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In this work, a formalism based on symmetry which allows one to express asymmetries of all the 
particles in terms of conserved charges is developed. The manifestation of symmetry allows one to easily 
determine the viability of a baryogenesis scenario and also to identify the different roles played by the 
symmetry. This formalism is then applied to the standard model and its supersymmetric extension, which 
constitute two important foundations for constructing models of baryogenesis.
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1. Introduction

The evidences that we live in a matter-dominated Universe 
are very well-established [1]. While the amount of antimatter is 
negligible today, the amount of matter (i.e. baryon) of the Uni-
verse has been determined with great precision by two indepen-
dent methods. From the measurement of deuterium abundance 
originated from Big Bang Nucleosynthesis (BBN) when the Uni-
verse was about a second old (with temperature TBBN ∼ MeV), 
Ref. [2] quotes the baryon density normalized to entropic den-
sity as 1011Y BBN

B = 8.57 ± 0.18. From the measurement of tem-
perature anisotropy in the cosmic microwave background radiation 
imprinted by acoustic oscillation of photon–baryon plasma when 
the Universe was about 380 000 years old (TCMB ∼ 0.3 eV), Planck 
satellite gives 1011Y CMB

B = 8.66 ± 0.06 [3]. The impressive agree-
ment between the two measurements is a striking confirmation of 
the standard cosmological model.

In order to account for the cosmic baryon asymmetry, baryo-
genesis must be at work before the onset of BBN. Although the 
Standard Model (SM) of particle physics (and cosmology) contains 
all the three ingredients for baryogenesis: baryon number viola-
tion, C and CP violation, and the out-of-equilibrium condition [4], 
it eventually fails and new physics is called for [5]. Clearly these 
ingredients are necessary but not sufficient. Moreover, the early 
Universe is filled with particles of different types that interact with 
each other at various rates, rendering it a daunting task to analyze 
them. In this work, I would like to advocate the use of symmetry
as an organizing principle to analyze such a system. In particular, 
I will show that by identifying the symmetries of a system, one 
can relate the asymmetries of all the particles to the correspond-
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ing conserved charges without having to take into account details 
of how those particles interact.1 This should not come as a surprise 
since symmetry dictates physics: when we specify a symmetry and 
how particles transform under it, the interactions are automatically 
fixed. I will first review the formalism in Section 2. Then the roles 
of U (1) symmetries are clarified in Section 3. In Sections 4 and 5
respectively, I will apply this formalism to the SM and its super-
symmetric extension as they form important bases for constructing 
models of baryogenesis. Finally I conclude in Section 6.

2. Formalism

Here I will review the formalism that we will use in this work.2

For a system with s number of symmetries labeled U (1)x and con-
sisting of r ≥ s distinct types of complex particles labeled i (i.e. 
not self-conjugate like real scalar or Majorana fermion) with corre-
sponding chemical potentials μi and charges qx

i under U (1)x , the 
most general solution is given by

μi =
∑

x

Cxqx
i , (1)

where Cx is some real constant corresponding to U (1)x . It is appar-
ent that Eq. (1) is the solution for chemical equilibrium conditions 
for any possible in-equilibrium interactions since by definition, the 

1 It should be stressed immediately that the symmetries do not have to be exact. 
If a symmetry is approximate, the corresponding charge will be quasi-conserved 
with its evolution described by nonequilibrium formalism like Boltzmann equation. 
In other words, the description of the system boils down to identifying only the 
interactions related to approximate symmetries.

2 The formalism was first introduced by Ref. [6] to prove that the generation of 
hypercharge asymmetry in a preserved sector implies nonzero baryon asymmetry. 
See also the relevant discussion in Chapter 3.3 of Ref. [7].
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interactions necessarily preserve the symmetry. Note that symme-
try discussed in this work always refers to U (1) which character-
izes the charge asymmetry between particles and antiparticles. The 
U (1)x can be exact (like gauge symmetry) or approximate (due to 
small couplings, and/or suppression by mass scale and/or temper-
ature effects). The diagonal generators of a nonabelian group do 
not contribute as long as the group is not broken [6]. For instance 
one does not need to consider conservation of third component of 
weak isospin T3 before electroweak (EW) phase transition.

