ARTIN-SCHREIER THEORY FOR COMMUTATIVE REGULAR RINGS

L van den DRIES
Department of Mathematics Unversity of Utrecht, Utrecht, The Netherlands

Recerved 12 Auguct 1975

Introduction

In a famous paper [14] of 1926, E Artin and O Schreter introduced the notion of "real field" and showed how the condition of reality is ccanected ath the existence ot orderings on a field In a subsequent paper [15] Armo used these result- to solve positively Hibert's 17th problem, whether every posinve definite rational function over \mathbf{Q} is a sum of squares of rational functions over \mathbf{Q} In this paper we show that many of the results of Artin and Schreier for fields carry over to commutative (von Neumann) regular rings The analogue of the notion of "orderng on a field" is called here "good preorder on a regular ring" (Section 3) It turns out that the good preordered regular rings are known in the hterature as regular f-rings (see [9, 12])

In Section 3 we prove the basic quantmer elimination result, using a method of Lipshitz and Saracino [3] (in fact their work convinced me of the possibiliy of a generalization of the Artin-Schreier theory) The existence of a quantifier e'iminatın opens the way to algebraic applications as A Tarskı, A Robinson, P J Cohen, and S. Kochen have shown in several instances $[16,5,17,18]$ We use it in Section 4 to solve Hilbert's 17th prob'sm for regular f-nings explicitly, in the following sense

Let $A=\left(A_{1}, \quad, A_{m}\right), X=\left(X_{1}, \quad, X_{n}\right)$, for given $\tau(\mathbf{A}, \mathbf{X}) \in \mathbb{Q}[\mathbf{A}, \mathbf{X}]$ there exist fintely many $\alpha_{1}(\boldsymbol{A})$ and $\tau(\mathbf{A}, \mathbf{X})$, such that $\tau(\boldsymbol{A}, \boldsymbol{X})=\Sigma \alpha_{1}(\boldsymbol{A}) \tau_{i}^{2}(\boldsymbol{A} \boldsymbol{X})$, and such that for any regular f-ring R and $a \in R^{m}, \tau(\boldsymbol{a}, \mathbf{X})$ is positive definite over R iff $0 \leqslant u_{i}(a)$ for all l

Here $\alpha_{1}(\boldsymbol{A}) \in \mathbb{Q}|\boldsymbol{A}|$ and $\tau_{i}(\boldsymbol{A}, \boldsymbol{X}) \in \mathbb{Q}|\boldsymbol{A}| \nmid \boldsymbol{X} \neq$, these ring constructions $R|\boldsymbol{X}|$ and $R \nless \boldsymbol{X} \ngtr$ are introduced in Section $4, R \nless X \ngtr$ looks like $R(X)$ if R is a field, m fact $R(\boldsymbol{X})$ is a quotient of $R \not \subset \mathbb{X} \ngtr, R|\boldsymbol{X}|$ is generated over R by X_{i}, \quad, X_{n}, using ring operations and an absolute value function | |

This result generalizes and gives an elegant formulation of a theorem of I Henkin (see [19]) who proved the existence of a finite number of possible decompositions of a positive definite $f(a, \boldsymbol{X}) \in(\mathbf{Q}(\boldsymbol{a}))(\boldsymbol{X})$ as a finte sum $\Sigma \alpha_{i}(a) f_{i}^{2}(a, X),\left(0 \leqslant \alpha_{1}(a)\right)$, for any given $f(A, X) \in Q[A, X]$

In Section 5 we introduce sheaves of ordered felds and make our result of Section 4 a little more concrete (following a suggestion of G Cherlin) In Sect on 6 two notions of "real closure" of a regular f-ring cre defined, and existence and umqueness is proved for both For the special case of an ordered field 5 the invariant real closure of F is nothing else than the classical real closure \bar{F}, bat the atomless real closure of F is the ring of local'y constant functions defined on the Cantorspace \mathscr{C} and with values in \bar{F} Iu Siction 7 , decidability and related properties are discussed for real closed regular f rings With respect to Section $3 \cdot$ I was preceded by A Macintyre and V Weispfeining [9,20], in the proof of the existence of a quantifier-ehmination Furthermoce, Leonard Lipshitz has obtained Theorems 611 and 614 independently, see [25]

I wish to thank Greg Cherlin and Jan Treur for stimulating discussions and pointung out errors in an earher version

A last remark on notation the inclusion symbol C is also used for the substructure relation if A and B are rings (with unit), then $A \subset B$ means that A is a subring of B (with the same unit) In general we use the model theoretic notions and notations of $[21,22]$

0. Some elementary facts about rings

Conventions s. Rings are always assumed to be commutative with 1 The language of rings contains the binary function symbols + and , the unary function symbol -, and the constants 0,1 A multiplicatively closed subset of a ring contans 1 but does not contain 0 A domain is a ring without zero divisors and with $0 \neq 1$ A prime ideal \underline{p} of a ring R is an ideal such that R / \underline{p} is a doman (hence $p \neq R$)

It is well known that every multiplicatively closed set contans a prime ideal in is complement, and conversely, that the complement of a prime ideal is multipheatively closed From this follow

Fact 0.1. The minimal prime ideals are exactly the complements of the maximal multiplicatively closed sets Every prime ideal contains a minımal prime ideal

Fact 0.2. Suppose S is a maximal multiphcatively closed set in the ring R, and $p=R \quad S$, then for each $a \in p a^{n} s=0$ for some $n \in \mathbf{N}$ and $s \in S$ (otherwise a and S wouid generate a multiphicatively closed set strictly contanning S)

Fact 0.3. $\left\{x \in R \mid \exists n \in \mathbb{N} x^{n}=0\right\}$ is the intersection of all (minmal) prime ideals in R (for if $x^{n} \neq 0 \forall n \in \mathbf{N}$, then $\left\{x^{n} \mid n \in \mathbb{N} \cup\{0\}\right\}$ is a multiphcatively closed set, hence is contained in the complement of a prime deal)

Fact 0.4. If R is a reduced ring (1 e has no mlpotents other than 0), then the canonical mapping $R \rightarrow \Pi_{E} R / \underline{p}$, where \underline{p} varies over the minimal prime ideals of R, is an embedding of R in a product of domans

Fact 0.5. Conver ely it a ring is embeddabie in a drect product of domans, then the ring is reduct d

1. Real rings

Let K be a cla's of rings such that $A=B, B \in\{\Rightarrow A \in K$

Definition 1.1. Let R be a ring, I an tdeal in R
(a) I is called : K-prime if $R / I \in K$,
(b) I is called ، K-radicai if I is an intersection of K-prime ideals,
(c) $K-\operatorname{rad}(I)=\cap\{\underline{p} \mid \underline{p}$ is K-prime, $\underline{p} \supset I\}$,
(d) $K \cdot \operatorname{spec}(R)=\{p \mid p$ is $K-$ prune $\}$

If K is the class of all domains, these concepts coincide with "prime ideal", "radical ideal", "the radical of an ideal", and ' the spectrum of a ring" respectively' These concepts, and the following apphcation, were inspired by a study of [1:

Definition 1.2. A ring R is called real iff

$$
\forall n \in \mathbf{N} \forall x_{1} \quad \forall x_{n}\left(\sum_{i=1}^{n} x_{1}^{2}=0 \Rightarrow x_{1}=\quad=x_{n}=0\right)
$$

For fields this is :r accordance with the usual deimition, a doman is teal if , is quotient field is real

Let K be the class of real clomans Instead of K-prime, K-radical K-rad, K-Spec, we'll use the terms real pume, real radical, realrad, Realspec Hence an ideal I of a ring R is real prime iff it is prime and

$$
\forall n \in \mathrm{~N} \forall x_{1} \quad \forall x_{n}\left(\sum_{i=1}^{n} x_{1}^{2} \in I \Rightarrow x_{1} \in I \text { and } \quad \text { and } x_{n} \in I\right)
$$

Lemma 1.3. Let R be a real ring Then R is reduced all minmal prome ideals are real puine ideals

Prooi. Supposi $1^{n}=0$, we may assume $n=2^{k}(k \in \mathbb{N})$, and we get

$$
r^{2^{k}}=0 \Rightarrow\left(r^{2 k-1}\right)^{2}=0 \Rightarrow r^{2^{k-1}}=0 \Rightarrow \quad \Rightarrow r^{2}=0 \Rightarrow r=0
$$

Let S be a multuphicatively closed subset of R Then there is a multiplicatively closed $S^{\prime} \supset S$ such that $n \in \mathbf{N}, x_{1}, \quad, x_{n} \in S \Rightarrow \sum_{i=1}^{n} x_{1}^{2} \in S^{\prime}$, namely take

$$
S^{\prime}=S \cup S\left\{\sum_{i=1}^{n} x_{i}^{2} \mid x_{1}, \quad, x_{n} \in S, \quad n \in \mathbb{N}\right\}
$$

Suppose $0 \in S^{\prime}$ then

$$
0=s \quad \sum_{i=1}^{n} x_{t}^{\prime}\left(s \in S, \quad x_{i} \in S, \quad n \in N\right)
$$

hence $0=\sum_{i=1}^{n}\left(s x_{i}\right)^{2}$, implying $s x_{t}=0$, sut also $s x_{t} \in S$, contradiction' So S^{\prime} is a multiphicatively closed set From this it follows that the maximal multiphicatively closed sets S satisfy

$$
\left.\begin{array}{cc}
x_{1} & , x_{n} \in S \\
n \in \mathbf{N}
\end{array}\right\} \Rightarrow \sum_{i=1}^{n} x_{1}^{2} \in S
$$

Hence their complements, the minimal prime ideals are real prime ideals
This generalizes a result of [2]

Theorem 1.4. Let R be a ring Then the followirg are equivolent
(a) R is a real ing,
(b) R is embeddable in a direct product of reai fields,
(c) R is embelidable in a function ring L^{x} with L a real field and X a set

Proof.

