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We study the problem of estimating autoregressive parameters when the observations are from an AR 

process with innovations in the domain of attraction of a stable law. We show that non-degenerate limit 

laws exist for M-estimates if the loss function is sufficiently smooth; these results remain valid if location 

and scale are also estimated. For least absolute deviation (LAD) estimates. similar results hold under 

conditions on the innovations distribution near 0. We also discuss, under moment conditions on the 

innovations, consistency properties for M-estimators corresponding to the class of loss functions, 

p(x) = lxJy for some y > 0. 

AM.5 1980 Subject Classjfications: 62M09, 60G10, 62MlO. 

AR processes * M-estimation * least squares estimation * least absolute deviation * stable distribution 

* domain of attraction * point processes 

1. Introduction 

Let {X,} be the causal autoregressive AR(p) process satisfying the recursions 

x,=~,x,~,+~~~+~px,-,+z, 

where {Z,} is a sequence of i.i.d. random variables. Based on the data X, , . . . , X,,, 

the M-estimate, f, of C/J = (4, , . . . , &,)’ minimizes the objective function 

U,(P) = 5 P(X, -P,X,-I-. . .-PgL,) 
,=p+l 

with respect to p, where p( .) is some loss function. The special cases p(x) = x2 and 

p(x) = 1x1 correspond to least squares (LS) and least absolute deviation (LAD) 
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estimators, respectively. In this paper, we are concerned primarily with the 

asymptotic behavior of M-estimators when the distribution of Z, is in the domain 

of attraction of a stable distribution with index a < 2 (written as Z, E D(a)). In 

other words, 

P[IZ,I > x] = xPL(x) 

where L(x) is a slowly varying function at co and 

(1.1) 

(1.2) 

Although the AR process under assumptions (1.1) and (1.2) has an infinite variance 

and an infinite mean if (Y < 1, the LS and LAD estimators perform surprisingly well. 

This phenomenon and the motivation for studying such estimators can be explained 

heuristically by making an analogy to linear regression. Consider, for example, the 

AR( 1) process 

x, = 4x,_, + z,. 

A realization of such a process of length 50 with Cauchy innovations and 4 = 0.7 

is displayed in Figure 1. The LS and LAD estimates of 4 are obtained by fitting a 

0 IO 20 30 40 

Fig. 1. 50 observations from AR(l) process X, =0.7X,_, +Z, where Z, is Cauchy. 

50 
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straight line through the origin to the scatterplot of X, vs X,_, (t = 1,. . . , n) (see 

Figure 2); the estimate will be the slope of the line fitted by the LS or LAD criterion. 

The lag 1 scatter plot has two distinct but related characteristics. First, large positive 

or negative values of 2, produce points which will appear to be outliers (these points 

are labeled 0 in Figure 2). Second, these same 2, produce a sequence of leverage 

points; that is, for s > t we will have 

in the sense that Z,/X,_, will likely be small (see Figure 3). The beneficial effect 

of these leverage points compensates for the negative effect of the outliers and 

allows both the LAD and LS estimators to converge at a faster rate than in the finite 

variance setting. However, as in linear regression, the LAD estimator gives less 

weight to the outliers while giving essentially the same weight to the leverage points 

and, hence, it is reasonable to expect that the LAD estimator is more efficient. Our 

analysis shows that this is indeed true for a large class of heavy tailed innovation 

distributions. 

Consistency and rates of convergence of the LS estimator GLs for the AR(p) 

model have been studied by a number of people under the assumptions (1.1) and 

(1.2). Kanter and Steiger (1974) established weak consistency of f,, which was 

a 

I I I a I 1 I _I 

-30 -20 -10 0 ICI 20 30 

Fig. 2. Scatterplot of X, vs X,_, for the data in Figure 1. 
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. 

subsequently strengthened 

O<CY<~, and S>cu, then 

rP(&-4)‘O 

20 30 

Fig. 3. Plot of 2,/X,_, 

40 50 

by Hannan and Kanter (1977). They showed that if 

a.s. (1.3) 

A similar rate was derived by Knight (1987) when an unknown location parameter 

is included in the model. More recently, Davis and Resnick (1985b, 1986) showed 

that there exists a slowly varying function L,(n) such that 

rPL,(n)(&,-d@ Y (1.4) 

where Y is the ratio of two stable random variables. This immediately furnishes a 

convergence in probability version of (1.3). 

Gross and Steiger (1979) established the strong consistency of the LAD estimator 

$,,, under the assumptions that 2, has a unique median at zero and E/Z,/ <a. 

An and Chen (1982) were able to give a rate of convergence of f,,,, provided that 

either 2, has a unique median at zero and Z, E D(a), 1~ (Y < 2, or Z, has a Cauchy 

distribution centered at zero. In particular they showed that for S > cy, 

rP(&,,-+) r, 0. (1.5) 
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Although An and Chen believed that a similar rate was valid in the (Y E (0, 1) case, 

they were unable to push their methods through. 

In Section 2, we establish the weak convergence of the M-estimator, 4, for the 

case when p is convex with a Lipschitz continuous derivative. Specifically, with a, 

defined by 

a, = inf{x: P[(Z,l> x] G n-‘} 

we show that 

a”tf-4)% (1.6) 

where 5 is the minimum of a stochastic process. For Pareto-like tails, we may take 

a,, = n’l” but in general a,, = II’/” L,(x) for some slowly varying function L,. In 

Section 3, we incorporate location and scale parameters into the problem. 

Unfortunately, the LAD estimators are disqualified from the theorems of Section 

2 since p(x) = 1x1 does not have a Lipschitz continuous derivative. Nevertheless, 

(1.6) remains valid for LAD estimators if (Y < 1 which, in particular, proves the 

conjecture of An and Chen, or if Q 2 1 and l/Z, satisfies a suitable moment condition 

which involves the behavior of the distribution of Z, near 0. Without the moment 

assumption, we show 

and in some instances this rate may be improved to op( 1). The LAD related results 

are contained in Section 4. 

In Section 5, we focus exclusively on the case p(x) = 1x1” for some y>O. If 

EIZ,IYtoo and m(x) = E/Z, -xIy h as a unique minimum at x = 0, then the resulting 

estimate 4 is strongly consistent. On the other hand if EIZ,(Y = ~0 and Z, satisfies 

conditions (1.1) and (1.2), then 4 s 4. 

If the class of loss functions is restricted to be of the form, p(x) = Ixjy, then a 

natural question is that for a given (Y E (0,2), what is an optimal choice for y? In 

several simulation studies for AR(p) process with stable noise and a E [ 1,2) (Gross 

and Steiger, 1979; Knight, 1986; Liu, 1987), the LAD estimator appears to be vastly 

superior to the LS estimator. This phenomenon has also been observed for other 

distributions of the noise variables by Bloomfield and Steiger (1983). The superiority 

of the LAD estimator over the LS estimator can partly be explained by comparing 

the rates in (1.4) and (1.6). If the distribution of the noise is stable or Pareto-like 

(see Brockwell and Davis (1987), Section 12.5) then Lo(n) in (1.4) is (In n)-“U 

while a, = (const)n”“. Thus, since n”“L,,(n)/a, + 0, 

IId .fXb-~II/IIc,s-~II 3 0 

which proves the conjecture stated on p. 105 of Bloomfield and Steiger (1983). Note 

that this argument does not work if E\Z,\” <co, since in this case n”“L( n) - a, (see 

Davis and Resnick, 1985b). In any event, for stable noise, the simulation studies of 

Knight (1986) and Liu (1987) strongly suggest that for LY E [ 1,2), y = 1 is optimal 
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while for (Y E (0, l), y = (Y is optimal. Certainly, there is scope for further research 

on this issue. 

The proofs of the main results of this paper rely heavily on point process techniques 

for moving averages as can be found in Davis and Resnick (1985a). A discussion 

of these techniques and other required technical results are relegated to the appendix. 