Now for each U (1)x , according to Noether’s theorem there is a 
conserved current and the corresponding conserved charge density 
can be constructed as

n�x =
∑

i

qx
i n�i, (2)

where n�i is the number density asymmetry for particle i. To 
proceed we need two further assumptions. Firstly, particle i is as-
sumed to participate in fast elastic scatterings such that its phase 
space distribution is either Fermi–Dirac [exp(Ei − μi)/T + 1]−1 or 
Bose–Einstein [exp(Ei −μi)/T − 1]−1 for fermion or boson respec-
tively. Secondly, there are fast inelastic scatterings for particle i and 
its antiparticle ī to gauge bosons (which have zero chemical poten-
tial) such that μī = −μi . These two assumptions are justified for 
instance when the particles have gauge interactions. Now Eq. (2)
can be related to its chemical potential for μi � T as follows3

n�i = ni − nī = T 2

6
giζiμi . (3)

In the above gi specifies the number of gauge degrees of freedom 
and

ζi ≡ 6

π2

∞∫
zi

dx x
√

x2 − z2
i

ex

(ex ± 1)2
, (4)

with zi ≡ mi/T . In the relativistic limit (T � mi), we have ζi = 1(2)

for i a fermion (boson) while in the nonrelativistic limit (T � mi), 
we obtain ζi = 6

π2 z2
i K2(zi) with K2(x) the modified Bessel func-

tion of type two of order two. Using Eqs. (1) and (3), Eq. (2) can 
be written as

n�x = T 2

6

∑
y

J xyC y, (5)

where we have defined the symmetric matrix J as follows

J xy ≡
∑

i

giζiq
x
i qy

i . (6)

We can invert Eq. (5) to solve for C y in terms of n�x and substi-
tuting it into Eq. (1) and then making use of Eq. (3), we obtain4

n�i = giζi

∑
y,x

qy
i

(
J−1

)
yx

n�x. (7)

3 The expansion in μi/T � 1 is justified as long as the number asymmetry den-
sity is much smaller than its equilibrium number density. For instance with n�i

the order of the observed baryon asymmetry, the expansion holds when the corre-
sponding particle mass over temperature mi/T � 20.

4 As long as r ≥ s and there are no redundant symmetries, in the sense that 
all the symmetries are linearly independent and there is no rotation in the 
s-dimensional symmetry space that can make all the r distinct particles uncharged 
under some U (1), J always has an inverse.
Eventually one would like to relate this to baryon asymmetry i.e. 
the baryon charge density. By substituting Eq. (7) into Eq. (2) for 
baryon charge density, we have

n�B =
∑
y,x

JBy

(
J−1

)
yx

n�x. (8)

Eqs. (7) and (8) make the symmetries of the system manifest: the 
solutions are expressed in term of conserved charges n�x , one for 
each U (1)x symmetry. In fact {n�x} forms the appropriate basis to 
describe the system. While qx

i comprises the charges of particle 
i under U (1)x , J matrix embodies full information of the system 
(all possible interactions consistent with the symmetry are implic-
itly taken into account). Notice that calculating J is particularly 
simple and circumventing the traditional approach of having to 
count the number of chemical potentials and determine the chem-
ical equilibrium conditions. It is now apparent that baryogenesis 
fails (n�B = 0) if: (I) the system does not possess any symmetry in 
which case Cx = 0 for all x in Eq. (1) or; (II) the system possesses 
only U (1)x ’s which always remain exact such that none develops 
an asymmetry in which case n�x = 0 for all x.