(a) \Rightarrow (b) follows mmediately fron Fact 04 and Lemma 13 (and the fact that the quotient field of a real domain is a real field)
(b) \Rightarrow (c) follows from the fact that for every set of real fields, there is a real field in which all are embeddable
(c) \Rightarrow (a) in L ic a real field, then L^{x} is a real ing and also every subring of L^{x} is a real ring

Theorem 1.5. Let R be a ring, I an ideal of R Then
(1) I is real radical $\Leftrightarrow \forall n \in \mathbb{N} \forall x \quad \forall x_{n}\left(\sum_{i=1}^{n} x_{1}^{2} \in I \Rightarrow x_{1} \in I\right.$ and and $\left.x_{n} \in I\right)$,
(i1) if Is a real radical ideal, then I is a radical ideal, all its minmal prime ideals are real prome ideals and their intersection is I

Proof. Ad (1) if I is real radical, then I is intersection of ideals whick satisfy the right-hand side of (1), hence I itself satisfies the rigit-hand side of (1) Conversely if the right-hand side of (1) holds, then R / I is a real ring, and by using the lemma and the well known 1-1 correspondence between the ideals of R / I and the ideals of R cortaiming I, we get the left-hand side of (1) In the same way we prove (11)

Theorem 1.6. Let R be a ring, I an ideat in R Then

$$
\operatorname{realrad}(I)=\left\{x \in R \mid \exists k, l \in \mathbb{N} \exists y_{1} \quad y_{i} \in R x^{2 k}+y_{i}^{2}+\quad+y_{i}^{2} \in I\right\}
$$

Proof. If $x^{2 k}+y_{1}^{2}+\cdot \cdot y_{i}^{2} \in I$, then $\left(x^{k}\right)^{2}+y^{2}+y_{i}^{2} \in \operatorname{realrad}(I)$, hence $x^{k} \in$ realrad (I), so $x \in \operatorname{realrad}(I)$ (use Theorem 15) Of course realrad (I) is the smallest
real radical ideal containing I, so 11 suffices to prove that the nght-hand side of the equality is a real radical ideal
(a) Suppose $x^{2 k}+y_{1}^{2}+y_{1}^{2} \in I$ then for all $r \in R \quad(r x)^{2 k}+\left(r^{2} y_{1}\right)^{2}+$ $\left(r^{k} y_{l}\right)^{2} \in I$
(b) Suppose $x^{2 k}+y_{1}^{2}+y_{i}^{2} \in I, u^{2 m}+v_{i}^{2}+\quad+v_{n}^{2} \in I$, we may dssume $m=k$, then

$$
(x+u)^{4 k}+(\lambda-u)^{4 k}=x^{2 k} \quad S_{1}+u^{2 k} \quad S_{2},
$$

where S_{1} and S_{2} are sums of squares, but $x^{2 k} S_{1}+\sum y_{1}^{2} S_{1} \in I$ and $u^{2 k} S_{2}+$ $\left(\Sigma v_{1}^{2}\right) S_{2} \in I$, hence

$$
(x+u)^{4 k}+(x-u)^{4 k}+\left(\sum y_{i}^{2}\right) S_{1}+\left(\sum v_{1}^{2}\right) \quad S_{2} \in I
$$

From (a) and (b) it follows that the nght-hand side is an ideal, the easy proof that this ideal is real radical is left to the reader

In the following Realspec (R) will be endowed with the Zariskitopologv, ie the closed sets are the

$$
V(X)=\{p \in \operatorname{Realspec}(R) \mid X \subset p\}(X \subset R)
$$

Corollary 1.7. Let R be oring Then Realspec (R) is compaci

Proof. Let $V\left(X_{i}\right)(i \in I)$ be a famuly of closed sets every finte subfamily of which has a nonvord intersection It suffices to prove that the real radical of the ideat generated by $U_{i \in I} X_{i}$ is a prorer ideal Suppose 1 is an element of this radical, then, by Theorem $16,1+\sum_{i=1}^{\prime} y_{t}^{2}=\sum_{k=1}^{n} a_{k} b_{k}$ with $b_{k} \in U_{i \in I} X_{i}$, but then 1 is an elioment of the real radical of $R b_{1}+\quad+R h_{n}$, hence $V\left\{b_{1}, \quad, b_{n}\right\}=\emptyset$, contraatction'

The Corollary and Theorem 14 will be applied in proving that the theory of real rings has a model companion, thus dong for real nings what Lipshitz and Sara ino [3], and Carson [4], have done for reduced rings

2. The model companion of the theory of real rings

We begin w'th some useful facts on idempotents and regular rings
Definition 2.1. An element x of a ring R is called idempotent if $x^{2}=x$ If p is a prime ideal of R and $x \in R$ is idempotent then enther $x / \underline{p}=1$ or $x / p=0$ in R / \underline{g}

The set of rdempotents of a ring R wil: be deroted by $B(R)$ and is made a Boolean algebra by defining

$$
\begin{aligned}
& x \vee y=x+y-x y \\
& x \wedge y=x \quad y \\
& \bar{x}=1-x
\end{aligned}
$$

0 is the smallest, 1 the largest element of $B(R)$
There is oftcn a very convenient "geometrical" interpretation of this Boolears algebra suppose there is given a family $\left(p_{i}\right)_{)_{\in I}}$ of prıme ideals of K, such that $\bigcap_{i \in!} \underline{p}_{1}=\{0\}$. Then R is canonically embedded into $\Pi_{i \in I} R / \underline{p}$, and $E(R)$ is $1-1$ mapped into the Boolean algebra $\mathscr{P I}$ by $e \mapsto\left\{\imath \in I \mid c / \underline{p}_{i}=1\right\}$, and ths is even an embedding of Boolean algebras

Summanzed if we look at the elements of R as functions defined on I, then the idempotents are the characteristic functoons

Definition 2.2. A ring R is called (Von Neumann) regular if $\forall x \exists y\left(x^{2} y=x\right)$

A regular domain is a field, hence all prime ideals in a regular ring are maximal (hence are also minimal prime ideals) A regular ring is a reduced ring Hence, if R is regular, then $R \rightarrow \prod_{p \in S_{p e c} R} R / \underline{p}$ is an embedding of R in a product of fields

Lemma 2.3. Let R be a subring of S For each minimal prime deal \underline{p} of R there exists a minimal prime tdeal q of S such that $q \cap R=p$

Coroltary 2.4. Let the regmlar ting R be a subring of the regular rirg S Then the map $q \mapsto q \cap R(\operatorname{Spec}(S) \rightarrow \operatorname{spec}(R))$ is onto

Proof of the lemma. Extend $\boldsymbol{R} \backslash p$ to a maximal multiphicatively closed subset T of S, and put $q=S, T$ Then $q \cap S \subset \underline{p}$. and $\underline{q} \cap R$ is prime, hence $q \cap R=\underline{p}$

Let T be the first order theory of real rings We'll prove that T has a model companion \bar{T} ($\mathrm{e} \overline{\mathrm{T}}$ is an extension of T in the same language as T, each model of T can be embedded in a model of \bar{T} and ccnversely, and $\overline{\mathrm{T}}$ is model complete, A Robinson [5] has preved that a theory has at most one model companion)

The axioms of \bar{T}, ire
(i) the axioms of T ,
(ii) regulanty, ie $\forall y\left(x^{2} y=x\right)$,
(ii) there are no minimal dempotents $1 e$

$$
\forall e\left(e^{2}=e \neq 0 \rightarrow \exists f\left(f \neq e \wedge f \neq 0 \wedge f^{2}=f=e f\right)\right),
$$

(iv) every monc polynomal of odd degree has a root,
(v) $\forall x \exists y\left(x^{2}=y^{4}\right)$

Theorem 2.5. $\overline{\mathrm{T}}$ is the model companion of T

Proof. Let R be a model of $\overline{\mathrm{T}}$, and p be a prime ideal of R Then R / \underline{p} is a real closed field that R / \underline{p} is a real field follows from the Lemma 13 , that every monic polynomal of odd degree has a root tollows from the axioms (iv), from axom (v) it follows that every $x \in R / \underline{p}$ is of the form y^{\prime} or $-y^{2}$ The rest of the procf follows the lines of Lipshitz and Saracino [3], I only remark that the above corvllary simplifies some arguments

Convention. It the contrary is not exphctly stated all rings are assumed to be non-trivial, so the theory T of red rings will include the axiom $0 \neq 1$

Theorem 2.6. For every two real rings R and S there is a real ring in which hoth can be embedded (in other words $\operatorname{Mod}(\mathrm{T})$ has $\mathrm{JEP}=$ the joint embeddir g pr perty)

Proof. (following Lipshitz and Saracino) Let K be a real field, and X, Y nonempty sets and $f R \rightarrow K^{x}, g \quad S \rightarrow K^{v}$ embeddings (these exist by Theorem 14 (c) and the fact that the class of real fields has JEP) By means of diagonal map. K^{*} is embedded in $\left(K^{x}\right)^{\gamma} \simeq k^{x \times Y}$ and K^{γ} in $\left(K^{v}\right)^{x} \simeq K^{x \times y}$ hence R and S can both be embedded into $K^{\chi \times Y}$

Using a well known result of A Robinson [6], we get
Corollary 2.7. $\overline{\mathrm{T}}$ is a complete theory
Remark 1. This corollary also follows from the fact that \bar{T} has a (necessanly unique) prime model, 1 e a model of \bar{T} which can be embedded in every model of \bar{T}

Let $\overline{\mathbf{Q}}$ be the real closure of \mathbf{Q}, let $C^{0}(\mathscr{C}, \overline{\mathbf{Q}})$ be the ring of locally constant functions defined on the Cantor space \mathscr{C} and with values ir $\overline{\mathbb{Q}}$ Then $C^{\prime \prime}(\mathscr{Q} \bar{Q})$ is the prime model of $\overline{\mathbf{T}} C^{0}(\mathscr{C}, \overline{\mathbf{Q}})$ is not a mimmal model of $\overline{\mathrm{T}}$ This vall be proved in Section 6 .