2. Limit theory for M-estimates 

Let {X,} be the causal AR(p) process satisfying the difference equations 

X, -4,X,-, -* ..-&X_P=z,, t=0,*1,..., (2.1) 

where {Z} is an i.i.d. sequence of r.v.‘s whose common distribution belongs to the 

domain of attraction of a stable law with index (Y E (0,2), which we denote by 

Z,~D(cr)or{Z,}~D(c~),and~(z)=l-+,z-* * . - &,zp Z 0 for all complex z with 

IzI s 1. The conditions 

P(JZ,J > x) = x-*L(x) 

and 

. P(Z,>x) 
?I%(Izo(>x)=p 

where L(x) is slowly varying at 00, cr > 0, and 0 G p s 1, are necessary and sufficient 

for ZOE D(a). 

The AR process (2.1) can be represented as a linear process, 

x,= f *jzt-j, 
j=O 

where {4,, j = 0, 1, . . .} are the coefficients of z-’ in the power series expansion of 

1/4(z). It can be shown that (see Cline, 1983) 

(This result applies to more general linear processes.) Thus the tails of the distribution 

of {X,} behave the same as those of {Z,}. 
The M-estimate, C$ = (&, . . . , &)‘, of 4 = (4,). . . , &,)’ minimizes the objective 

function 

f: ,4x,-P,X,-I-. . *-P/J-,). 
,=p+, 

(2.2) 

with respect to /3 = (p,, . . . , pp)‘. The traditional approach to determining the 

asymptotic behavior of f involves the partial derivatives of the objective function; 

4,) . . . , 6, satisfy 

f X,_j$(X,-&X,P,-~~~-&X,P,)=O forj=l,..., p, 
,=p+, 
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where +( 0) is the derivative of p( 0). Making a Taylor series expansion of this 

equation around the true parameter vector 4, one gets, for example, in the AR(l) 

case, 

o= t X,-,lcl(Z)-(&4,) i x:-,~‘(z)+R. 
1=2 I=2 

In the finite variance case, the standard approach is to divide both sides of this 

equation by 6 and solve for &( 4, - 4,); letting n + co, one gets a limiting normal 

r.v. since n-“2R, a 0 typically. The logically analogous approach in the infinite 

variance case would be to divide both sides by a, and solve for a,(f, - &); the 

problem with this approach is that ai’ R, no longer goes to 0. For example, for any 

integer k 2 2 and any function h( . ) with E(h’(Z,)) < CO, it can be shown by (a) and 

(b) of Propositon A.2 in the Appendix that 

uik i X:_,h(Z,) = O,(l) 
t=1 

and, in fact, converges in distribution. Thus, an explicit representation of the limiting 

r.v. is not possible, in general. The approach that we will employ is similar in spirit 

to the approach used in obtaining the minimum Cramer-von Mises distance estimate 

of location; see Shorack and Wellner (1986, pp. 254-257) for details. 

Note that the parameter estimates $ minimizing the objective function (2.2) also 

minimize the modified objective function 

i [PW-P,X,-I-. . ~-P,x,-,)-p(z,)1 
f=p+l 

which can be rewritten as 

f [p(Z,-a,(p,-~,)a,*~,~,-. . .-a,(pp-~~)an’x,-,)-p(Z,)i, (2.3) 
,=p+, 

where 

a, = inf{x: PIIZ1( > x] s n-l}. (2.4) 

We will consider the following sequence of stochastic processes on [wp: 

W,(u) = i [p(Z, - u,u,‘X,_, -. * . - Upu;lX~_p) -p(Z,)] 
1=p+1 

which, under certain conditions, will converge in distribution on C(W’), the space 

of continuous functions mapping Iwp to Iw, to a non-trivial process W( .) which has 

a unique minimum with probability 1. (The fact that the sum is started at t = 1 

rather than t = p + 1 is not important since 

,f,/dZ,-a,lX,-,u,-* . . - u;‘X,_,Up) 3 5 p(Z,) 
t=, 
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by the continuity of p( . ).) Since the vector & which minimizes Wn(. ) is simply 

a, ( f - +), it is reasonable to expect that 

a, (6 - 4) 5 to some random vector 5. 

This will be a direct consequence of the following theorem. 

Theorem 2.1. Suppose that {X,} is the AR process (2.1) with innovations (2,) E D(a), 

O<cr ~2, and: 

(a) $I satisjes a Lipschitz condition of order p; I+(x)-$(y)l~ KIx-yIP where 

p > max(cz - 1,0) and K is a constant. 

(b) ~3bb(G)l) <a if a < 1. 
(c) E(1,4(2,))=0 and Var($(Z,))<co if~yzl. 

Then on C(W”), 

W”(G W(.) 

where 

w(u)= IF ,f [P(zk,i-(~i-IuI+’ * *+ ~i~,“~)s,r,“a)-p(Z~i)l (2.5) 
i=l k=l 

and the sequences {&i}, {&}, and {I’,} are as specijied in Proposition A.1 of the 

Appendix. (The injinite sum defining W( * ) is interpreted as a limit of partial sums 

provided this limit exits.) 

Note that loss function p(x) = 1x1’ satisfies the assumptions of the theorem 

provided y > 1 (condition (a)), y < 1 + (Y if (Y < 1 (condition (b)), and y < & + 1 if 
(Y > 1 (condition (c)). Of course the latter assumes that E$(Z,) = 0. 

Proof. First of all, we will show that the finite dimensional distributions converge 

weakly. For simplicity, we will deal only with the univariate distributions; the 

multivariate case follows by applying the Cramer-Wold device. 

Let Ynt(u)= u,a,‘X,_r+* . . + u,a;‘X,_,. By (A.8), it follows that 

)1mtl ss M I Yntl> 6) Wn(u; 6, M) = i b(Z - Y”,(U)) -d-c 
,=I 

converges in distribution to 

W(u; 6, M) 

m 00 
= c c ([p(zk,i-($i-lu,+’ “+cCri-pU,)8krk1’a)-P(Zk,i)l 

i=l k=l 
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where I(A) is the indicator function of the set A. It suffices to show that (A.lO) 

and (A.1 1) hold with the functionf( x, y) = p( x - y) - p(x). A Taylor series expansion 

around 2, for each term of W, ( * ) yields 

= - ,g, Y”,(U)W,) + i Yn,(u)(~(Z) - GGP)) (2.6) 
,=l 

where I[!“) - Z,l s ) Y,,t( u)\. N ow with V, = $(2,)1(\2,\ > M), it follows from Proposi- 

tion A.2(b) that 

lim lim sup P 
M+m n-‘x [ ) j, YnrW~(l Kh)b O+WX(~~,~~ WI > T] = 0. (2.7) 

Moreover, applying Proposition A.2(a) if (Y < 1 and (c) if LY 2 1 with VI = $(Z,) we 
deduce 

‘,‘y lim sup P 
+ n+m [I,!, y,,(u)~(Z~)z(ly.,(u)l~~)~ ‘v] =o. (2.8) 

Also using the Lipschitz continuity of I/J( .) (I+(x) - q!r(y)j G K/x -uI@), we get 

/ if 
*=I 

Ynrbwfw~) - mm(l Ym WI S-G 6) / 

30 as n+oo and then 6+0 

by Proposition A.2(a) and, similarly, 

(2.9) 

30 as n+oo, M-,co, (2.10) 

by Proposition A.2(b). Combining (2.6)-(2.10) proves (A.lO). Finally (A.ll) is 

proved in a similar fashion. 