For instance, the baryogenesis scenario proposed in Ref. [8] fails 
due to the following reasons. In that work, there are initially four 
effective symmetries: U (1)B/3−Lα (α = {1,2,3}) and U (1)ψ̃ . During 
baryogenesis, U (1)B/3−Lα is always conserved i.e. n�(B/3−Lα) = 0
while a large enough CP asymmetry at the TeV scale requires fast 
U (1)ψ̃ violation i.e. Cψ̃ = 0. As a result, n�B = 0.

3. The roles of U (1) symmetries

In general, the reaction rate of a process γ in the early Universe 
is temperature-dependent �γ (T ). At each range of temperature 
T ∗ , by comparing �γ (T ∗) to the expansion rate of the Universe 
H(T ∗), we can categorize the reactions into three types [9,10]: 
(i) �γ (T ∗) � H (T ∗); (ii) �γ (T ∗) � H ; (iii) �γ (T ∗) ∼ H (T ∗). The 
reactions of type (i) are fast enough to establish chemical equi-
librium and are implicitly ‘resummed’ in the J matrix in Eq. (6). 
The reactions of type (ii) either do not occur or proceed slow 
enough. The former is due to exact symmetry like gauge symmetry 
while the latter is due to small couplings, and/or suppression by 
mass scale and/or temperature effects. Finally the reactions of type 
(iii) should be described by nonequilibrium formalism like Boltz-
mann equation in order to obtain quantitative prediction. In this 
work, the effective symmetries concern both reactions of types (ii) 
and (iii). In particular gauge symmetry always belongs to type (ii) 
and can play an interesting role as ‘messenger’. If an approximate 
symmetry belongs to type (ii), it can acquire a role as a ‘messenger’ 
or ‘preserver’ while if it is of type (iii), it can act as ‘creator/de-
stroyer’.

To understand the roles of U (1) alluded to above, it is illumi-
nating to group the charges as follows. Among all the charges U =
{n�x}, there is a subset U0 = {n�a} where the net charges vanish 
n�a = 0. In this case, we can remove them from the beginning and 
left with Ũ = U − U0 = {n�m} to describe the system. From Eq. (5), 
we have a set of linear equations n�a = ∑

b JabCb +∑
m JamCm = 0, 

which allows us to solve for Ca in terms of Cm .5 After eliminating 
Ca , the number density asymmetry for particle i can be expressed 
as

n�i = giζi

∑
m,n

q̃m
i

(
J̃−1

)
mn

n�n, (9)

5 We use a, b, . . . to label the charges in U0 and m, n, . . . to label the charges 
in Ũ .
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where we have defined q̃m
i ≡ qm

i − ∑
a,b qa

i

(
J−1

)
ab Jbm and J̃mn ≡

Jmn − ∑
a,b Jma

(
J−1

)
ab Jbn . Substituting Eq. (9) into Eq. (2) for 

baryon charge density, we get

n�B =
∑
m,n

⎡
⎣ JBm −

∑
a,b

JBa

(
J−1

)
ab

Jbm

⎤
⎦(

J̃−1
)

mn
n�n. (10)

The equation above can be succinctly written as n�B =∑
m,n J̃Bm

(
J̃−1

)
mn

n�n but it is elucidating to keep it as it is: the 
two terms in the square bracket of Eq. (10) represent two dif-
ferent types of contributions to the baryon asymmetry. The first 
term is the direct contribution of Ũ sector to the baryon asymme-
try while the second term is the contribution of Ũ sector through 
U0 (the messenger sector). Hence even if Ũ sector does not carry 
baryon charge JBm = 0, as long as it carries charges in the mes-
senger sector Jbm 	= 0, and some baryons also carry charges in the 
messenger sector JBa 	= 0, we will have n�B 	= 0. Here Ũ sector 
can play two roles: as creator/destroyer or preserver of asymme-
tries depending on their rates as discussed in the beginning of this 
section. In short, the roles of U (1) symmetries in baryogenesis can 
be concisely stated as follows:

1. Creator/destroyer: type (iii) reaction with an approximate 
U (1)m . The dynamical violation of U (1)m results in the de-
velopment of n�m 	= 0 from n�m = 0. As mentioned earlier, 
quantitative prediction requires one to solve dynamical equa-
tion like Boltzmann equation for n�m and the generated asym-
metry depends on the rates of creation and washout.

