≻ b and b ∈ U , then b′
∈ U . SupposeA is the set of the minimal

elements of U with respect to ≻. One can see that A does not contain any directed edges indG, U = {b | b < A}, and
ΩA = ∪b∈UZb = {j | yj ∈ p}. Now we show thatA does not contain any undirected edges ofdG. Suppose to the contrary
that {a, b} ⊆ A is an undirected edge indG. Take i ∈ Za and j ∈ Zb. Thus xixj ∈ I ⊆ p and hence we may assume that xi ∈ p.
Therefore yi /∈ p by the form of the associated primes of Ass(R/I). On the other hand, since i ∈ Za and a ∈ A, we have i ∈ ΩA.
This means that yi ∈ p, which is a contradiction. Hence Ass(R/I) ⊆ {(xi | i /∈ ΩA) + (yi | i ∈ ΩA) | A ∈ ∆dG}.

Conversely, takeA ∈ ∆dG and set p = (xi | i /∈ ΩA) + (yi | i ∈ ΩA).
Therefore ht (p) = ht (I) = h. Since I is unmixed, it suffices to prove that I ⊆ p. I is generated bymonomials of the forms

xiyi (i = 1, . . . , h), xiyj, and xixj for some 1 ≤ i ≠ j ≤ h. It is clear that xiyi ∈ p for all i = 1, . . . , h. So assume that i ≠ j.
First let xiyj ∈ I . If i /∈ ΩA, we have xi ∈ p and xiyj ∈ p. If i ∈ ΩA, then there exists a, b, b′ such that a ∈ A, b < a, i ∈ Zb, and
j ∈ Zb′ . Since ij is a directed edge in dG, we get that b′ < b indG. Hence b′ < a, and j ∈ ΩA, which shows that yj ∈ p and so
xiyj ∈ p. Now let xixj ∈ I . SinceA does not contain any undirected edges ofdG, ΩA does not contain any undirected edges of
dG by Lemma 4.9. Then we have {i, j} * ΩA. Therefore i /∈ ΩA or j /∈ ΩA which shows that xi ∈ p or xj ∈ p. Hence xixj ∈ p. �

Nowwe consider the polynomial ring S = K [u1, . . . , ut , v1, . . . , vt ]. Let I(G) be the edge ideal of the acyclic reductionG
of G in S. Thanks to Lemma 4.10, the next result is a generalization of [13, Remark 3.3]. Since the proof follows by arguments
similar to those in [13, Proposition 3.2 and Remark 3.3], we omit it.

Proposition 4.11. Let G be a very well-covered graph. Suppose G satisfies the conditions (i) and (ii) in Lemma 4.1. LetG be the
acyclic reduction of G with edge ideal I(G) ⊆ S. Then reg (R/I(G)) = reg (S/I(G)).

Now we have all the ingredients that we need and we combine them to prove our second main result.
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Theorem 4.12. Let G be a very well-covered graph. Suppose G satisfies the conditions (i) and (ii) in Lemma 4.1. Then

reg (R/I(G)) = dim∆dG + 1 = a(G).

Proof. LetG be the acyclic reduction of G on the vertex set {u1, . . . , ut} ∪ {v1, . . . , vt} with edge ideal I(G) ⊆ S. ThenG is a
Cohen–Macaulay very well-covered graph by Lemma 4.5. Hence by Proposition 4.11, Lemmas 3.4 and 4.7, we have

reg (R/I(G)) = reg (S/I(G)) = a(G) = dim∆dG + 1 = dim∆dG + 1 = a(G). �

It was suggested by Villarreal that if G is a Cohen–Macaulay graph, then G\{v} is Cohen–Macaulay for some vertex v in G;
see [17]. Estrada and Villarreal proved this for Cohen–Macaulay bipartite graphs by showing that there is a vertex v ∈ V (G)
such that deg(v) = 1 ([5, Theorem 2.4]). Van Tuyl and Villarreal proved the same result for sequentially Cohen–Macaulay
bipartite graphs in [16, Lemma 3.9]. Using the above fact, Van Tuyl in [15] showed that if G is bipartite, then:

• G is sequentially Cohen–Macaulay if and only if it is vertex decomposable.
• If G is sequentially Cohen–Macaulay, then reg (R/I(G)) = a(G).

So it is natural to ask the following question:

Question 4.13. Let G be a sequentially Cohen–Macaulay graph with 2h vertices which are not isolated and with ht (I(G)) = h.
Then do we have the following statements?

(1) G is vertex decomposable.
(2) reg (R/I(G)) = a(G).
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