Finally, we show that the distributions of { W,( . )} are tight. First, note that 

W”(U) - w,(u)1 = I i Ym(u - W(SP9 I 
Ir=1 I 
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since l,$“‘-Zl( ~1 Y,,,(u - v)l and hence ~I,!J(,$“‘) - I,/J(Z,)]G KI Y,,,(u - u)\@. Now by 

Proposition A.2(a) and (b) and a slight modification of the proof of Theorem 4.2 

in Davis and Resnick (1984), we have 

and 

a,’ i X-,$(Z,) = O,(L) 
,=I 

u-(‘+p) i lxl_,j’+P = O,(l), n 
,=, 

from which it follows that 

$?lim+sJpP 
[ 

sup (W,(u)-W,(v)\>7 =0 
((u-I+6 

as required. Thus W,,( .> 4 W( .) on C(W). 0 

Let { I’,,(. and V( *) be stochastic processes on Rp and suppose that 

Let & minimize V,,( *) and & minimize If V,,( .) is convex for each n and 5 is 

unique with probability 1 then 

By Skorokhod’s representation theorem, there exists a probability space with 

processes { Vz(. and V*( *) having the same finite dimensional distributions as 

{ V,( and such that for any given compact set K, 

supIv:(u)-v*(u)lasio. 

Let 6: and g* minimize and respectively; if we show for these special 

processes that 5: a.s. t* then, in general, we will have &, 4 5. Henceforth, we will 

argue for each w in the special probability space for which 

sup Iv:(u)- v*(u)l+o. 

For y > 0, let 

and suppose II&,*-&*/j > y for infinitely many n. Since 

uniformly on 

and 

Vx(5*) + V*(5*) 
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we have for infinitely many n and all u E B,, 

C(u) > V:(&*) Z= VZ(S4). 

But this contradicts the convexity of Vz(. ) by choosing u E B, such that the points 

u, g*, 52 are collinear. 0 

Remark 1. Lemma 2.2 can also be generalized somewhat. If the convexity assumption 

on the V,( * )‘s is removed then there exists a sequence of local minima {&} 

converging in distribution to 5; the unique minimum of V( . ). It can also be shown 

that, for convex processes, weak convergence of the finite dimensional distributions 

implies convergence in distribution of the processes; this follows from the fact that 

pointwise convergence of convex functions implies uniform convergence on compact 

sets (see Theorem 10.8 of Rockafellar, 1970). 

Theorem 2.3. Under the conditions of Theorem 2.1, if p is convex and W( .) attains 

a unique minimum &, a.s., then the AR parameter estimate 4 dejined by minimizing 

(2.2) satisfies 

Proof. The proof follows from Theorem 2.1 and Lemma 2.2. q 

Remark 2. In case p( . ) is strictly convex, i.e. J/( *) strictly increasing, then W( . ) 

will also be strictly convex and hence has a unique minimum. One can get by with 

weaker conditions on p which ensure uniqueness of the minimum of the limit 

process. For example, assume that with positive probability ~(2, +. ) is strictly 

convex in a neighborhood of 0. Then as before, W( .) will be strictly convex a.s. 

with a unique minimum. 

Theorem 2.3 shows that non-degenerate limit laws exist for certain M-estimates; 

unfortunately, there seems to be no easy method of calculating the limiting distribu- 

tion. Moreover, this limiting distribution appears to be highly dependent on the 

distribution of the innovations. 

3. Unknown location and scale 

In general, the estimates /? defined by minimizing (2.2) are not scale invariant as 

would be desirable. This lack of invariance can be remedied by modifying (2.2) to 

,j+, 4 

x, -p*x,_, -. * . -/3,x,_, 

s^ > 

where s^ is some (scale equivariant) estimate of the innovations scale. It follows that 

if n”(g- s) = O,( 1) for some y > 0 then 3 will have the same asymptotic properties 

described in Theorem 2.3. 
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A variation of the basic model includes an unknown location parameter, 

x,=~,+~,x,_,+~~~+~~x,_,+z,. 

We now obtain estimates I&, c,&, . . . , I& by minimizing 

i P(X-Po-PIX~-l-~~ *-PpXr-,I. 
1=p+l 

The asymptotic properties of these estimates can be studied by considering the 

process 

n 

w;(u)= c [~(Z,-n~“*u,-a,‘X,_,u,-~~ +a,%-,u,)-p(Z,)] 
t=* 

where now u0 = r~“~(&- &). A ssuming that p( e) has Lipschitz continuous deriva- 

tive +(a), it is possible to show that 

n 

w;= c [p(z,-a,‘X,_,u,-~ * -a,%_,u,)-p(Z,)] 
I=* 

+ f [p(Z,-n-“2 %)-Pvr)l+op(l) *=, 

= Wn(u,,... , up)+z(%)+op(l) 

uniformly over u in compact subsets of [Wptl. If now $(. ) has Lipschitz continuous 

derivative t,V( *) then 

Z,(u,) = -ug-“* 
u; ” 

,i, Icl(z,)+2, ; vw~ + fi-“24) 
I 1 

= -uon -“2ri, w,,+gi, (cl’(Zt)+op(l) 

where Z(u,) is a normal r.v. with mean $&!?(+‘(Z,)) and variance u&F($~(Z,)); 

in addition, it follows easily that Z,( +) A Z( - ). As before, W,, ( * ) 4 W( . ) where 

W( . ) is independent of Z( . ). Thus a,(4 - 4) has the same limit as in Theorem 

2.3 while n”2( &, - c#J,-,) converges in distribution to the minimum of Z( . ) which is 

normal with mean 0 and variance E(+2(.Z,))/(E($‘(Z,)))2. Since W(a) and Z(e) 

are independent, the limiting distributions of the location and AR parameter esti- 

mates are also independent. 

4. LAD estimates 

The LAD estimate is exlcuded from Theorem 2.1 because the function p(x) = 1x1 is 

not differentiable at 0; consequently, one would expect the asymptotic behavior of 
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the LAD estimate to depend heavily on the behavior of the innovations distribution 

at or near the origin. For example, in the finite variance case, asymptotic normality 

of LAD estimates depends on the innovations (2,) having a density J( .) (with 

respect to Lebesgue measure) which is continuous at 0. 

The LAD estimates minimize the modified objective function 

li [IX -PJ-,- . * ~-P,x*-,l-lzl1 
t=p+* 

and so by analogy to the general case, we consider the following sequence of 

processes: 

W_(u)= i [[z,-a,‘X,_,u,-*~ *-a,‘X,_,u,l-p,(]. 
t=p+, 

where a, is given by (2.4). The obvious limit for W,,( . ) is 

if indeed this limit is well-defined. For (Y < 1, W( 0) is well-defined (see Proposition 

A.3) and the convergence in distribution of W,,( *) to W( 0) is trivial to prove. 

However, when a 3 1, we need to make some further assumptions about the distribu- 

tion of {zk,i} (or (2,)) in order for W( *) to exist and for W,,( .) % W(. ). 

Theorem 4.1. Let be AR(p) process 

CY 2 1. If 

E(ln((Z,l))> -a3, 

then 

Moreover, if W( has a 

a,(+ - G 

unique minimum a.s., then 

where g the minimum of W( . ) and f is the LAD estimate of 4. 

The moment conditions for CY Z= 1 are met if 2, has a density f which is bounded 

in a neighborhood of 0. A discussion on the uniqueness of the minimum of W( - ) 

follows the proof. 

Proof. For (Y < 1, the proof is relatively straighforward using Proposition A.3. For 

(Y > 1, we follow the arguments given for Theorem 2.1 with f(x, y) = Ix - y/ - 1x1 and 
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(2.6) replaced by 

i+, (1-G - YtA -Ia 
n 

= c (y”,(~(z,<o)-~(z,>o))) 
t=p+1 

+2 ,i ((y,,-z,)(~(y,,~z,~o)-~(Y,,~z~~o))) 
t=p+1 

where Y,,t is as defined in the proof of Theorem 2.1. It is easy to show that the first 

term on the right converges in distribution. As for the second term, we have by 

(A.8) (with ci = Qi_iui +. . . + t,b_pup) and the proof of Proposition A.3 that 

2,~~+,((Y~,-z~)I(Y.,~z,~O)-I(Y,,~Z*~O))~(lY”,l~~) 

2 f T (Ci8kJ?k"a -Z/Q) 
i=l k=l 

x (I( c,&J-,“” > zk,i > 0) - I( ~i6kri"~ < Zk,i < 0)) 

x I(Jc;&)r,“” >S) (as n+co) 

a.s. f f (ci&&“a - Z,,i) 
i=l k=l 

x (I( Cf8k&1’a >zk,i>O)-~(ciskr;““<Z~i<0)) (as 6+0). 