2. Preserver: type (ii) reaction with U (1)m and n�m 	= 0. The sym-
metry prevents the asymmetry from being washed out. The 
lightest electrically neutral particle in this sector can be a good 
(asymmetric) dark matter candidate.

3. Messenger: type (ii) reaction with U (1)a and n�a = 0. Further 
requirement is that at least some particles in U (1)m (of the 
preserver or the creator/destroyer) and some baryons need to 
be charged under U (1)a such that a nonzero asymmetry in 
U (1)m induces a nonzero baryon asymmetry through U (1)a

conservation.

In the SM, conservations of hypercharge U (1)Y and electric 
charge U (1)Q ensure n�Y = n�Q = 0. Hence they play the role 
of messenger respectively before and after EW phase transition 
(EWPT) at TEWPT. Eq. (10) is the generalization of the result of 
Ref. [6] which shows that a preserved sector which carries nonzero 
hypercharge asymmetry implies nonzero baryon asymmetry (set 
a = b = Y in the second term in Eq. (10)). We can readily extend 
this result to post-EW-sphaleron baryogenesis scenario [11] where 
U (1)Q plays the role of messenger. In this case, baryon asymmetry 
cannot be erased by fast B-violating interactions as long as there is 
a preserved sector carrying nonzero electric charge asymmetry. Of 
course, phenomenological constraint will require that the electric 
charge asymmetry to decay away before BBN.

4. The standard model

First let us define the U (1)x − SU(N) − SU(N) mixed anomaly 
(coefficient) as AxN N ≡ ∑

i c2 (R) giqx
i where c2 (R) is the quadratic 

Casimir operator in representation R of SU(N) with c2 (R) = 1
2 in 

the fundamental representation and c2 (R) = N in the adjoint rep-
resentation. Here gi is the degeneracy of particle i of charge qx

i in 
a given representation. In the following, for N = 2, we always refer 
to weak SU(2)L while for N = 3, color SU(3)c .

The SM Yukawa sector is described by
Fig. 1. Symmetries of the SM in the early Universe in between BBN and grand 
unified theory scale (TGUT ∼ 1016 GeV). T −

EWsp < T < T +
EWsp is the range of tem-

perature where EW sphalerons are in thermal equilibrium. At very high tempera-
ture T � T +

EWsp, some of the interactions due to quark intergeneration mixing can 
become ineffective, resulting in baryon flavor conservation U (1)Bα . While U (1)Y

and U (1)Q are gauge symmetries which have to be exact; U (1)B(α)
, U (1)Lα and 

U (1)B/3−Lα are global symmetries which can be broken dynamically, providing the 
avenue for baryogenesis.

−LY = (yu)αβ Q αεH∗Uβ + (yd)αβ Q α H Dβ + (ye)αβ �α H Eβ

+ H.c., (11)

where α, β = {1,2,3} are fermion family indices and the SU(2)L

contraction is shown explicitly with antisymmetric tensor ε01 =
−ε10 = 1 and εii = 0 while the SU(3)c contraction is left implicit. 
In Eq. (11), Q α , �α , H are respectively the left-handed quark, 
left-handed lepton and Higgs SU(2)L doublets while the right-
handed quark and lepton singlets are U1 = u, D1 = d, E1 = e
and so on. Besides U (1)Y or U (1)Q , it is well-known that there 
are baryon U (1)B and lepton flavors U (1)Lα as accidental sym-
metries. The relevant U (1) charges are listed in Table 1. U (1)Y

and U (1)Q as gauge symmetries are ensured to be anomaly-free. 
On the other hand, U (1)B and U (1)Lα both have SU(2)L mixed 
anomaly with AB22 = ALα22 = N f