Remark 2. Regular rings R without minimal idempotents have several pecular properties
(a) R is neither noetheridn nor artinan

Proof. There exist a strictly descending sequence of idempotents ($\left.e_{n}\right)_{n \in \cdot v}$ and a strictly ascending sequence of idempotents $\left(f_{n}\right)_{n \in \mathcal{N}}$ and these give rise to a strictiy descending sequence of ideals ($\left.e_{n} R\right)_{n \in N}$ and to a strictly ascending sfupence of 1deals $\left(f_{n} R\right)_{n \in \mathbb{N}}$
(b) If $f \in R[X]$ has two distinct roots in R, then it has infintely many ruots in R

Proof. Let $\alpha_{1} \neq \alpha_{2}$ be roots of f, then $e \alpha_{1}+(1-e) \alpha_{2}$ is also a root for every idempotent e, and in this way we get infintely many roots

Remark 3. $\operatorname{Mod}(T)$ does not have AP (the Amalgamation Property) Lipstitz and Saracino [3], give an example of three real nings A, B, C such that $A \subset B, A \subset C$, and such that there are no reduced ring D and embeddings $B \rightarrow D, C \rightarrow D$ such that

commutes

3. Preordered regular rings

Definition 3.1. A preorder on a ring R is a subset O of k such that
(i) $O+O \subset O$,
(i1) $O \quad O \subset O$,
(ii) $O \cap(-O)=\{0\}$,
(iv) $\forall a \in R a^{2} \in 0$

This terminology is taken from [7]
A pre order O on a ring R defines a partial ordering \leqslant by $a \leqslant b \Leftrightarrow b-a \in O$, which satisfies $a \leqslant b \Rightarrow a+c \leqslant b+c, a \leqslant b$ and $0 \leqslant c \Rightarrow a c \leqslant b c$ (note that $a \in O \Leftrightarrow 0 \leqslant a$)

Example 1. The set of sums of squares in a real ring is a pie-order
Example 2. Suppose R is a field If O is a preorder and $-x \notin O$, then $O+O x$ is agan a preorder on R

This implies (via Zorn's lemma) that the maximal preorders on R are precisely the orderings on R (where an ordering is identified with the set of its nonnegative elements), and also that $O \subset R$ is a preorder if and only if O is the intersection of a nonempty collection of orderings

Remark. A preordered reduced ning is a real ring
Now the fundamental lemma
Lemma 3.2 Let (R, O) be a preordered ring, let p be a minimal prime ideal of R Then $O / \underline{p}=\{a / \underline{p} \mid a \in O\}$ is a preorder on R / \underline{p}

Proof. It suffices to check that

$$
\left.\begin{array}{l}
a+b \in \underline{p} \\
a, b \in O
\end{array}\right\} \Rightarrow a \in \underline{p}
$$

So let $a+b \in \underline{p}, a, b \in O$ Fact 02 imphes that there is $n \in \mathcal{N}$ and $: \in R \quad p$ such that $(a+b)^{n} x=0$ Let

$$
a_{1}=a^{n}, \quad b_{1}=\sum_{i=1}^{n}\binom{n}{1} a^{n-1} b^{i}
$$

then

$$
a_{1}+b_{1} \in p, a_{1}, b_{1} \in O, \quad\left(a_{1}+b_{1}\right) x=0
$$

Hence $a_{1} x=-b_{1} x$, so $a_{1} x^{2}=-b_{1} x^{2}$, but also $a_{1} x^{2}, b_{1} x^{2} \in O$, implying $a_{1} x^{2}=0$, hence $a_{1} \in \underline{p}, 1 \mathrm{e} a^{n} \in \underline{p}$, so $a \in \underline{p}$

Theorem 3.4. Every model R of \bar{T} has a unique preorder O, namely O is the set of squares of R

Proof. O / \underline{p} is for each prime ideal $\underline{\underline{p}}$ a preorder on the real closed field R / \underline{p}, hence consists exactly of the squares of R / \underline{p} Hence every element $a \in O$, "locath", a square, and a compactness argument proves that a is a square Thot the set of squares is indeed a preorder is proved in the same way

W a have seen that for preordered regular rings (R, O) with $R \vDash \tau$ the following holds $\forall p \in \operatorname{Spec}(R)(R / \underline{p}, O / \underline{p})$ is an ordered field

We'll now characterize those preordered regular rings (R, O) which have this property

Definition 3.5. A good preorder on a regular ring R is a proorder O on R ss ch that $\forall a \in R \exists e \in B(R)(e a \in O$ and $-(1-e) a \in O)$

Fir t a small
Lemma 3.6. Let (R, O) be a preordered regular ring Then for all $a \in R \quad a \in O \Leftrightarrow$ $\forall \underline{p} \in \operatorname{Spec}(R) a / \underline{p} \in O / \underline{p}$ Moreover, if $a / \underline{p} \in O / \underline{p}(a \in R, \underline{p} \in \operatorname{Spec}(R))$, then there is an idempotent e with $e / \underline{p}=1$ and $e a \in O$

Proof. We first prove the second statement $a / \underline{p} \in O / \underline{\underline{q}}$ imples that there is $a^{\prime} \in O$ st $a / \underline{p}=a^{1} / \underline{p}$, let e be the idempotent on which \bar{a} and a^{\prime} are equal (see the lemma of Lipshitz and Saracmo [3], for the meaning of this) Then $e / p=1$ and $e a=e a^{1} \in O$ The implication \Rightarrow of the first statement holds by definition, and \leftarrow follows by a compactness arg ament from the second statement

Theorem 3.7. Let (R, O) be a preordered regular ning Then we have O is a good pieorder $\Leftrightarrow \forall p \in \operatorname{Spec}(R)(R / \underline{p}, O / \underline{p})$ is an ordered field

Proof. \Rightarrow let $a \in R, \underline{p} \in \operatorname{Spec}(R)$, we rave to preve that $a / \underline{p} \in O / \underline{p}$ or $-a / \underline{p} \in$ O / p Choose $e \in B(\tilde{R})$ st $e a \in O$ and $-(1-e) a \in O$ If $e \notin p$, then $a / p=$ $e a / \underline{p} \in O / \underline{p}$, if $e \in \underline{p}$ then $1-e \notin \underline{p}$ and $-a / \underline{p}=-(1-e) a / \underline{p} \in O / \underline{p}$
$\leqslant \quad$ let $a \in R$, choose for each $\underline{p} \in \operatorname{Sper}(R)$ an idempotent e_{i} st $e_{p} / \underline{p}=1$, and $e_{p} \quad a \in O$ if $a / \underline{p} \notin O / \underline{p},-e_{\underline{p}} \quad a \in O$ if $-a / \underline{p} \in O / \underline{p}$ (such an e_{p} exists by the second statement of the lemma)

Finitely many of these idempotents $e_{1}, \quad, e_{m}, e_{n+1}, \quad, e_{n+m} \operatorname{cover} \operatorname{Spec}(R)$, (note that we often ideatify $e \in B(R)$ with $\{\underline{p} \in \operatorname{Spec}(R) \mid e \notin p\}$), where for $1 \leqslant t \leqslant$ $n e_{i} a \in O$, for $n+1 \leqslant 1 \leqslant n+m-e_{i} a \in O$, and we may also assume that they are parwise disjoint (for if necessary. we replace them by smaller idempotents). then the following holds for

$$
e=\sum_{i=1}^{n} e_{i} \quad c \in B(R), \quad e a \in O, \quad 1-e=\sum_{i=n+1}^{n+m} e_{i},
$$

hence $-(1-e) a \in O$

Corollary 3.8. $I_{v}^{\text {f }} R \neq \overline{\mathrm{T}}$, then the unique preorder on R is good
Definition 3.9. A preorder O on a ung R is called archımedean $1 f \forall r \in R \exists n \in \mathbf{N}$ $r \leqslant n$

Theorem 3.10. Let (R, O) be a good preordered regular ring Then the following are equivalent
(i) O is archimedean,
(ii) $\forall p \in \operatorname{Spec}(R)(R / \underline{p}, O / \underline{p})$ is an archimedean ordered field,
(ii1) (R, O) is embeddable in the ring of bounded functions $f \quad X \rightarrow \mathbf{R}$ (preo deied by $f \geqslant 0 \Leftrightarrow \forall x \in X f(x) \geqslant 0)$ for some nonempty X

Proof. (1) \Rightarrow (11) is trivial Assume (i1), from the Lemma 36 follows that $(R, O) \rightarrow \Pi_{R \in, p l(R)}(R / \underline{p}, O / \underline{p})$ is an embedding but $(R / \underline{p}, O / \underline{p})$ is (uniquely) embedded in R, 'ence we have a canonical embedding $(R, O) \rightarrow \mathbf{R}^{\text {spec(R) }}$, where $\mathbf{R}^{\text {speu(R) }}$ is preordered by $f \geqslant 0 \Leftrightarrow \forall x \in \operatorname{Spec}(R) \quad f(x) \geqslant 0$ Moreover, if $r \in R$, $\underline{p} \in \operatorname{Spec}(R)$, then therc is $n_{p} \in \mathbb{N}$, with $r / \underline{p} \leqslant n_{e} / \underline{p}$, and with the lemma we can find $e_{p} \in B(R), e / p=1, \mathrm{st} \quad e_{p} \leqslant n_{p}$ Fintelv many of these e_{p} 's cover $\operatorname{Spec}(R)$, and taking n to be ,he maximum of the corresponding n_{e} 's, we get $r \leqslant n$, and this holds of course alco for their mages in $\mathbf{R}^{\text {jpec(R) }}$ We have proved (iil)
$($ iii) \Rightarrow (1) is irivial
Theorem 3.11. The class of good preordered regular rings has the amalgamation property

Proof. Let $(R, O),(S, P),(T, Q)$ be good preordered regular rings with ($K, O) \subset$ ($S P$,,$(R, O) \subset(T, Q)$ By the Corollary 24 , it is easy to see that we can find an
index set I and famulies of pime ideals $\left(p_{i}\right)_{1 \in}$ of $S,\left(q_{1}\right)_{\in I}$ of $T,\left(m_{i}\right)_{\in I}$ of R, uch that $\operatorname{Spec}(S)=\left\{p_{i} \mid i \in I\right\}, \operatorname{Spec}(T)=\left\{q_{1} \mid l \in I\right\}, \operatorname{Spec}(R)=\left\{m_{1} \mid i \in I\right]$, and fot all $t \in I \quad \underline{i} \cap R=q, \cap R=\underline{m}$,

Hence we nave for each $i \in I$ embeddings $\left(R / \underline{m}_{, ~} O / \underline{m}_{2}\right) \rightarrow\left(S / \underline{p}_{1} P / \underline{p}_{1}\right)$ and $\left(R / m_{n}, O / m_{1}\right) \rightarrow\left(T / q_{n}, Q / q_{1}\right)$ of ordered fields, hence for each $t \in I$ we can find an ordered field (L_{i}, O_{t}) and embeddings such that

commutes Putting together all these commutative diagiams we get a commutative diagram

nence an amalgamation diagram

Remark 1. Note that we used that ordered fields are good preordered regular rings, and that the class of good preordered regular rings is closed under diret. products (both facts are easy)

Remark 2. This method works also for the class of regular rings, for which Lipshitz and Saracino state the amalgamation property However the reference in ther proof to a result of P M Cohn is ir my opimon not correct, because Cohn proves amalgamation for a wider class of (not recessarily commutative) mings

The language $L(O)$ of preordered rings is the language L of rings, augmenced by one unary predicate symbol O However, to get better model the uretic results, we have to change the language (just as Lipshitz and Saracino ir [3] cio) We introduce two new unary function symbols ${ }^{-1}, \mid$, which we define in the theory $T(Q)$ of good preordered regular nings by the defining axioms

$$
\left\{\begin{array} { l }
{ x ^ { 2 } x ^ { - 1 } = x } \\
{ x \quad (x ^ { - 1 }) ^ { 2 } = x ^ { - 1 } }
\end{array} \quad \left\{\begin{array}{l}
|x|^{2}=x^{2} \\
\underline{O}(|x|)
\end{array}\right.\right.
$$