It therefore suffices to prove 

and 

r n 

(Y,,(u)-Z,)1(6> YJu)>Z,>O)> y =o I (4.1) 

1 
~$nns&P PLt=;+, (Y,,(u)-Z,)I(-S< Y,t(u)<Z,<O)<-y =O. (4.2) J 

If G( *) is the distribution function of u,X,_i+ * . * + u,,X,_,, then 

1=t+1 (Y,,(u)-Z,)I(G> Y,Ju)>Zt>O) 1 
=(n-p) lo’ I:~~(~-x)G(dy)F(dx)a.a,’ IO’ H(a,x)F(dx) 

where H(x)=jzyG(dy). By Karmata’s theorem, H(x)-(cu/(l-cu))x(l-G(x)), 

and since n( 1 - G(a,x)) -, Cx-“, C a constant, we have na,‘H(a,) + const. Using 

Potter’s theorem (see Bingham, Goldie and Teugels, 1987), we have, with /? as 

specified in the statement of the theorem, 

H(zx) ff(zx) -= 
H(z) H(zx(Ilx)) 

S (const) min(xP, 1) 
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for zx > 1 and all z greater than some large z,, . Since z’H(z)+a as z+a we have 

for all zx < 1 and z > zO, 

xPH(0) H(zx) G H(O) ~ (zxPH(O) 
H(z) H(z) H(z) 

G-----S (const)xP. 
zPH( z) 

Thus for all n large, 

J 
s 

na;’ H(a,x)F(dx) - (const) 
0 J ’ H(a x) 

n F(dx) 
o H(G) 

s 

C (con&) J xPF(dx) + 0 
0 

as 6+0 

which proves (4.1). We argue (4.2) in the same fashion. 0 

Remark. The condition that for all E > 0 there exists a constant C > 0 such that 

P[x<Z,<y]s I C(Y-x)““, if (Y < 1, 

C(Y -x), if (~21, 

whenever --E <x < y < E, is sufficient for uniqueness of the minimum of W( * ). We 

show this for the case p = 1 and (Y 2 1, the general case being a straightforward 

extension. Let Ak,i(U, v) denote the random interval with endpoints at u~~-~&T~“” 

and U$i_1Skrk”*. We then have 

P n n {z,qia Ak,i(U, V)) 
izl kzl I 

t E (I-P[Z,EAki(U, U)(~jr,“‘a,j~ll) 
i=l kc, 1 (4.3) 

and since for k large, 

P[Z,EA~~(U, V))Sjr,~“n,j~l]~CI~-VV))~i_~l~k”~ 

- Cju - v( j$j_.l)k+ 

and CE, ~~zI/+j_l(k-l’a = 00, it follows that the probability in (4.3) is 0. Let B 

denote the event 

B = U U n n {Zk,i +Z A,i(U, v)}, Q = rationals, 
UEQ utQ iZ-I kal 

which, by the preceding calculation, has probability 0. Now, if on the set B”, W( *> 

has distinct minimizers, u* and v*, then by the convexity of W( * ) there exist 

rationals u and v such that W(u) = W(v). Since W&u + v)) = 4 W(u)+; W(v), we 

must have for all k and i, 
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which, in turn, implies 

This contradicts the definition of B” and, therefore, W( .) must have a unique 

minimum a.s. 

Note that if the probability in (4.3) is positive for some u < ZI, then W( . ) will be 

constant on the interval (u, U) and hence will not have a unique minimum. 

The case when condition (b) of Theorem 4.1 is violated can introduce some 

interesting pathologies. Let xt and x- denote the positive and negative parts of x 

so that x = x+-x-. Suppose that ci > 0 for all i, & = 1 with probability 1 and 

E[ ( ZT)l-a] < ~0 while E[ (Z;)‘-a] = ~0. It now follows from the proof of Proposition 

A.3 that V is finite a.s.; however, E(lZlllpa) = co. Note that if ci < 0 for all i then 

the partial sums defining W will not converge. To elaborate on this example, let 

{X,} be an AR( 1) process with innovations {Zr} E D(a) for (Y > 1 and suppose that 

P(Z, ’ xl 
?‘7%P(Jz,J>x)=1p 
E[(Z:)lpa]<oO and E[(Z;)‘-*]=a. 

Suppose that I$~ > 0. Then $i = 4f > 0 and 

w(u) = f IF [lzk,i - UICli--l~krk”al-(Zk,ill. i=* k=I 

From above W(u) = a3 for u < Oand W(u) < cc for u 3 0. Hence P(cz,($~ - C#Q) ~0) + 

0 as n+co. 

The moment conditions in Theorem 4.1 for (Y 2 1 can be dispensed with at the 

cost of a slightly weaker conclusion. This is the content of the following theorem. 

Theorem 4.2. Let {X,} be an AR(p) process with innovations {Z,} E D(a) with 

c1~[1,2). I~P[Z,~O]=P[Z,SO], then 

44 - 4) = O,(l). 

where C$ is the LAD estimate of 4% 

Proof. LetMbefixedandsetr=a,‘M/((~-~((andv=(~-~)/((~-~l((.Then 

by the convexity of W,,, we have on the set {a,,]14 - C$ )I > M], 

w,(Mv)~(l-r)W”(O)+rW,(a,(i-$b)) (Mu=ra,(&+)) 

C W,(O)=0 

since W,,(CZ,(C$ -4))~ W,(O) by definition of 4. Thus 

p[a,((~-~((>M]~P[W,(u)sOl~P 
[ 

,,y, wn(u)so I . 
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Since 

~a-b~-~a~=b(Z(a~0)-Z(a~0))+2~a-b~(Z(O~a~b)+Z(b~a~0)) 

for a # 0 it follows that 

W,(u) a T,(u; 6, M) 

where 

T,,(u;&M)=M f a,‘Y,(u)(Z(Z,~0))-(z(Z,~0)) 
t=p+* 

+2 i l-Z,-Ma,‘Y,(u)l 
t=p+, 

for some 6 > 0 and Y,(u) = urX,_, + * . . + upXI_,. If S and -8 are continuity points 

of the distribution of Z, , it follows from Proposition A.4 that in C({u: (lu(( = 1)) 

T,(.; 6, M)%-T(.; 6, M) 

where T( u; 6, M) is defined in Proposition A.4. Moreover, applying the proposition 

once again we obtain 

li~_~pP[a,))~-~)I>M]~li~~~pP ,,$l, T’(u;S,M)sO 
[ I 

,,irrr, T(u; 8, M)sO 
” 1 

as M + CO and 6 + 0 which proves the theorem. 0 

From the arguments given for Theorem 4.1 and Proposition A.3, it would appear 

that under certain conditions, W,(u) Jh ~0 for all u # 0 which implies that a,( f - 

Cp) = or(l). In fact, more extreme results than this are possible. For example, consider 

the process 

x,=~,+~,x,_,+~~~+~~x,_,+z, 

where the innovations distribution has median 0 and positive mass at 0. Suppose 

we estimate &, 4,) . . . , & by minimizing 

i lx-PO-PJ-I-* . *-PpXt-,I. 
r=p+1 

(4.4) 

The following theorem shows that the estimate, & converges at a faster rate than 

usual if I?((.&() <co. 
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Theorem 4.3. Let {X,} be an AR(p) process with innovations (2,) having E (lZ,l) < ~0, 

median 0 and positive mass at 0. If C$ minimizes (4.4) then 

nti - 4) = oP(l). 