2 where N f is the number of 
fermion family (N f = 3 in the SM). As a result of the anomaly, 
B and Lα are both violated by sphaleron-mediated dimension-6 
operator OEWsp = ∑

α (Q Q Q �)α (here onwards, these interactions 
will be referred to as EW sphalerons) [12]. Nonetheless, one can 
form an anomaly-free charge combination U (1)(B−L)α respected 
by OEWsp. Although exponentially suppressed today [12], the EW 
sphalerons are in thermal equilibrium in the temperature range 
T −

EWsp < T < T +
EWsp with T −

EWsp ∼ 100 GeV and T +
EWsp ∼ 1012 GeV

[13,14]. For most of the epoch in the early Universe, quark in-
tergeneration mixing violates baryon flavors and hence the exact 
symmetries are instead U (1)�α with �α ≡ B/3 − Lα .6 Outside this 
temperature window, B and Lα are effectively conserved. In the 
SM before EWPT, U (1)�α can act as both creator and preserver 
while U (1)Y is a messenger. After EWPT, the role of U (1)�α is 
taken over by U (1)B while the messenger becomes U (1)Q . More 
often than not, when one considers scenario beyond the SM, there 
are new symmetries (see Section 5) which can play the roles of 
U (1) discussed before. The symmetries of the SM in the early Uni-
verse is summarized in Fig. 1.

4.1. Some specific cases

Let us define the vectors qT
i ≡

(
q�α

i ,qY
i

)
and nT ≡ (

n�α ,n�Y
)
. 

Consider first the temperature regime T ∼ 104 GeV when all 

6 In the SM, in the absence of right-handed neutrinos, lepton flavors are con-
served. In beyond the SM scenario, fast lepton flavor violation could occur see for 
e.g. [15].
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Table 1
The list of SM fields, their U (1) charges qx

i and gauge degrees of freedom gi with 
fermion family index α. Here NH − 1 is number of extra pairs of Higgses H ′ with 
the assumption that they maintain chemical equilibrium with the SM Higgs H .

i = Q α Uα Dα �α Eα H H ′

q�α
i

1
9

1
9

1
9 −1 −1 0 0

qY
i

1
6

2
3 − 1

3 − 1
2 −1 1

2
1
2

qB
i

1
3

1
3

1
3 0 0 0 0

qLα
i 0 0 0 1 1 0 0

gi 3 × 2 3 3 2 1 2 2(NH − 1)

Yukawa interactions are in thermal equilibrium and all particles 
are relativistic. In this case, the J matrix is easily determined from 
Eq. (6) to be (here we express in its inverse)

J−1 = 1

3 (198 + 39NH )

×
⎛
⎜⎝

222 + 35NH 4 (6 − NH ) 4 (6 − NH ) −72
4 (6 − NH ) 222 + 35NH 4 (6 − NH ) −72
4 (6 − NH ) 4 (6 − NH ) 222 + 35NH −72

−72 −72 −72 117

⎞
⎟⎠ ,

(12)

where NH − 1 is number of extra pairs of Higgses H ′ with the 
assumption that they maintain chemical equilibrium with the SM 
Higgs H . Using the matrix above, n�i can be expressed in terms 
of conserved charge densities through Eq. (7). In particular, set-
ting NH = 1 and n�Y = 0, we obtain lepton asymmetries n��α and 
Higgs asymmetries n�H in terms of n�α which are in agreement 
with Ref. [16]. We can further consider cases at higher tempera-
ture when e Yukawa interactions are out-of-equilibrium in which 
we gain a chiral U (1)e . Formally we can create another conserved 
charge n�e and determine J which is now a 5 ×5 matrix. However 
if we were to take n�e = 0, in practice, we can just set ζe = 0 from 
the beginning to exclude its contribution. Next consider the case 
when both u and d Yukawa interactions are out-of-equilibrium. 
Since both U (1)u and U (1)d have SU(3)c mixed anomaly, no ef-
fective symmetry is gained. Nevertheless u and d are now indis-
tinguishable under QCD sphalerons and we simply have to set 
qY

u = qY
d = 1

2

(
2
3 − 1

3

)
= 1

6 . It is straightforward to consider further 
cases and the results of Refs. [16,17] are verified.