These functions are indeed unquely defined in every good preordered regular ring by these axioms Let $r\left(Q,,^{-1}, \mid\right)$ be the extension of definitions of $T(O)$ just described But we can also go the other dirertion we can axiomatize the theory of good preardered regular rings in the language $L\left({ }^{-1},| |\right)$ (this axiomatization is denoted by $T\left(^{-1},| |\right)$ in such a way that if we define the unary predicate symbol Q by $O(x) \leftrightarrow x=|x|$, then the corresponding extension by definitions $T\left(^{-1},| |\right)(Q)$ is equivalent with $T\left(O,^{-1}, \mid\right)$ The main advantage of this is that $T\left(^{-1},| |\right)$ is a universal theory (the reader can easily provide a set of universal axioms) Note however that the notions of embedding and homomorphism (between two good preordered regular rings) do not change Let $\bar{T}\left({ }^{-1},| |\right)$ be the corresponding extension by defintions of $\overline{\mathrm{T}}$ Now $\overline{\mathrm{T}}\left(^{-1},| |\right.$ is the model compamon of the uriversal theory $\mathrm{T}^{-1}, \mid 1$, which has t'e amalgamation property, and by results of A Robinson [5] and Eklof and Sabbagh [8] we get

Corollary 3.12. $\overline{\mathrm{T}}\left(^{-1},| |\right.$ is the model completion of $\mathrm{T}^{-1},| |$, and admuts eliminatuon of quantifiers

Remark. Atter ontaming these results, I read A Macintyres ' Model completeness for sheave', of structures' $[9]$, where weaker but more genera' results are proved The discussto ${ }^{2}$ rage 86,87 ard 88 of his paper establishes essentually that $\bar{T}\left({ }^{\prime}\right.$. $\left.: 1\right)$ is complete and the model companon of $\mathrm{TH}^{-1} \mid$), but a sightly different terminoligy is used, which lill now explan His noton of regular $\dot{\gamma}$-ring is equivalent with the rotion of good preordered regular ring in the following sence

If (R, \leqslant, \wedge) is a regular f ring then $\left(R^{-i}, i\right.$ i) sa good preordered regular ring (where 'and ' are defined by $x^{\prime} x^{\prime}=x, x\left(x^{\prime}\right)^{\prime}=x^{\prime}, y^{\prime}=(x \vee 0)+(-x \vee 0)$) and contersely the partal ordering * of a good preordered regular ming ($R, ., 1$) defines a latice structure $(\leqslant \vee, \wedge)$ on R such that $(R \leqslant, \forall, \wedge)$ is a regular f-nng

As his termmology is more standard well adopt the

Convention. In the ful owing good preordered regular rings will be called regular f-rings

Added in proot recently Werspenning's paper [20] appeared where the results of [9$]$ are generalifed stall further It contains also a general verston of Theorem 311

4. Positive definite functions over regular f-rings

Up till now we excluded the trivial ring $\{0\}$, for the sake of making $\overline{\mathrm{T}}$ complete However, it will be convement in the following to include $\{0\}$ in our considerations,
so $\{0\}$ will count as a real ring, regular ming, regular f - 1 mg and even as a model of $\overline{\mathrm{T}}\left(^{-1}, \mid 1\right)$ This has the following effect

Lemma 4.1. (I) Mod T^{-1}), the class of real regular rings, is an equationa! class (II) $\operatorname{Mod} T\left({ }^{-1},| |\right)$, the class of regular f-rings, is an equational class

Proof. At (I) We can axiomatize $\left.\mathrm{T}^{-1}\right)$ by
(1) th \geqslant axioms for rings (which ran be expressed by equations),
(2) $x \quad x^{i}=x$, ax $\left(x^{-1}\right)^{2}=\lambda^{-1}$,
(3) $\left(x^{2}+\sum_{1=1}^{k} y_{1}^{2}\right)\left(\lambda^{2}+\sum_{1-1}^{k} y_{1}^{2}\right)^{-1} x-x$ (for each $k \in \omega$)

For suppose a ring ($R,^{-1}$) satisfies (1). (2) and (3) If $a^{2}+\sum_{1}^{+}, b_{1}^{2}=0$, then (3) mplies that $a=0$, hence $\left(R,^{-1}\right)$ is indeed a real regular ring Conversely let (R, ') be ateds ring, then for any prime ideal \underline{p} (and $x, y_{1}, \quad, v_{k} \in R$) ether $x=0(\bmod \underline{p}$) anc hence

$$
\left(x^{2}+\sum_{i=1}^{k} y_{i}^{2}\right)\left(x^{2}+\sum_{i=1}^{k} y_{i}^{2}\right)^{-1} x=x(\bmod p)
$$

or $x \neq 0(\bmod \underline{p})$ implying $:^{2}+\sum^{k}, y_{i} \neq 0(\bmod \underline{p})$ and hence

$$
\left(x^{2}+\sum_{i=1}^{k} y_{i}^{2}\right)\left(t^{2}+\sum_{1}^{k} y^{2}\right)^{1} x=x(\bmod \underline{p})
$$

We have proved that the cquations (3) hold losall hence the hold
Ad (II) We can ato natue $\Gamma\left({ }^{\prime}, 1\right)$ by
(1) The ring axioms.
(2) $x^{2} x^{\prime}=x, \quad\left(y^{\prime}\right)^{2}=x^{\prime}$,
 $\left(1 x^{\prime}+|y|\right)^{\prime} r-x$
 Consersely, if ($R,,^{\prime} \cdot 1$) satisfies, (1) (2) and (3), then $(i=\{, x \in R$, a preorder fby (3)], and chen agond proorder (be the equatom $x^{\prime}=x^{\prime}$) and in just the abrolute value function mduced by O hence ($R,{ }^{\prime}$ ') in an f-regulat ring

It is well known that one can defme the polynomal ming $R\left|X_{1}, \quad, \lambda_{n}\right|$ in n vanables up to somorphim over the ring R as follows
$R\left[\begin{array}{ll}X_{1} & , X_{n}\end{array}\right]$ is a ming extension of R generated over R bv n distungushed elements X_{1}, \quad, X_{n} such that for each ning morphism $\phi \quad R \rightarrow S$ and each n - tuple $\left(a_{i}, a_{n}\right) \in S^{n}$, there is a unque extension $\psi R\left[X_{i}, \quad, X_{n}\right] \rightarrow S$ of ϕ with $\psi\left(X_{t}\right)=a_{1}(1 \leqslant 1 \leqslant n)$

The existence and umqueness os such an extension tollows from the fact that the class of rings is an equational class From the same unversal-algebraic arguments: follows.
(1) Each real regular ring R has a real regular extension $!\vdots\left(\zeta_{1}, \quad, X_{n}\right)$ generated
over R by n distinguished elements $X_{1} \quad, X_{n}$ such that for each homomorphism $\phi \quad R \rightarrow S$ with S real regular and each n-tuple $\left(a_{1}, \quad, a_{n}\right) \in S^{n}$ there ts a unique extension $\psi R\left\langle X_{1}, \quad, X_{n}\right\rangle \rightarrow S$ of ϕ with $\psi\left(X_{i}\right)=a_{1}(1 \leqslant 1 \leqslant n)$ (Note that $R\left\langle X_{1}, \quad, X_{n}\right\rangle$ is generated over R by X_{1}, \quad, X_{n} using the ring operations and the real regular ring operation)
(II) Each ;eguict f-ring R has a regular f-extension $R\left|X_{1}, \quad, X_{n}\right|$ generated over R by n distingus hed elements X_{1}, \quad, X_{n} such that for each homomorphism $\phi \quad R \rightarrow S$ with S a egular f-ring and each n-tuple $\left(a_{1}, \quad, a_{n}\right) \in S^{n}$ there is a unique extension $\psi R\left|X_{i}, \quad, X_{n}\right| \rightarrow S$ of ϕ with $\psi\left(X_{i}\right)=a_{t}(1 \leqslant i \leqslant n)$. (Note that $R\left|X_{1}, \quad, X_{n}\right|$ is gencrated over R by X_{i}, \quad, X_{n} using the ring operations and the regular f-ring oprations ${ }^{-1}$ and $|\mid$)

In case (I) as well as in case (II) the unqueness of the extension (up to R-isomorphism) tollows easily from the existence

Now we have ro make a number of essentially trivial remaths
Note that a term $\tau\left(X_{1}, \quad, X_{n}\right)$ in the language $L\left(\mathcal{C}^{-1}, \underline{a}\right)_{\in \in R}$ (with a constant a for each $\left.a \in R, R \notin T^{-1}\right)$) denotes an clement of $R\left\langle X_{1}, \quad, X_{n}\right\rangle$ Similarly for terms in the language $\mathrm{L}\left(\left(^{-}, \mid 1, \underline{a}\right)_{a \in R}\right.$ and $R \vDash T\left({ }^{-\prime} .!\mid\right)$

It is well known that a polynomual $\tau \in R\left[X_{1}, ., X_{n}\right]$ defines a polynomal function $S^{\prime \prime} \rightarrow S$ fir each ring extension S of R. the image of $a \in S^{n}$ is denoted by $\tau(a)$

In the same way we have
(1) If $R \subset S, R, S$ real regular rings, $\tau \in R\left\langle X_{*}, \quad . X_{n}\right\rangle$, then for each $a \in S^{n}$, the image of τ under the homomorphism $R\left\langle X_{1}, \quad, X_{n}\right\rangle \rightarrow S$ wheh fives R and maps X_{1} onto a_{i}, is denoted by $\tau(a)$ So $\tau \leqslant R\left\langle X_{1}, \quad, X_{n}\right\rangle$ deines a map $a \mapsto \tau(a)$ ($S^{n} \rightarrow S$)
(2) Similarly If $R \subset S, R, S$ regular $/$-rings, then $\tau \in R_{1} X_{1}, \quad, X_{n}$ defines a map $S^{n} \rightarrow S$, and the image of $a \in S^{n}$ under this map is denoted by $\tau(a)$

If R is an infinite field, then $f \in R\left[X_{1}, X_{n}\right]$ is umquely determined by tts corresponding polnnomial function $R^{n} \rightarrow R$, however this is not true in the case of real regular rings $\tau=\left(X^{2}-2\right)\left(X^{2}-2\right)^{-1} \in \mathbf{Q}\langle X\rangle$ defines the map $r \mapsto 1(\mathbf{Q} \rightarrow \mathbf{Q})$ as does $1 \in \mathbb{Q}\langle X\rangle$, but $\tau \neq 1$, because τ does not define a constant map from $\mathbf{Q}\left(\backslash^{\prime}\right)$ to $Q(\sqrt{2})$ Stlll we have