Proof. Define 

w;(u)= f: [(z~-n-‘(u,+u,X,_,+* ’ ~+u,x,_,)~-(z,~] 
t=p+, 

and note that 

Ix - y\ - 1x1= y(l(x < 0) -1(x > 0)) 

+~y~l(x=o)+2(y-x)(I(y>x>o)-I(y<x<o)). 

Letting Y,(u) = uO+ u,X,_, + f . . + uPX,_,,, we have (by the ergodic theorem), 

f& y,(u)(~(z,~o)-~(z,~o))~o 

and 

$ t&t+1 I Y,WlWt = 0) - zJ(zr=O)E(Ju,+u,Xp+~ * .+upx,J) 

uniformly over II in compact subsets of Rp+‘. Finally, 

nE((n~‘Y,(u)-Z,)~(n-‘Y,(u)>Z,>O))~E(Y,(u)l(n-’Y,(u)>Z,>O)) co m = JJ yG(dyMdx) 0 “X 
= I”‘ Et Y,(uU( Y,(u) > nx))Hdx) 

0 

+O as n+oo 

by applying the dominated convergence theorem. The same statement holds for the 

other term and so 

W:(u)3 l’(Z,=O)E([u,+u,X,+* * .+uPX,() 

uniformly over compact subsets of lfV’+’ and this limit is minimized at u = 0. The 

conclusion now follows from Lemma 2.2. 0 

5. The case p(r) = I$’ 

In this section, we discuss consistency properties of the M-estimator corresponding 

to the loss function p(x) = Ix\Y, y> 0. As before {X,} will denote a causal AR(p) 

process satisfying the difference equations, 

x,=&+c!Qx,_l+. . .+q5px,_,+z, (5.1) 
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where {Z,} is a sequence of i.i.d. random variables. Here, the M-estimator 4 of 

4J = (4%. . ., &)’ is defined to be any minimum of the objective function 

K(P)= f. lx,-PO-P,X,-I-* ~3$2L,l’ (5.2) 
I=1 

where y > 0 is a preassigned constant. 

We shall consider consistency properties of 4 in two settings. First we show in 

Theorem 5.1 below that 4 is strongly consistent provided that EIZ,lY < cc and that 

the function m(x) = E(Z,-x[‘h as a unique minimum. This result includes the LAD 

case studied by Gross and Steiger (1979) and the classical LS case. The argument 

used by Gross and Steiger in the LAD case relies on the fact that the function to 

be minimized is convex. Such an argument cannot be used in the general case y > 0 

treated below. If E(Z,l’ <CC for some 6 > 1, then the LAD estimate is strongly 

consistent provided the med(Z,) is unique. In contrast, any 4 will always be strongly 

consistent for y E (1, 61. 

In the second case, we assume that &, = 0 and that 2, has regularly varying tail 

probabilities with exponent cy > 2. Under these assumptions, it is shown that f is 

weakly consistent for all y > 0. 

The approach taken in both cases will be to show that the objective function, 

U,,(p), suitably resealed by either a sequence of constants or random variables 

which are independent of p, converges almost surely or in probability to a nonrandom 

function whose minimum occurs at /3 = 4. We begin with the almost sure conver- 

gence part. 

Theorem 5.1. Let {Xt} be the AR(p) process given by (5.1) with EIZ,(Y <a for some 

y> 0. Zf the function m(x) = E(Z, -xl’ has a unique minimum at x = 9, then 

&G0+% 41,. . ., 4JJ’ as. 

where 4 minimizes (5.2). 

Remark. The condition that m(x) has a unique minimum is automatically satisfied 

if y > 1. Of course if y = 1, then this condition is equivalent to the existence of a 

unique median. For the y -C 1 case, if Z1 has a symmetric probability density function 

which is strictly decreasing on [0, co), then it is not difficult to show that m(x) will 

have a unique minimum. 

The proof of this theorem is broken up into a series of lemmas, the first of which 

ensures the existence of at least one minimum to (5.2). 

Lemma 5.2. Let $ : R” + R be a real function defined by 

G(x) = jj, Ixil' 
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forsome y>O wherex=(x,,...,x,)‘. Set 

f(c) = $(a -AC) 

where a E R”, A is an n x m matrix and c E R”. 7hen the function f( * ) has at least 

one (global) minimizer. 

Proof. If rank(A) = m, then llAcll+ co as ljc\l + 0;) which implies, by the continuity 

of J; that the minimum of f occurs on the set {c: 1) cJJ s M} for some M > 0. If 

rank(A) = r< m, then there exists an n x r matrix A, such that {AC: CE Rm} = 
{A,d: dcR’}. Applying the full rank case to the function g(d):= +(a -A,d), we 
conclude that g has a minimum on R’ and hence so does f on R” since g(d) =f(c) 
where Ac=A,d. 0 

Lemma 5.3. Under the hypotheses of Theorem 5.1, the function 

u(p)=EIX,+,-p,-p,Xp--..--_ppXIIY 

has a unique minimum at p* = (&+Z, 4,). . . , &)I. 

Proof. Observe that 

=%7(P) = U(P) 

where 

g~P~=~CJ~,+,-P,-P,~,-~~~-P,~,lYI~,,...,~,l 

= EIIZI+p -~Po-~o~-~P~-~l~~p-~~~-~Pp-~~P)~IlyI~I,~~~,~pl. 

Moreover, since x’ is the unique minimum of m(x) = JFIZ~+~ -xl’, and Z,+P is 

independent of X,, . . . , X,, 

g(P) a g(P)* = WP*) a.s. 

with equality holding if and only if p =p*. This p* must be the unique minimum 

of U(e). cl 

Lemma 5.4. Under 

one such that on S, 

the hypotheses of Theorem 5.1, there is a set S with probability 

n 
h,(6):= n-’ C ~6_,X,-60-61X,_1-~ . .--6,X,-,I’ 

,=1 

+ h(S) = Ej6_,XP+I - 6,,-- SIX, -. . . - GPXIIy 

for every S E R2+p and on every compact subset of R2+p, the convergence is uniform. 
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Proof. From the ergodic theorem, h,(S) + h( 6) a.s. and by restricting attention to 

rationals, this convergence holds simultaneously for all rationals 6 in R2cp a.s. We 

next show that for any compact subset K of ‘R2+p, the sequence {h,} is equicontinuous 

on K a.s. For 6, S’E K, we have 

and 

(h,(S)-h,(S’)(<max (j, 18ily-13 jI 16:ly-1)( jI lai-a:Iyml) 

’ Yn-’ f (l+[X~I'+'~~+lX,_,[') ( ifl<y 
,=l > 

where in the y > 1 case, the inequality 

~l~lY-I~lY~~~(l~l~I~l)Y-ll.-bl (5.3) 

was used. The a.s. equicontinuity of {h,} now follows easily from the ergodic 

theorem. Moreover, by choosing an increasing sequence of compact sets K,,,~R2fp, 

we have with probability one that {h,} is equicontinuous on any compact set and 

since h( . ) is continuous, h,(S) + h( 6) for all S E R2+p. The conclusion of the lemma 

now follows by an application of the Arzela-Ascoli theorem. 0 

Proof of Theorem 5.1. Let h,, h and S be as in the statement of Lemma 5.4. We 

first show that there exists an M such that for each outcome in S, 

Ilfll’<M (5.4) 

for n large. For the remainder of the argument fix an outcome in S. Suppose the 

minimum of h on the compact set K = (6: )16/= 1) occurs at S = St. Then, since 

{X,} is causal, the argument given for Lemma 5.3 may be used to show that h( St) > 0. 

We therefore have with p = (PO, . . . , BP)’ and S = (1, PO, p, , . . . , BP)‘, 

n-‘U”(p) = .-I i lx-Po-PJ-,-~~ *-P,X,-,I’ 
t=* 

= h,(S) 

2 ll~lly( hn(j$) -+tq)) + IIWW) 
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for n large and uniformly 

(2(EIX,lY+ l)/h(6t))2’Y- 1, then 

n-‘U,(P)>EIX~~Y+l. 