4.2. Relation between B and B − L

An important quantity for high scale baryogenesis (occurs at 
T > T −

EWsp) is the relation between the B and B − L charge den-
sities during the time when EW sphalerons freeze out. For sim-
plicity, we will assume that all particles are relativistic although 
particle decoupling effects [18,19] can be straightforwardly taken 
into account by considering generic form of ζi as in Eq. (4). 
Assuming T −

EWsp > TEWPT, the conserved charges are n�Y and 

n�(B−L) ≡ ∑
α n�α . By defining the vectors qT

i ≡
(

qB−L
i ,qY

i

)
and 

nT ≡ (
n�(B−L),n�Y

)
and keeping the number of fermion family as 

N f with NH pairs of Higgses, we obtain the following

J−1 = 1

N f
(
22N f + 13NH

) (
10N f + 3NH −8N f

−8N f 13N f

)
. (13)

Setting n�Y = 0, we have from Eq. (8)

n�B = 4
(
2N f + NH

)
22N + 13N

n�(B−L). (14)

f H
Table 2
Similar to Table 1 but for field components after EWPT where we use subscript ‘L’ 
to denote the left-handed fields which participate in weak interaction.

i = Uα,L Dα,L Uα Dα να,L Eα,L Eα W + H ′ +

q�α
i

1
9

1
9

1
9

1
9 −1 −1 −1 0 0

qQ
i

2
3 − 1

3
2
3 − 1

3 0 −1 −1 1 1

qB
i

1
3

1
3

1
3

1
3 0 0 0 0 0

qL
i 0 0 0 0 1 1 1 0 0

gi 3 3 3 3 1 1 1 3 NH − 1

On the other hand, assuming T −
EWsp < TEWPT, we need to consider 

the components of SU(2)L doublets and use Q in place of Y as in 
Table 2. Doing so we obtain

J−1 = 1

2N f
[
24N f + 13 (2 + NH )

]
×

(
2
(
6 + 8N f + 3NH

) −8N f
−8N f 13N f

)
. (15)

Now setting n�Q = 0, we have from Eq. (8)

n�B = 4
(
2 + 2N f + NH

)
24N f + 13 (2 + NH )

n�(B−L). (16)

The results above agree with Ref. [20] albeit obtained from simpler 
derivation based on symmetry principle.

5. The minimal supersymmetric standard model

Here we consider a well-motivated extension to the SM which 
is the minimal supersymmetric SM (MSSM). The MSSM superpo-
tential is given by

W = μH HuεHd + (yu)αβ Q αεHu U c
β

+ (yd)αβ Q αεHd Dc
β + (ye)αβ �αεHd Ec

β, (17)

where all the fields above stand for left-chiral superfields. One ob-
serves that the superpotential has an R symmetry U (1)R for e.g. 
with qR (Hd) = qR (�α) = qR

(
U c

α

) = −qR
(

Ec
α

) = 2 and the rest 
of the fields having zero charges.7 The R symmetry has mixed 
anomalies AR33 = 3 − N f and AR22 = 2 − N f where N f is the 
number of fermion family. With N f = 3, there is only AR22 = −1
anomaly. Thus one can form an anomaly-free charge combination 
as follows

R ≡ R + 2

3cBL
(cB B + cL L) , (18)

with cBL ≡ cB + cL any number. Notice that R is exactly con-
served by Eq. (17). Further setting μH = 0, we gain an anoma-
lous global U (1)PQ for e.g. with −qPQ (Q α) = qPQ (�α) = qPQ (Hu) =
qPQ (Hd) = 1, qPQ