Lemma 4.2. Lei R be a regular f-rmg, $R \subset S \notin \bar{T}\left({ }^{\prime}, \mid\right)$ Then for $r \in$ $R \mid X_{1}, \quad, X_{n}$: we have

$$
\tau=0 \Leftrightarrow \forall a \in S^{n} r(a)=0
$$

Proof, \Rightarrow is trivial
\Leftarrow. regular f-rings have amalgammion, so we may assume even that $R\left|X_{i}, \quad, X_{r}\right| \subset S$, then the t-tuple $\left(X_{1}, \quad, X_{n}\right)$ is an element of S, so $\tau\left(X_{1}, \quad, X_{n}\right)=0$, but $\tau\left(X_{1}, \quad, X_{n}\right)=\tau$, (this can be proved by induction), and we have proved the statement for $\tau \in R\left|X_{1}, \quad, X_{n}\right|$

Lemma 4.3. (1) If R is a real ring, then $R\left[X_{1}, X_{n}\right]$ is a reat ring (Hence $R\left[X_{1}, \quad, X_{n}\right]$ can be embedded in a real regular ring)
(2) Let (R, O) be a preordered regular ring Then (R, O) can be embedded in a (good) preordered regular ning (SP) with $S \vDash \bar{T}$
(3) Let R be a regular f-ring Then

$$
O \stackrel{\operatorname{def}}{=}\left\{\sum_{1=1}^{k} a_{1} \tau_{1}^{2}\left|k \in \omega, 0 \equiv a_{1} \in R, r_{1} \in R\right| X_{1} \quad, X_{n} \mid\right\}
$$

1. a preorder on $R\left|X_{1}, \quad, X_{n}\right|$ which extends the (good) preorder of R

Proof. (1)'t will suffice to prove this for $n=1$ if $\Sigma_{i}^{k}, f_{i}^{2}=0(t, \in R[X])$ and not dil f_{1} are zero, then let $a, \in R$ be the coefficient of $X^{\prime \prime}$ in f_{1}, and take n maxiral wath the property that some $a_{1} \neq 0$, then we have $\sum_{1-1}^{k} a^{4}=0$ contradicton'
(2) $(R, O) \rightarrow \Pi_{\text {erametri }}(R / p O / p)$ is an embedding by the lemma of THerrem 37 But O/p is an mtersection of a family of orderngs (O_{p}) ire, $I_{p} \neq 0$ (see E. ampic ? of Sectoon 3$)$, herce for each $p(R, O / p) \rightarrow \Pi_{x i_{0}}\left(R / p, O_{p},\right)$ is an embedding of (R / p, Olp) in a product of orderea fields

Let for each (p, i) with $t \in I_{n}\left(R_{Q}, P_{q}\right.$) be an extenston of $\left(R / p \rho_{q}\right.$, with $R_{p}, F T$ Then $(R / P, O / p)$ naturallv embedded in $\Pi,\left(R_{e}, P_{e},\right)$ and finally (R, O) is naturall) emtedded in
and $S=T$
(3) It will suffice to prove that

$$
\sum_{i}^{h} a_{i} r_{1}^{2}-0 \Rightarrow a_{1} r_{1}^{2}=0 \quad \forall 1 \leqslant 1<k
$$

so suppose $\sum_{;}, a_{1} \tau_{1}^{2}=0$, take a regular f-extenson S of R with $S:=\bar{T}$ Then $\Sigma_{s}^{A}, a_{1} \tau_{i}^{2}(s)=0 \forall g \in S^{n}$, hence $a_{i} \tau_{i}^{2}(s)=0 \forall s \in S^{n}$ (note that we have dsmoned dll $a_{1} \geqslant 0$), which by Lemma +2 imphes that $a_{3} \tau_{1}^{2}=0 O \cap R$ is a preorder on R, whech contains the given good preorder on R. and a a good preorder w imaximal preorder, $O \cap R$ is equal to the gren preoder on R

Before coming to cur man topic we indicate which inclusion relations hold between the rings introduced so far

Theorem 4.4. (A) If R and S are real regular rirgs and $R \subset S$ then the tolowne relatons hold
(1) $R\left[X_{1}, \quad, X_{n}\right] \subset R\left\langle X_{1}, \quad, X_{n}\right\rangle$
(2) Let R be $\mathbf{Q}(\sqrt{2})$, s be $\mathbf{Q}(\sqrt[4]{2})$, then $R\langle X\rangle \not \subset S\langle X\rangle$
(B) If R and S are regular f-rings and $R \subset S$, then
(1) $R\left[X_{1}, \quad, X_{n}\right] \subset R\left|X_{1}, \quad . X_{n}\right|$
(2) $R\left|X_{1}, \quad, X_{n}\right| \subset S\left|X_{1}, \quad, X_{n}\right|$
(3) Let R be $Q(\sqrt{2})$, ordered by $\sqrt{2}>0$, then $R\langle X\rangle \not \subset R|X|$.
(The inclusions are all supposed to be induced by canonical homomorphisms)
Proof. (A) (1) Let $\phi R\left[X_{1}, ., X_{n}\right] \rightarrow R\left\langle X_{1}, \quad, X_{n}\right\rangle$ be the canonical mapping fixing R and the $X_{1}, R\left[X_{1}, \quad, X_{n}\right]$ is real (Lemma 4 3), hence is a subring of a real regular ning T Now there is a unique homomorphism $\psi R\left\langle X_{1}, \quad, X_{n}\right\rangle \rightarrow T$ fixing the X_{i} such that

commutes But then

also commutes because $\phi{ }^{\circ}{ }_{7}$ fixes R and the X_{i} Hence τ is $1-1$
(2) $\left(X^{2}+\sqrt{2}\right)\left(X^{2}+\sqrt{2}\right)^{-1}$ considered as an elcment of $S\langle X\rangle$ is equal to the identity 1 , but $\left(X^{2}+\sqrt{2}\right)\left(X^{2}+\sqrt{2}\right)^{-1}$ considered as an element of $R\langle X\rangle$ is not equal to 1
R is a subfield of the real field $\mathbf{Q}(\sqrt{-\sqrt{2}})$ and

$$
\left(\left(X^{2}+\sqrt{2}\right)\left(X^{2}+\sqrt{2}\right)^{-1}\right)(\sqrt{-\sqrt{2}})=0
$$

Hence the canonical map $R\langle X\rangle \rightarrow S\langle X\rangle$ is not 1-1
(B) (1) As in Lemma 43 (1) one proves that

$$
O=\left\{\sum_{i=1}^{k} a_{i} \tau_{1}^{2} \mid 0 \leqslant a_{1} \in R, \tau_{1} \in R\left[X_{1}, \quad, X_{n}\right]\right\}
$$

is a preorder on $R\left[X_{1}, \quad, \lambda_{n}\right]$ (although one has to be a little more careful), hence for each minımal prime ideal \underline{p} of $R\left[X_{1},, X_{n}\right], O / \underline{p}$ is a preorder on $R\left[X_{1}, \quad, X_{n}\right] / \underline{p}$

Now we use the following fact which is easy to prove
If (D, P) is a preordered domain, then $(Q t(D), Q t(P))$ is a preordered field and $P \subset Q t(P)$, where $Q t(D)$ is the quottent field of D, and

$$
C t(P)=\{a / b \mid a \in P, b \in P \backslash\{0\}\}
$$

In fact $Q t(P)$ is the smallest preorder on $Q t(D)$ containting P

So let $T_{e}=\left(Q^{*}\left(R\left[X_{1}, \quad, X_{n}\right] / \underline{p}\right), O t(O / p)\right)\left(\underline{p}\right.$ a mimmal prime), then T_{Q} is a preordered regular ring, as is $\Pi_{R} \bar{T}_{R}$, using Leinma 43 (2) $\Pi_{p} T_{R}$ is embedded in a regular f-ring T, and it is eas" to see that $R \rightarrow T$ (the composition of $\left.R \rightarrow R\left[X_{1}, \quad, X_{n}\right] \rightarrow \Pi_{e} R\left[X_{1}, \quad, X_{n}\right] / \underline{p} \rightarrow \Pi_{p} T_{p} \rightarrow T\right)$ is an embedding of eqular f-rings Now the proof proceec's as in (A) (1)
(2) is easy, using Lemma 42
(3) As in (A) (2) we prove that $\left(X^{2}+\sqrt{2}\right)\left(X^{2}+\sqrt{2}\right)^{-1}$, considered as an element of $R|X|$, is the identity, but $\left.\left(X^{2}+\sqrt{2}\right), X^{2}+\sqrt{2}\right)^{-1}$ considered as an element of $R\langle X\rangle$ is not the identity

We have the following necessary and sufficient condition for

$$
R\left\langle X_{1}, \quad, X_{n}\right\rangle \subset E\left|X_{1}, \quad, X_{n}\right|
$$

Proposition 4.5. Let R be a regular f-ring

(a) If $R\langle X\rangle \subset R|X|$ then the precrder $\left\{\sum_{r=1}^{k} a_{2}^{2} \mid k \in \omega, a \in R\right\}$ equals the given good preorder of R
(b) If $\left\{\sum_{i=1}^{k} a_{1}^{2} \mid k \in a_{1}, a_{1} \in R\right\}$ squals the given good preorder of ${ }_{R}$, then $R\left\langle X_{1}, \quad, X_{n}\right\rangle \subset R \mid X_{1}, \quad, X_{n}!(\forall n \in \omega)$

Proof. (a) Suppose $0 \leqslant r \in R$, but $r \notin O=\operatorname{det}^{\operatorname{de}}\left\{\sum_{1-1}^{k} a_{1}^{2} \mid k \in \omega, a_{t} \in R\right\}$ Then for some prime \underline{p} of $R, r \prime \underline{p} \notin O / \underline{p}$ We easily see that one can change r in such a way that r becomes a unit in R without changing the value of r / \underline{p} Vow there exists an ordering O_{p} on R / p such that $-r / p \in O_{p}$, let S be the teal extension field $(R / \underline{p})(\sqrt{-r / p})$ of $R^{\prime}{ }_{k}^{\prime}$, we see that $\left(X^{-2}+r\right)\left(X^{2}+r\right)^{-1}$ is mapped onto zero b^{v} the map $R\langle X\rangle \rightarrow S$ which extends $R \rightarrow R / \underline{\underline{p}}$ and maps X onro $\sqrt{-r / p}$, hence $\left(X^{2}+r\right)\left(X^{2}+r\right)^{-1}$, as an e^{1} ement of $R\langle X\rangle$, is not the identity, but $\left(X^{2}+r\right)\left(X^{\prime}+r\right)^{-1}$ is the identity of $R|X|$
(b) Under the stated condition $O=\left\{\sum_{i=1}^{k} \tau_{i}^{2} \mid k \in \omega, \tau_{1} \in R\left\langle X_{1}, \quad, X_{n}\right\rangle\right\}$ is a preorder on $R\left\langle X_{1}, \quad, X_{n}\right\rangle$ extending the given preorder on R Hence by Lemma 42 there is an extension (S, P) of $\left\langle R\left\langle X_{1}, \quad, X_{n}\right\rangle, O\right)$, with $S=\bar{T}$, consequently (S, P) is also a regular f-extension of R Now we have a unque regular f-ring morphism $\psi R\left|X_{i}, \quad, X_{n}\right| \rightarrow(S, P)$ fixing R and the X_{i} But this imphes that $\psi 0!$ corr ardes with the embedding $R\left\langle X_{1}, \quad, X_{n}\right\rangle \rightarrow S$ (where i is the canonical map $\left.R\left(X_{1}, \quad, X_{n}\right\rangle \rightarrow R\left|X_{1}, \quad, X_{n}\right|\right)$ and this mphes that t is $1-1$