M-estimation for autoregressions 

in p. Consequently, if ll/?112> M := 

But also, n-’ U,(O) + ElX,j” and hence for n large, 

n-‘U,(P)> n-‘Un(0) 

whenever IIfl[l*> M. This implies (5.4). Now choose M so large that (5.4) holds and 

Il(40+% 41,. . . , #d’ll”<M. 
Let U(p) = h(1, PO,. . . , p,). Then by Lemma 5.4, n-’ U,,( . ) + U( . ) uniformly on 

the compact set {p: 11/3112~ M}. H owever since U is a continuous function and has 

a unique minimum on this set, it follows by a standard compactness argument that 

for each outcome in S, 

f + (+I_?+% 6,. . ., &J’ 

as desired. 0 

We now turn to the case that the noise (2,) has regularly varying tail probabilities, 

i.e. the distribution of 2, satisfies properties (1.1) and (1.2) for some (Y > 0, and 

CpO = 0. In an effort to conserve notation, we continue to let Up’( 9 ) denote the 

objective function which now becomes 

U$‘(P) = i Ix, -p,x,_, -. . * -p,x,_,p. (5.5) 
,=, 

If y < (Y, then E(Z$ <a3 so that by appealing to Theorem 5.1, 4 + 4 a.s. provided 

m(x) = EIZ, -xIy has a unique minimum at x = 0. Consequently, we confine our 

attention in the remainder of this section to the case y 3 (Y. 

Define the function 

where the $, are the coefficients in the causal representation of {X,}. These coefficients 

satisfy the recursion (see Brockwell and Davis, 1987, p. 91) 

with &=l and r,!~~=Oforj<O. 

Lemma 5.5. Let {Xt} be the AR(p) process (5.1) where {Z,} satisjes (1.1) and (1.2) 

for some CY > 0. If y> a, then on the space of continuous functions from Rp to R, 

where 

a,7 U>‘( - )A U’Y’( . ) 

UCy’(p) = hY(/3) f r;y’a 
k=l 
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and the sequence {I’,} is as described in Proposition A.l. Consequently, for all compact 
sets K c Rp, 

Proof. From the point process result, Theorem 2.4 in Davis and Resnick (1985), 

” ‘xl m 

c qa,‘(Xk-P,Xk-,-. -P&A-,)) 52 C&-l 
k=l i=O k=l 

(a” ~“=(JII-P,~r~,-.‘.-PpJlr--p)) 

from which it easily follows, using the same ideas as in the proof of Theorem 4.1, 

that for each p, 

in Iw. This result clearly extends to finite dimensional distributions and thus it remains 

to check tightness of {a;’ U?‘( * )} i.e. for p, p’ E K, a compact set, 

FF lim sup P 
[ 

sup - n-m 118-B’ll~S 
aiY[ Up’(p) - U’,y’(j?‘)( > e] = 0. 

However 

where KY@, p’) is bounded for j?, @’ in the compact set K. Since 

a? ,$, (IXI +. . ~+(x,_p[)Y=op(l) 

the conclusion follows. q 

If y = (Y and E/Z,\” = co, then matters would seem to become more complicated 

since it is no longer true that 

ai” i IX, -PIX,-,- * . *--ppx,_p(~ =0,(l). 
f=l 

However in this case the function L(t) := E~Z,/~ll~Z,,~~,l is slowly varying, so that 

by the weak law of large numbers (cf. Feller, 1971, p. 236) 

where {b,} satisfies b,‘nL(b,) + 1. This suggests that 

b,’ : IX, -@lx,_, -a - . -fl,x,_,J” 
*=1 

may converge in probability to some function which attains its minimum at the true 

parameter vector. 
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Lemma 5.6. Let { Yt} be the linear process 

Yl = f CjZ,_j 
j=O 

where (2,) satisfies (1.1) and (1.2) with EIZ,\” = CO, and { cj} satis-es the summability 

condition (A.4). Then 

b,’ i JY,]* 3 f lCjl”l 
1=, j=O 

where (6,) is a sequence of constants such that b,‘nL(b,) + 1. 

Proof. First note that since ElZ,[” = co, it follows by essentially Karamata’s theorem 

and (A.7) (cf. Cline, 1983) that for all 1) 2 (Y, 

Also, since b,P[jZI)* > b,]/L(b,)+O (see Feller, 1971, p. 236), we have 

nP[I YI( > &I - n j$ IcjI”PIIZ,Ia > hl +O 

by (A.5) and the choice of b,. 

Now for q > 0 fixed, let Ylq be the MA(q) process 

Ytq = i CjZ*_j 
j=O 

and set pn4 = ~1 Y,qla ~~J~,JQ~~J. We next show 

b,’ zz, lY1$ 3 5 \cjla 
1=, j=O 

and since bi1np,,4 +cb, JCila by (5.7), it is enough to show 

and 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

Because Yoq and Yhq are independent for [h[ > q, the variance of the expression in 

(5.9) is bounded by 
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However by Karamata’s theorem, this is asymptotically equivalent to 

(const)nP[~Y,,)” > b,] which converges to zero by (5.8). As for (5.10), 

Since xi”=, Ic~J~ +C,T=, lCj)e, h t e proof of the lemma will be complete once we show 

(5.11) 

Observe that from (5.7) and (5.8), 

(4+00) 
- 0. 

Thus, if a 6 1, (5.11) is immediate. Now if (Y > 1, then by (5.3), 

lIyrl~-lYlqlLII~~~Iylla-‘+lYI~l”-*~lYt- r,,l 
~(const)(lYtqlLI-llYf- Y,,l+lK- Y,ql”> 

Since yfq and Y, - Yrq are independent and nb,‘+ 0, 

E b,‘,~,~~~~“-11Y~-Y,91 
[ I =nb,‘EjY,,(“-‘E/Y,-Y,,j+O 

so that (5.11) now follows easily for the case (Y > 1. 0 

Corollary 5.7. Let {X,} be the AR(p) process (5.1) where (2,) satisfies (1.1) and 

(1.2) with E/Z,)” =oo. If {b,} . IS as specljied in Lemma 5.6, then for any compact set 

KcW, 

Proof. We have 
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and so the convergence in probability for each /3 follows from Lemma 5.6, and the 

fact that 5;’ U,(4) h 1. The uniformity of convergence in probability follows from 

a tightness condition similar to that given in the proof of Lemma 5.5. q 

The following theorem summarizes the behavior of 6 estimator for all values 

of y. 

Theorem 5.8. Let {X,} be the AR(p) process (5.1) where (2,) satisJies (1.1) and (1.2) 

and suppose 4 minimizes (5.2). 
(i) IfEIZ,lY <co and m(x) = E(Z, -xly has a unique minimum at x = 0, then 

f++ a.s. 

(ii) -IfEIZ,IY = co, then 

Proof. We only need to prove (ii) since (i) is Theorem 5.1. Write & = 4. We show 

that for any subsequence {&,,} there exists a further subsequence {r$,,,*} such that 
I 

+n8,+ 4 a.s. By Lemma 5.5 or Corollary 5.7 and a diagonal subsequence argument, 

there exist a subsequence { U$‘} and a set S, such that P(S) = 1 and for any compact 

set K = Rp, 

Since 

and h,,(P) has a unique minimum at fl = (6, the remainder of the proof is basically 

identical to the proof of Theorem 5.1 and is omitted. 0 

The limiting case as y + 00 is of course, the L” estimator where f is chosen to 

minimize the maximum absolute residual, IX, - plX,_, -. . * - &X,_,l. Define 

{ U:(. )} to be this maximum absolute residual so that 

K’UjP”‘(P) = a,’ lCt~n max JX, -/3,X,_, - * . * - /3,X,+,l 

= a, -’ iii (a,‘uy(p>)“‘. 

Now for each p, it follows that 
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and so 

U’,“‘(P) 

U?‘(4) 
SOmzxm l+i-P1Icli--l- . * .-p,l+&I = h’“‘(J3). 