(
Ec
α

) = −2 and the rest of the fields having zero 
charges. One can verify that U (1)PQ is anomalous with APQ33 =
−N f and APQ22 = −N f + NH . With N f = 3 and NH = 1, the APQ22
anomaly-free charge combination is

P ≡ 3

4
cBLPQ + cB B + cL L. (19)

In order to cancel the APQ33 anomaly, we need another mixed 
SU(3)c anomalous symmetry. For instance, when the u Yukawa 

7 Note that the R-symmetry is preserved also with R-parity violating terms as 
well as in supersymmetric type-I seesaw with right-handed neutrino chiral super-
fields Nc

i having R (Nc
i

) = 0.
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Table 3
The U (1) charges of left-handed chiral superfields. All gauginos G̃ , W̃ and B̃ have both R and R charges equal 1. Since all fermions in 
chiral superfields have R charges one less than that of bosons i.e. R (fermion) = R (boson) − 1, the differences between number density 
asymmetries of bosons and fermions are equal to that of gauginos.

i = Q a U c
a Dc

a �α Ec
α Hu Hd

q�α
i

1
9 − 1

9 − 1
9 −1 1 0 0

qY
i

1
6 − 2

3
1
3 − 1

2 1 1
2 − 1

2

qR
i

2cB
9cBL

2 − 2cB
9cBL

− 2cB
9cBL

2 + 2cL
3cBL

−2 − 2cL
3cBL

0 2

qP
i

cB
3 − 3cBL

4 − cB
3 − cB

3 cL + 3cBL
4 −cL − 3cBL

2
3cBL

4
3cBL

4

qB
i

1
3 − 1

3 − 1
3 0 0 0 0

qL
i 0 0 0 1 −1 0 0

qPQ
i −1 0 0 1 −2 1 1

qR
i 0 2 0 2 −2 0 2

gi 3 × 2 3 3 2 1 2 2
interactions are out-of-equilibrium, we gain an anomalous chiral 
symmetry U (1)uc with Auc33 = quc

/2. The anomaly-free charge 
combination is

χuc ≡ P + 9

2
cBLuc/quc

. (20)

The U (1) charges of the superfields are listed in Table 3. The 
anomalous U (1)R and U (1)PQ discussed above were first stud-
ied in Ref. [21] and were shown to be effective at T � 107 GeV
when the interactions mediated by weak scale μH , soft trilinear 
couplings and gaugino masses are out-of-equilibrium. While these 
symmetries impart only order of one effects in the standard super-
symmetric leptogenesis [9], it significantly enhances the efficiency 
of soft leptogenesis [10].

Finally it should be remarked that cB and cL can be chosen 
at will depending on the baryogenesis model under consideration. 
For instance, considering a model which violates lepton number 
through OL = (�αεHu)2, we can choose cB = −5cL/3 such that 
R and P are conserved by OL . As another example, considering 
a model which violates baryon number through OB = U c

α Dc
β Dc

δ , 
a good choice is cB = 0 and cL 	= 0 such that R and P are con-
served by OB . Choosing cB = cL , the results obtained are in dis-
agreement with Ref. [21] due to sign error of gaugino chemical 
potential in their Eq. (3.3).8

6. Conclusions

The use of symmetry principle in analyzing the early Uni-
verse system allows all the particle asymmetries to be expressed 
in terms of conserved charges corresponding to the symmetries. 
These charges form the appropriate basis to describe the system. 
Besides its simplicity i.e. without having to resort to details of how 
the particles interact, this method serves as a powerful tool in ac-
cessing the viability of a baryogenesis scenario. In addition, the 
roles of U (1) symmetries as creator/destroyer, preserver or mes-
senger become apparent, rendering it easier to construct interest-
ing models of baryogenesis.
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8 For instance we have n�B = 6N f
(
2n�Q + n�G̃

)
instead of n�B =

2 [6N f n�Q − (
4N f − 9

)
n�G̃

]
. Since the derivation here is solely based on symme-

tries of the system, this mistake will not occur.
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