Now we are going to discuss positive definteness
Definition 4.6. Let F^{\prime} be a regular f-ring, S a regular f-extension of R with $S \vDash \bar{T}$ Then $\tau \in R\left|X_{1}, \quad, X_{n}\right|$ is positive defin:te $\Leftrightarrow{ }^{\text {def }} \forall s \in S^{n} \tau(s) \geqslant 0$

Remark. Using the fact that $\bar{T}\left(^{-1},| |\right)$ is the model completion of $T\left(^{-1},| |\right.$ it doesr': matter which S we take, in a later section 1 will prove that every regular $f \cdot \mathrm{ning} \boldsymbol{f}$?
has a unique prime model extension (in the sense of "Saturated Model Theory" of G Sacks), so we could have taken S as this prime model extension of R Still another alternative is to define $\tau \in R\left|X_{1}, \quad, X_{n}\right|$ to be positive definite iff for each regular f-extension S of R we have $\forall s \in S^{n} \tau(s) \geqslant 0$

A rather trivial fact $\tau \in R\left|X_{1}, \quad, X_{n}\right|$ is positive definte iff $\tau=|\tau|$, this follows from $\tau=\tau\left(X_{1}, \quad, X_{n}\right)$ for each $\tau \in R\left|X_{1}, \quad, X_{n}\right|$ Now $\tau \in R\left|X_{1}, \quad, X_{n}\right|$ may involve the absolute value operation Those which do not, form the regular subring $R \nleftarrow X_{1}, \quad, X_{n} \ngtr$, more precisely

Definition 4.7. Let R be a regular f - r ng, and let $R\left\langle X_{1}, \quad, X_{n}\right\rangle \rightarrow R\left|X_{1}, \quad, X_{n}\right|$ be the real regular ring homomornhism fixing R and the X_{1} The image of this map is by defintion $R \nless X_{1}, \quad, X_{n} \ngtr$

Theorem 4.8. Let R be a regular f-ring, $\tau \in R \nless X_{1}, \quad, X_{n} \ngtr$ Then τ is posituve define $\Leftrightarrow \tau=\sum_{i=1}^{k} a_{1} \tau_{t}^{2}$ for some $k \in \omega, 0 \leqslant a_{t} \in R, \tau_{t} \in R \nless X_{1}, \quad, X_{n} \ngtr$

Proof. \Leftarrow is ti1* tal So let τ be positive definite

$$
O=\left\{\sum_{i=1}^{k} a_{1} \tau_{i}^{2} \mid k \in \omega, \quad \tau_{1} \in R \nless X_{1}, \quad, X_{n} \ngtr\right\}
$$

is a preorder on $\mathrm{R} \nleftarrow X_{1}, \quad, X_{n} \ngtr$ extending the given preorder of R By (2) and (3) of Lemma 43 there is a preordered extension ($S P$) of $\left(R \nleftarrow X_{1}, \quad, X_{n} \ngtr, O\right)$ with $S \vDash \bar{T}$ Then (S, P) is a regular f-extension of K Hence

$$
\tau=\tau\left(X_{1}, \quad, X_{n}\right) \in P \cap\left(R \nless X_{1}, \quad, X_{n} \ngtr\right\rangle=O
$$

I do not know whether the theorem can also be proved for "postive definte" $\tau \in R\left\langle X_{1}, \quad, X_{n}\right\rangle$ (R a regular f-ring) At least the corresponding lemma does not hold
let $R=\mathbf{Q}(\sqrt{2})$, ordered such that $\sqrt{2}>0$, then

$$
O=\left\{\sum_{i=1}^{\kappa} a_{1} \tau_{i}^{2} \mid 0 \leqslant a_{1} \in R, \quad \tau_{1} \in R\left\langle X_{i}\right\rangle\right.
$$

is not a preorder on $R\langle X\rangle$, for let $e=\left(X^{2}+\sqrt{2}\right)\left(X^{2}+\sqrt{2}\right)^{-1}$, then $(1-e)\left(X^{2}+\sqrt{2}\right)$ is the rero-elenent of $R\langle X\rangle$, but $(1-e) X^{2}$ is an element of O and $\neq 0$, and $(1-e) \sqrt{2}$ is an element of O and $\neq 0$ (note that $1-e$ takes the value 1 on substituting $X \leftrightarrow \sqrt{-\sqrt{2}}$ in the real extension $\mathbf{Q}(\sqrt{-\sqrt{2}})$ of $R)$

We are now going to strengthen this theorem by showing that there exists a "unform" decomposition of a positive definite $\tau \in R \not \subset X_{1}, \quad, X_{m} \ngtr$ as a sum of squares with positive coefficients

Lemma 4.9. Let for each $\mu \in M S_{\mu}$ be a regular f-ring, let $S=\Pi_{\mu \in M} S_{\mu}$ Each of the projections $S \rightarrow S_{\mu}$ can be extended to a regular f-ring homomorphism $\pi_{\mu} S\left|X_{1}, \quad, X_{n}\right| \rightarrow S_{s}\left|X_{1}, \quad, X_{n}\right| \quad$ by putting $\quad \pi_{\mu}\left(X_{1}\right)=X_{1} . \quad$ Then
$\tau \in S\left|X_{1}, \quad, X_{n}\right|$ is positve definite $\Leftrightarrow \forall_{\mu \in M} \pi_{\mu}(\tau) \in S_{u}\left|X_{1}, \quad, X_{n}\right|$ is positue definite

Proof. Let S_{μ} be any regular f-extension of S_{μ} with $S_{\mu} \vDash T$ Then $S={ }^{\text {def }} \Pi S_{\mu}$ is a regular f-extension of S with $S \neq \bar{T}$ Now it is easily seen that for $\tau \in S\left|X_{1}, \quad, X_{n}\right|$ and $\alpha=\left(\alpha^{1}, \quad, \alpha^{n}\right) \in(S)^{n}$ we have $(\tau(\alpha))_{\mu}=\left(\pi_{\mu}(\tau)\right)\left(\alpha_{\mu}^{1} \quad, \alpha_{\mu}^{n}\right)$ for all $\mu \in M$ Hence

$$
\tau(\alpha) \geqslant 0 \Leftrightarrow \underset{, \in \in M}{\forall}\left(\pi_{\mu}(\tau)\right)\left(\alpha_{\mu}^{\prime}, \quad, \alpha_{\mu}^{n}\right) \geqslant 0
$$

From this the coaclasion follows.

Theorem 4.10. Let R be a regular f-ring, $\tau(A, X) \in\left(R \mid A_{1}, \quad A_{m} 1\right) \notin X_{1}, \quad, X_{n}$ 中 Then there exist $k \in \omega, \alpha_{1}(A) \in R\left|A_{1}, \quad, A_{m}\right|$.

$$
\tau_{i}(\mathbf{A}, \boldsymbol{X}) \in\left(R\left|A_{i}, \quad, A_{m}\right|\right) \nless X_{i}, \quad, X_{n} \ngtr(1 \leqslant l \leqslant k)
$$

such that for each regular f-ring extenston S of R and each $a \in S^{m}$ with positive definite $\tau(a, \boldsymbol{X}) \in S \nleftarrow X_{\mathrm{t}}, \quad, X_{n} \ngtr$ we have

$$
\tau(a, X)=\sum_{i=1}^{k} \alpha_{1}(a) \quad \tau_{i}^{2}(a, X)
$$

and $\alpha_{1}(a) \geqslant 0$ for all $1 \leqslant 1 \leqslant k\left(\boldsymbol{A}, \boldsymbol{X}\right.$ denote the tuples $\left.\left(A_{1}, \quad, A_{m}\right),\left(X_{1},, X_{n}\right)\right)$

Proof. Suppose the theorem does not hold Using a Cantor diagonal argument we'll derive a contradiction The negation of the theorem is as follows for each finte sequence $\mu=\left(\alpha_{1}, \tau_{1}\right), \quad,\left(\alpha_{k}, \tau_{k}\right)$ with

$$
\alpha_{2} \in R\left|A_{1}, \quad, A_{m}\right|, \quad \tau_{t} \in\left(R\left|A_{1}, \quad, A_{m i}\right|\right) \nleftarrow X_{1}, \quad, X_{n} \ngtr
$$

there is a regular f-ring extension S_{μ} of R and an m-tuple $a_{\mu}=$ $\left(\left(a_{\mu}\right)_{k}, \quad,\left(a_{\mu}\right)_{m}\right) \in\left(S_{\mu}\right)^{m}$, such that $\tau\left(a_{i}, \boldsymbol{X}\right) \in S_{\mu} \nleftarrow X_{1}, \quad, X_{n} \ngtr$ is positive definite and either

$$
\tau\left(a_{\mu}, X\right) \neq \sum_{i=1}^{k} \alpha_{1}\left(a_{\mu}\right) \tau_{1}\left(a_{\mu}, X\right)
$$

or

$$
\alpha_{i}\left(a_{\mu}\right) \not \equiv 0 \quad \text { for some } 1 \leqslant l \leqslant k
$$