However, while h’“‘( * ) achieves a minimum at p = r$, this minimum is not unique. 

For example, consider the AR(l) case 

x, = 4x,_, + z,. 

Here +i-p$i_r=l if i=O and $,-p$I_I=+i-l(~-/?) if i>l; hence h’“‘(/?)=l 

when l/3 - 4) G 1. Thus while 6 will be O,(l), it need not be consistent. 

A similar but unrelated problem exists when we try to estimate a location param- ?. 
eter along with the AR parameters; that is, choose /2, Q, to minimize 

Note that our results for y > Q do not depend on the location of {Z,}; hence 

a,Y i (x, -p -plx,_, -. * * -p,x,_,[y 5 P(p) f l-pm 
,=, k=l 

independent of the value of p. It follows that if, for each fixed p, we choose b(p) 

to minimize 

i lx-PJ-r * .-Ppxt-,-Ply ,=* 

and if k(p) q p(p) then we should have that ,L % ~(4) and 4 1; 4. However, 

in general c(p) will not converge in probability to any single value; thus b does 

not converge in probability. For example, when y = 2 and (Y < 1, I; is equivalent to 

x which does not converge in probability. However, in this case, the AR parameter 

estimates (least squares estimates) are nonetheless consistent. We conjecture that if 

$, 4 minimize 

li Ix - P -/3,x,-, -. * . - ppxt-pp, 
,=I 

then 4 s 4 even though $ need not converge in probability to any single constant. 

Appendix 

In this appendix, we collect the technical results required in earlier portions of the 

paper. Many of our results rest on point process methods for moving averages as 

developed in Davis and Resnick (1985). We begin with notation and definitions. 

For further background on point processes, see Resnick (1987, Chapter 3). 
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Let E be a state space, which for our purposes will be a subset of Euclidean 

space. Let 8 be the c-algebra generated by the open subsets of E. For each XE E, 

define a set function E,( . ) on 8 as follows: 

c,(B) = 
1 if xEB, 

0 otherwise, 

where BE 8. A point measure m is defined to be a measure of the form 

such that m is finite on relatively compact sets of E (i.e., subsets B such that the 

closure B is compact). The class of such point measures is denoted by M,(E) and 

A&(E) is defined to be the smallest u-algebra which makes the evaluation maps 

m + m(B) measurable where m E M,(E) and B E ‘8. A point process on E is then a 

measurable map from a probability space (0, 3, P) into (M,,(E), A,(E)). 

A useful topology for M,(E) is the vague topology which renders M,(E) a 

complete separable metric space. If p,, E M,(E), n 3 0, then pu, is said to converge 

vaguely to p0 (written p,, * p,-J if pm(f) + pO(f) for all f~ Cf,(E) := the space of 

continuous functions E +Iw+ with compact support where am = jfd)(~,. The 

v-algebra generated by the vague topology in MP( E) coincides with J&(E) (see 

Kallenberg, 1983). Because M,,(E) is a complete separable metric we can speak of 

convergence in distribution of point processes. 

Throughout this section let (2,) be an i.i.d. sequence of r.v.‘s with regularly varying 

tail probabilities, i.e. assume 

P(~z,~>x)=x-“L(x) 

where L(x) is slowly varying at 00, LY > 0 and 

(A.1) 

. P(Zl>X) 
5 P(IZ1l > x) = p 

where 0 s p s 1. Define the linear process { Y,} by 

Y, = f cjz*, 
j=l 

where {cj} is a sequence of constants satisfying 

j$, lcjl ’ < CO for some 6 such that 6 < min(cw, 1). 

Under these conditions the infinite series (A.3) converges a.s. and 

(cf. Cline, 1985). With a,, defined by 

a, := inf{x: P[lZ,l> x] S n-‘} 

(A.21 

(A-3) 

(A.4) 

(A.3 

64.6) 
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it follows from (AS) that 

!Ll np[l Yll> Gzxl = jzl lCjlaX-u for all x > 0. (A.7) 

Proposition A.l. Suppose { Yt} is the process given by (A.3). Then 

k=l i=l k=l 

in M,,(R x ([w\(O))) where R = [-CO, 001 and 

(a) {Zki} is i.i.d. with Zk,i L Z,, 

(b) (6,) is i.i.d. with P[& = l] =p and P[& = -l]= 1 -p, 

(c) r, = E, + ’ . * + Ek where {Ek} is an i.i.d. sequence of unit exponential r.v.‘s, 

(d) {Zsi}, {Sk} and { Ek} are independent. II 

The proof of this proposition is a rather straightforward extension of Theorem 

2.4 in Davis and Resnick (1985a) (see also Knight, 1986) and hence is omitted. 

However it is worth remarking that ITS’=, cSxT;l/= is a Poisson process on R\(O) with 

intensity measure 
1 

v(dx) = ‘y(px-“-‘l co,&)+(l -p)(-x)~*-‘l~-,,o,(x>> dx. 

As an immediate corollary to this proposition, we have for all continuous functions 

f on Rx (R\(O)) with compact support 

,$, f(Z, Y,,): ? IT f(Zk,i, ciskrk”“) 
i=l k=l 

(A.8) 

where c, = 0 for i G 0 and 

Y,, = a,’ Y,. (A.9) 

Note that a compact subset of R\(O) is closed and bounded away from 0. 

Oftentimes, one would like to extend A.8 to a larger class of functions. For 

example, in our applications, f (x, y) = Ix + yly orf(x,y)=p(x+y)-p(x)forsome 

loss function p( .). Iff is continuous, then A.8 will hold for the function f(x, y)~(Jxl < 

M)l(lyl> 6) so that by Theorem 4.10 in Billingsley (1967), convergence will follow 

provided we can show that for all e > 0, 

‘,T irnW lim sup P 
- + n+‘X (lj,f(Z,, Y,,)(l-l(lz~l~M)I(lY”~~>S))~>r)=O 

(A.lO) 

and 

(A.ll) 



174 R.A. Davis et al. / M-estimation for autoregressions 

as 6 -+O and M + co. The next proposition provides useful bounds which are 

instrumental in establishing (A.lO) for the functions we have in mind. 

Proposition A.2. Suppose that {x} and {Y,,} are given by (A.3) and (A.9), respec- 

tively. Let {V,} be an i.i.d. sequence of r.v.‘s with finite mean such that for every t, V, 

and Y, are independent. Then for all 6 > 0 and r] > 0, 

(a) liy+ypP 
[ 

i IKIIYJI(lYn,l~~)> 77 
1=, 1 

s ~~‘C,EIV,16Y-” for all y> a, 

(b) l@+szpP [ i IV,ll~~,Iy~~l~~,I~~~~r) I=, 1 
S C,S-*P[jV,I>O] for all -y>O, 

where C, and C, are constants. If in addition V, has zero mean and finite variance 

u2 and l<cx<2, then 

Cc) Var i V,Y,,I(IY,,(G~) = na,2E[Y:I(lY,(~aa,G)IEV:+0 
,=1 > 

as n+a and then s-+0. 

Proof. (a) The probability is bounded by 

n-‘E[ ,i, (V,( (y,,(‘It( Y,,Is 811 = rl-‘E( Vl~(WY’E~ YllyI(/ Yl(s aJ)) 

+ CIEjVIIGY-* 

as n + m by Karamata’s theorem (cf. p. 283, Feller, 1971). 