Now we form the direct product $S=\Pi_{\mu} S_{\mu}$ Note that R is embedded in S by the diagonal map We define the m-tuple $a=\left(a_{1}, \quad, a_{m}\right) \in S^{m}$ by $\left(a_{1}\right)_{\mu}=\left(a_{\mu}\right)$, for $1 \leqslant \jmath \leqslant m$. Then by the lemma $\tau(\boldsymbol{a}, \boldsymbol{X}) \in S \nless X_{1}, \quad, X_{n} \ngtr$ is positive definite Let T be the regular f-subring of S generated over R by a_{1}, \quad, a_{m}, in other words $T=\left\{\alpha(a)|\alpha \in R| A_{1}, \quad, A_{n} \mid\right\}$ Then $\tau(\boldsymbol{a}, \boldsymbol{X})$ is also a positive definite element of $T \nless X_{1}, \quad, X_{n} \ngtr$ (making a irivial identific ation provided by Theorem 44) Hence. by Theorem 4.8 there exist $\alpha_{1}(a), \quad, \alpha_{k}(a) \in T$,
$\begin{array}{rll}\tau_{1}(a, X), & , \tau_{k}(a, X) \in T \nless X_{2}, & , X_{n} \neq \\ \quad\left(\text { where } \alpha_{1}=\alpha_{1}(\mathcal{A}) \in R \mid A_{1},\right. & \left., A_{m} \mid, \tau_{i}(\boldsymbol{A}, \boldsymbol{X}) \in\left(R\left|A_{1}, \quad, A_{m}\right|\right) \nless X_{1}, \quad, X_{n} \ngtr\right)\end{array}$
such that $\tau(a, X)=\sum_{i=1}^{k} \alpha_{1}(a) \tau_{i}^{2}(a, X)$ and $\alpha_{i}(a) \geqslant 0$ for all $1 \leqslant 1 \leqslant k$ (in the rirg $T \nless X_{1}, \quad, X_{n} \ngtr$, hence also in $\left.S \nless X_{1}, \quad, X_{n} \ngtr\right)$ Let μ be this sequence $\left(\alpha_{1}, \tau_{1}\right), \quad,\left(\alpha_{k}, \tau_{k}\right)$, then we have (by applying $\left.\pi_{\mu}\right)$

$$
\tau\left(a_{\mu} \boldsymbol{X}\right)=\sum_{i=1}^{k} \alpha_{i}\left(a_{\mu}\right) \tau_{i}^{2}\left(a_{\mu}, \boldsymbol{X}\right)
$$

and $\alpha_{1}\left(c_{\mu}\right) \geqslant 0$ for all $1 \leqslant \imath \leqslant k \quad$ This contradicts $(*)^{\prime}$
Perhaps a more attractive formulation of the theorem is the following
Ccrollary 4.11. Let $\quad \tau(\mathbf{A}, \boldsymbol{X}) \in \mathbf{Q}[\boldsymbol{A}, \boldsymbol{X}] \quad$ There exist $k \in \omega, \quad \alpha_{1}(\boldsymbol{A}) \in \mathbf{Q}|\boldsymbol{A}|$, $\tau_{1}(\boldsymbol{A}, \boldsymbol{X}) \in \mathbb{Q}|\boldsymbol{A}| \nmid \boldsymbol{X} \ngtr(1 \leqslant 1 \leqslant k)$, such that for each ordered field R and each $a \in R^{m}$ with positive definute $\tau(a, X) \in R[X]$ we have $\tau(a, X)=\sum_{i=1}^{k} a_{1}(a) \tau_{1}^{2}(a, X)$ and $\alpha_{t}(a) \geqslant 0$ for all $1 \leqslant t \leqslant k \quad\left(A=\left(A_{1}, \quad, A_{m}\right), \boldsymbol{X}=\left(X_{1}, \quad, X_{n}\right)\right)$

Proof. It suffices to note that $\mathrm{Q}[\boldsymbol{A} \boldsymbol{X}]$ is naturally embedded as a ring in $(\mathbf{Q}|\boldsymbol{A}|)(\boldsymbol{X})$, and that for an ordered ield R and $f(\boldsymbol{X}) \subseteq R[\boldsymbol{X}]$ we have f is positive definite as an element of $R(\boldsymbol{X})$ iff f positive definte as an element of $\boldsymbol{R}|\boldsymbol{X}|$ This equivalence follows by considering F^{\prime} as embedded in $C^{\circ}(\mathscr{C} \rightarrow \vec{R}) \vDash \overline{\mathrm{T}}$ where \mathscr{C} is Cantor space, \bar{R} the real closure of R and $C^{\circ}(\mathscr{C} \rightarrow \bar{R})$ the ring of locally constant functions with domain \mathscr{C} and codomain \bar{R}

A remark of G Cherlin suggested to me that these results can be strengthened still further

Theorem 4.12. Let $\tau(A, X) \in(\mathbf{Q}|\mathbf{A}|) \nless X \neq$. There exist $K \in \omega, c_{i}(A) \in \mathbf{Q}|\boldsymbol{A}|$, $\boldsymbol{\tau}_{1}(\mathbf{A}, \boldsymbol{X}) \in(\mathbf{Q}|\mathbf{A}|) \nless \boldsymbol{X} \ngtr(1 \leqslant t \leqslant K)$ such that

$$
\tau(\boldsymbol{A}, \boldsymbol{X})=\sum_{i=1}^{K} c_{i}(\mathbb{A}) \tau_{i}^{2}(\boldsymbol{A}, \boldsymbol{X})
$$

and such that for every regular f-ring R and m-tuple $a=\left(a_{1}, \quad, a_{m}\right) \in R^{\prime \prime}$ (the following holds $\tau(a, X) \in R \nless X \ngtr$ is positve definite $\Leftrightarrow 0 \leqslant c_{i}(a)$ for all $1 \leqslant t \leqslant K$)

We first collect the necessary tools in a lemma
Hemma 4.13. (1) For each open formula $\phi(A)=\phi\left(A_{1}, \quad . A_{m}\right)$ of $L\left({ }^{-1}, \mid\right)$ there exists $\tau_{\phi} \in \mathbf{Q}|\boldsymbol{A}|$, such that for each regular f-rng R, each m-tuple $\left(a_{1},, a_{m}\right) \in$ $R^{n \prime}$ and each $\underline{m} \in \operatorname{Spec}(R)$ we have

$$
\begin{array}{ll}
R / m \vDash\left(\phi\left(a_{1 / m}, \quad, a_{m / m}\right) \Leftrightarrow \tau_{\phi}\left(a_{1 / m}, \quad, a_{m / m}\right)=1\right. \\
R / m \vDash \neg \phi\left(a_{1 / \underline{m}}, \quad, a_{m / m}\right) \Leftrightarrow \tau_{\phi}\left(a_{1 / m}, \quad, \quad, a_{m / m}\right)=0
\end{array}
$$

(2) For each $\tau(\mathbf{A}, \mathbf{X}) \in(\mathbf{Q} \mathbf{A} \mid) \notin \mathbf{X} \ngtr$ and each regular f-ring R and each m-tuple $a=\left(a_{1}, \quad, a_{m}\right) \in R^{m}$ we have

$$
\tau(a, X)=0(\mathrm{~m} R \nless X \ngtr) \Leftrightarrow \forall \underline{m} \in \operatorname{Spec}(R) \tau(a / \underline{m}, X)=0 \mathrm{n} R / m \nless X \pm \text { and }
$$

$\tau(a, \mathbf{X}) \in R \not \subset \mathbf{X} \ngtr$ is positive definte $\Leftrightarrow \forall \underline{m} \in \operatorname{Spec}(R) \tau(a / m, \underline{X}) \in R / \underline{m} \not \subset \mathbf{X} \neq$ is positive definte (a / \underline{m} denotes the in-tuple $\left(a_{1 / m}, \quad, a_{m / m}\right)$)

Proof. (1) with induction we put $\tau_{\neg_{\phi}}=1-\tau_{\phi,} \tau_{\phi \cap \phi}=\tau_{\phi} \quad \tau_{\psi}$ and for an atomic formula $\phi=\sigma\left(A_{1}, \quad, A_{m}\right)=0$ we put $r_{\phi}=1-\left(c^{-1} \sigma\right)$
(2) both equivalences are proved using the techmque of the preceding lemma (note that $R \rightarrow \prod_{m \in S_{j e c(R)}} R / m$ is an embedding of regular f-rings)

Prooi of the theorem. $\overline{\mathrm{T}}\left({ }^{-1},| |\right)$ has a quantifier elimmation, hence there is an open formula $\operatorname{Pos}(A)$ of $\left.\mathrm{L}^{-1},| |\right)$ such that for every regular f-ring R and m tuple $a=\left(a_{1}, \quad, \quad a_{m}\right) \in R^{m}$ we have $\tau(a, \boldsymbol{X}) \in R<\boldsymbol{X}>$ is positive definite \Leftrightarrow $R \vDash \operatorname{Pos}\left(a_{1}, \quad, a_{m}\right)$ Let $P(A) \in Q|\boldsymbol{A}|$ correspond to the formula $\operatorname{Pos}(A)$ as described in the lemma, part (1) Then we have, using part (2) of the lemma

$$
\begin{aligned}
\tau(A, X)= & \sum_{i=1}^{k}\left(P(\boldsymbol{A}) \alpha_{1}(\boldsymbol{A})\right) \tau_{1}^{2}(\boldsymbol{A}, \boldsymbol{X}) \\
& +(1-F(A))\left(\frac{1}{2}+\frac{1}{2} \tau(\boldsymbol{A}, \boldsymbol{X})\right)^{2} \\
& +(P(\boldsymbol{A})-1)\left(\frac{1}{2}-\frac{1}{2} \tau(\boldsymbol{A}, \boldsymbol{X})\right)^{2}
\end{aligned}
$$

(where $\alpha_{1}(A)$ and $\tau_{1}(A, X)$ are chosen as in Theorem 410) Put $K=k+2$,

$$
\begin{array}{ll}
c_{1}(\boldsymbol{A})=P(\boldsymbol{A}) \quad \alpha_{1}(\boldsymbol{A}) & (1 \leqslant l \leqslant k), \\
c_{k+1}(\boldsymbol{A})=1-P(\boldsymbol{A}), & \tau_{k+1}(\boldsymbol{A}, \boldsymbol{X})=\frac{1}{2}+\frac{1}{2} \tau(\boldsymbol{A}, \boldsymbol{X}) \\
c_{k+2}(\boldsymbol{A})=P(\boldsymbol{A})-1, & \tau_{k+2}(\boldsymbol{A}, \boldsymbol{X})=\frac{1}{2}-\frac{1}{2} \tau(\boldsymbol{A}, \boldsymbol{X})
\end{array}
$$

Then again part (2) of the lemma shows that $\tau(a, X)$ is positive definte $\Leftrightarrow \forall 1 \leqslant l \leqslant$ $K c_{1}(a) \geqslant 0$

Finally we give some easy examples of decompositions as described in the theorem

Example 1.

$$
X^{2}+A_{1} X+A_{2}=1\left(X+\frac{1}{2} A_{1}\right)^{2}+\left(A_{2}-\frac{1}{2} A_{i}\right) 1^{2}
$$

and $X^{2}+a_{1} X+a_{2}$ is fisitive definte iff $a_{2}-\frac{1}{4} a_{1}^{2} \geq 0$

Example 2.