(b) Clearly, 

P [ ,i, l~llY~~l’~tlv.,l>~)>s] sp[ ii (~lKI>aJ~~~lV,l>OI) ,=I 1 
~~~~I~,I~~,~l~~I~,I~~l 

+ C2FP[I v,l > 01 

by (A.7). 
(c) Since the summands are uncorrelated, the result is immediate from Karamata’s 

theorem. 0 

The following results are required for studying the asymptotic behavior of LAD 

estimates. 
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Proposition A.3. Let {.&} be an array of i.i.d. symmetric r.v.‘s which are independent 

of (6,) and {r,““}. Define 

v= : : [(z,,-cis,r,““(-(Zk,i(] 
i=l k=l 

where C [ci( < 00. Then 

(a) for CY < 1, V is finite with probability 1, 

(b) for a > 1, V is$nite with probability 1 zfand onZy if E(/Z,,,I’-“) < 00, 

(c) for (Y = 1, V is$nite with probability 1 if and only if, E(ln(lZ,,,l))> -co. 

For LY > 1 the moment conditions are still sufficient for the finiteness of V provided 

Zk,j has median 0. This will be clear from the proof. 

Proof. The case where (Y < 1 is trivial since rk’l”I = O(k-I’“) and so the series 

defining V is absolutely convergent. For x # 0, 

~x-y~-~x~=y(~(x<o)-I(x~o)) 

Now because E[I(ZQ<O)-Z(Z\,>O)]=O, the random variables, 

{ciSkr,“a(l(Zk,i<O)-I(Zk,i>O)), ial, k3 l}, are uncorrelated and since 

E&“” = T(k -2/a)/T(k) G (const)k-*‘“, we have 

F f var(ci~kr~““(~(Zk,i<O)-~(Zk,i>O)))<~ 
i=l k=l 

whence 

,z, k.zI (c;skr;“u(r(zk,i<o)-I(zk,i>o)))<oo a.s. 

Therefore the convergence of V depends on the convergence of 

f f ( ci8kri1’a -Zk,J)I( ci6krk1’a > Zk,i > 0) 
i=l k=l 

and 

f F (ci6kr,““-Zk,i)~(Ci~krk1’a <zk,i <o). 
i=l k=l 

From a Taylor series expansion and the law of the iterated logarithm applied to 

r,, it follows that 

/r;‘/a! _ k-r/“) = O(k-“+“/*‘(log log k)‘/‘) 

and, consequently, 

- kP1’a(<a a.s. 
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so that &“, may be replaced by k-l/” . in the definition of V. It now follows, by 

the symmetry of the Zki’s, that both of the series above will converge if, and only if, 

E ,z f (\ci(k-I’” -Zk,i)l(lcilk-““>Z,i>O) <co. 
i=l k=l > 

If F( . ) is the distribution function of Zk,i, then 

E 
( 

kf, (Jc;Jk-‘I” -Zk,i)l(JciJk-‘I* > Z/q >O)) 

= kf, j-;c”k-“-(\cilkl’” -x)F(dx) 

(MY-“” - x)F(dx) dy 

(u - x)u--’ du F(dx). 

It is easy to see that the double integral is finite if and only if, 

c X ‘-“F(dx) <co for (Y > 1 
Jo+ 

or 

i 
ln(x)F(dx)> -cc for (Y = 1 

o+ 

and the result is now immediate by the absolute summability of the ci. Cl 

Proposition A.4. Let {Xt} be an AR(p) process with innovations {Zl}~‘D(cx), a E 

[ 1,2), and P[Z, 2 0] = PIZ1 s 01. Set 

Y,(u) = ulxt_l+* . . + up-, = f cjzI-j 
j=l 

where 

cj=cj(u)=~j_lu,+~“+~j-PuP 

and the (crj are the coeficients in the causal representation of the AR process. Then for 
all M > 0 and 6 > 0, a continuity point of the distribution of Z,, 

T., (. ; 6, M) 2 T( . ; 8, M) 

in C(W) where 

T,(u, 6, M)= i a,‘MY,(u)(l(Z,~O)-I(Z,sO)) 
I=, 

(A.12) 

+2 %. lZl-a,‘MY,(u)l(l(a,‘MY,(u)~Z,~-6) 
,=I 

+ I(a,‘MY,(u) 3 Z, 2 6)) 
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and 
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T(Up 6, M)= F f CiSkMr,""(I(Zk,i~O)-I(Zk,i~O)) 
i=l k=l 

t2 f f IZ~i-Ci8kMrk”~((l(CiskMrkl/a~zk,i~--8) 

i=l k=l 

Moreover, 

,,it;lfl T( u, 6, M) c 0 = 0. 
” 1 (A.13) 

Proof. Using (A.8) and the method of proof of Theorem A.3, it is straightforward 

to show convergence of the finite dimensional distributions of T,, ( * ; 6, M). As for 

tightness, since Y,(u) is linear in u and 

1 Ia - bllrSsaGbI - \a - c\ltszz+I 5 2/b - c&<a~,,vc, 

we have for 111~ - D(( 6 77 and IIuII, 1) uJI s K, K large, 

(T&J; 6, M)- T,(v; 6, M)\ 

~77 5 f a,‘MX~_j(I(Z,~O)-I(Z,aO)) 
j=l f=l 

+8Ma,’ 5 (Y,(u-u)1~(6~ua,‘M(IY,(u)lv(Y,(v)~) 
f=l 

=: A+B. 

By Proposition A.2(b) and (c), 

f a,‘X,,(I(Z,sO)-I(Z,z-0)) =0,(l) forj=l,...,p, 
*=* 

whence 

l$ lim sup P sup ABE =O. 
- n+m ll~--oll~~ 1 

For B, since 1 K(U)\< YT := K ~~~~=,(I~~-~1+~ * . + (+j_p()(Z,_jl, we have 

E sup EmI2 <8a’2M~‘2~na,“‘2E(( YF)““1(6 < ailMY:)) 
/I~--VIl=fl > 

(A.14) 

and by (A.7) and Karamata’s theorem, 

lim sup na ;o(‘2 E((Yf)““I(i5<ai’MYf))<c0. 
*-cc 
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Therefore, 

lim sup P sup B>E +O 
“-a ll~--vll~v 1 

as n + 0. This combined with (A.14) proves tightness. 

We now turn to the proof of (A.13). For notational convenience, write Z&= 

Z(*.&zO), Zk,i=Z(Zk,i#O) and let di=IIk_,l+**.+($i--p( SO that on IIuII=l, 

[ci(U)( s die We first show that given E > 0, 

and 

(A.16) 

The sequence { 6&“*( Z& - Z&)} is uncorrelated with zero mean and finite variance 

so that with S=Ci (d,[“‘, the probability in (A.15) is bounded by 

f p[ld.llkgN s,r;““(z;,i-z;i) > &lQ’*/S i=l 1 
~(S/E)~ f ldil ; ET;*‘” 

i=l k=N 

=(S/F)* ; Idil f Z(k-2/a)/Z(k) 
,=I k=N 

+O 

as N + CO. The second term is handled in the 

Let L=min,,.,i,, VT=, Jci(u)l. If L=O then 

same fashion. 

there exists a u such that ci( u) = 0, 

i=l,..., p. But this implies 11 u 11 = 0, a contradiction. Choose i” and u*, a unit 

vector, such that L = (ci*(u*)l. Since 

P[kg, Zk,i.lO] =*-PNIZ,=O]+O as n+co, 

it follows from (A.15) and (A.16) that given E > 0 there exists N large such that 

n(k~,zkj*>o}]~l-~~. 
Nowchoose M,>l andS>Osuchthatfori,k=l,...,N, 

(A.17) 

p Izk,ils K (A.18) 
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and 

p[{8<Izk.il~u Izk,i =“ll> l-5. (A.19) 

Let A denote the intersection of the 2N*+ 1 sets described in (A.17)-(A.19). Then 

clearly P[A] > 1 - E and from the inequalities, 

-al(b~0)+2)6-aJ1(6~b~a)~lal-21bl for b>6 

and 

al(b~0)+2[b-a(l(a sZIS-~)~(U/-~/~[ for b<-6 

we have on A and for M > M,, 

inf T(u; 6, M)a f inf F (MIc,(~)~~,“~-~IZ,~~)I,,~ 
II lJ II = 1 k=l j/u/J=1 i=l > 

Thus P[infIIUII=, T(u; 6, M)>O]> 1 --E for M > MO and 6 small, as was to be 

shown. Cl 
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