$$
X^{4}+A_{1} X^{2}+A_{2}=1\left(X^{2}+\frac{1}{2}\left(A_{1} \wedge 0\right)\right)^{2}+\left(A_{2} \vee 0\right) X^{2}+\left(A_{-}-\left(\frac{1}{2}\left(A_{1} \wedge 0\right)\right)^{2}\right) 1^{2}
$$

and $X^{4}+a_{1} X^{2}+a_{2}$ is positve definte iff $a_{2}-\left(\frac{1}{2}\left(A_{1} \wedge 0\right)\right)^{2} \geqslant 0$
(In both examples a_{1} and a_{2} are eleme ts of some regular f-ring. and " v " and " \wedge " denote the lattice operations)

5. Sheaves of ordered fields

R Wiegand has constructed the "regular hull" \hat{R} of a ring $R([10])$ We'll generalize his construction Let T be a set of universal sentences in the language of rings

Let us call a ring $R T$-regular if R is regular and embeddable in a direct product of I-fields (wheie a T-field is by definition a field which is a model of T)

Proposition 5.1. (1) A ring R is T-regular iff R is regular and $\forall m \in$ $\operatorname{Spec}(R) R / \underline{m}=T$
(2) The class of 1 -regular rings is a variety (or equatonal class) using the language $L\left({ }^{1}\right)$

Proof. If R is regular and $R / \underline{m} \vDash T$ for all $\underline{m} \in \operatorname{Spec}(R)$. then R is T-regular because $R \rightarrow \prod_{\underline{m} \in \text { Spec(} R} \bar{K} / \underline{m}$ is an embedding of R in a direct product of T-fields Conversely let R be a regular suoring of the direct product $\Pi_{i \in I} F_{i}$ with F_{i} a T-field $\forall_{l} \in I$ Lei $\underline{m} \in \operatorname{Spec}(\mathbb{f})$ By the corollary of Section 2 there is a maximal ideal M of ΠF_{1} such that $M \cap R=\underline{m}$ Then R / \underline{m} is a subfield of $\left(\Pi F_{1}\right) / M$, but $\left(\Pi F_{1}\right) / M$ is in fact an ultraproduct of the fields F_{i}, hence ($\left.\Pi F_{1}\right) / M \vDash T$, implying $R / \underline{m} \vDash T$ Now (1) is proved Using (1) it is easily shown that the class of regular T-rings is closed under homomorphic images, regular subrings and direct products, hence (2) holds

Definition 5.2. Let R be a ring, a pair (t, \hat{R}) where t is a ringmorphism $t R \rightarrow \hat{R}$ and \hat{R} is T-regular, s called a T-regular hull of R iff for each morphism J $R \rightarrow S$ with $S T$-regular, there is a unque morphism $\Theta R \rightarrow S$ such that

commutes For $T=\emptyset$ the following has been proved by R Wiegand
Theorem 5.3. Every ring R has an (up to R-ssomorphism) unique T-regular hull $(\imath, \hat{R}), \imath \quad R \rightarrow \hat{R}$ is $1-1$ iff \hat{R} is embeddable $n \mathrm{n}$ a product of T-fields Every element of \hat{R} is a fintte sum of elements $(t a)(t b)^{-1}(a, b \in R)$
(The proof of this theorem will contain more information on (i, \hat{R}))

Proof. Let us define for any ideal I of $R I$ is T-prime iff R / I is embeddable in a T field Let $\operatorname{Spec}_{T}(R)$ be the set of T-primes, let for $a \in T$

$$
\begin{aligned}
& D_{T}(a)=\left\{\underline{p} \in \operatorname{Spec}_{T}(R) \mid a \notin \underline{p}\right\} \\
& V_{T}(a)=\left\{\underline{p} \in \operatorname{Spec}_{T}(R) \mid a \in \underline{p}\right\}
\end{aligned}
$$

Then the $D_{7}(a)$ and $V_{T}(a)$ form a clopen subbase for a Boolean topology on $\operatorname{Spec}_{T}(R)$ This is proved by a mice model theoretic argument (this is one of the points where the proof differs from Wiegand's for $T=\emptyset$)

Let $F L$ be the theory of fields and $D^{+} F$ be the positive diagram of R Then a T-field which extends $R / \underline{p}\left(\underline{p} \in \operatorname{Spec}_{T}(R)\right)$ is essentally a model of $T\left(\mathcal{F L} \cup D^{+} R\right.$ in which $\{\underline{a}=0 \mid a \in \underline{p}\} \cup\{\underline{a} \neq 0 \mid a \notin \underline{p}\}$ is satusied, more precisely le $\because L(R)$ he the language of rings augmented by a constant \underline{a} for each $a \in R$, let B be the Boolean algebra of open $L(R)$-sertences modulo equivalence by $T \cup F L U D R$ Let $S(B)$ be the Boolean space of ultrafilters of B, then $\underline{p} \mapsto\{\phi \in B \mid R / p \vDash \phi\}$ is a byection of $\operatorname{Spec}_{T}(R)$ onto $S(B)$ The inverse map is given by $\mathscr{F} \mapsto\{a \in R \mid$ the formuld $\underline{a}=0$ belongs to $\mathscr{F}\}$ Now the Boolean space $S(B)$ has as a clopen subbase the collection of sets

$$
\begin{aligned}
& d(a)=\{\mathscr{F} \in S(B) \mid \underline{a}=0 \text { belongs to } \mathscr{F}\}, \\
& v(a)=\{\mathscr{F} \in S(B) \mid \underline{a} \neq 0 \text { belongs to } \mathscr{F}\}
\end{aligned}
$$

If we transfer this subbase to $\operatorname{Spec}_{T}(R)$ by the above byection we obtan the clopen subbase consisting of the $D_{T}(a)$ and $V_{T}(a)$

Let X be the Boolean space $\operatorname{Spec}_{r} R$ with the indicated topology Put $K_{5}=R / \varepsilon$ $(x \in X)$ and let \mathscr{R} be the disjoint union $U_{x \in \mathrm{X}} K_{x}$, for $a, b \in R$ we define

$$
\begin{aligned}
{[a, b] X \rightarrow \mathscr{R} \text { by }[a, \nu](x) } & =a_{\mathrm{x}} / b_{\mathrm{r}} \in K_{\mathrm{r}} & & \text { if } b_{\mathrm{x}} \neq 0, \\
& =0 \in K_{x} & & \text { if } b_{x}=0
\end{aligned}
$$

We topologize \mathscr{R} by the stro' gest topology which makes a.ı maps $[a, b] \quad X \rightarrow \mathscr{R}$ continuous, $1 \in O \subset \mathscr{R}$ is open iff $\forall a, b \in R[a, b]^{-1}(O)$ is open in X If we define $\pi \mathscr{R} \rightarrow X$ by $\pi^{-1}\{x\}=K_{x}$, then a long but tedious argument shows that (\mathscr{R}, π, X) is a ringed space Al stalks K_{x} are T-fields, hence, using a result of R S Pierce (Theorem 103 in [11]) we have $\hat{R}={ }^{\text {def }} \Gamma(X, \mathscr{R})$ is a regular ring, $x \mapsto \hat{\varepsilon}={ }^{\text {def }}\{\sigma \in$ $\hat{R} \mid c(x)=0\}$ is a homeomorphism of X onto $\operatorname{Spec}(\hat{R})$ and $[a, b](x) \mapsto[a, b] / \hat{x}$ is an isomorphism of K_{x} onto $\hat{R} / \hat{\lambda}(\forall x \in X)$ It is easily seen that $[a, b] \in \hat{R}$, and that $a \mapsto[a, 1]$ is a ringmorphism $: ~ R \rightarrow \hat{R}$, and $[a, b]=(a a)(a b)^{-1}$ We have $[a, 1]=$ $0 \Leftrightarrow a \in \bigcap_{x \in x}$., hence $l R \rightarrow \hat{R}$ is $1-1$ iff R is embeddable in a product of T-fields

We now prove that each $\sigma \in \hat{R}$ is a finite sum $\sum\left[a_{i}, b_{i}\right]$ (this proof is more elementary than Wiegand's) Fust of all $\sigma\left({ }^{*}\right)=[a, b](x)$ for some $a, b \in R$, depending on x, hence, using that X is Boolean, $\sigma=\sum_{i=1}^{k} e_{i}\left[a_{i} b_{i}\right.$; for idempotents $e_{i} \in \hat{R}, a_{i}, b_{i} \in \mathcal{K}$ Every idempotent $e \in \hat{R}$ is a boolean comb.nation of idempotents which are characteristic functions of a set $D_{T}(a) \subset X$ Using the following
(α) $[a, a]=$ characteristic function of $D_{\mathcal{T}}(a)$,
(β) $[a, b][c, d]=[a c, b d],-[a, b]=\lceil-a, b],[a, b]^{-1}=[b, a]$, we see by induction that an idempotent $e \in \hat{R}$ is a finitc sum of elements $[a, b]$, substituting these sums in $\sigma=\sum_{t=1}^{k} e_{1}\left[a_{i}, b_{t}\right]$, and dgain using (β) we arrive at the conclusion that σ is a finte sum of elements $[a, b]$

Let $J \quad R \rightarrow S$ be any ning morphism with S a T-regular ning We want $\Theta \hat{R} \rightarrow S$ with $\Theta_{t}=J$ Let $y \in \operatorname{Spec}_{T} S$, then $J^{-1} y \in \operatorname{Spec}_{T} R=X$, and $R / J^{-1} y$ is embedded in S / y We put $(\Theta(\sigma))(y)=\sigma\left(j^{-1} y\right)$ for $o \in \hat{R}$ Again it is a tedious exercise to check that $\Theta(\sigma) \operatorname{Spec}_{T} S \rightarrow \bigcup_{y \in \text { pur }_{r} S} S / y$ is a global section of the ringed space belonging to S as defined in [11], and that Θ is a ringmorphism of \hat{R} into the ring of global sections, which is S itself after an identification, and that $\Theta \boldsymbol{\imath}=\boldsymbol{\jmath}$ Uniqueness of Θ follows by $\Theta\left(\Sigma\left[a_{i}, b_{i}\right]\right)=\Sigma \Theta\left(a_{i}\right)\left(\Theta\left(b_{i}\right)\right)^{-1}$

Remark 1. Θ is onto $\left.\Leftrightarrow j^{\prime} R\right)$ generates S as a regular ring

Remark 2. Let us take for T the set of axioms

$$
\sum_{i=1}^{n} x_{1}^{2}=0 \Rightarrow x_{1}=\quad=x_{n}=0
$$

Then we have that every real ring R has a unque real regular hull $\hat{R}, 1 \mathrm{e} \hat{R}$ is a real regular ring contaning R as a subring such that each morphism of R into a real regular ring S can be uniquel" extended to a morphism of \hat{R} into S, moreover every element of \hat{R} is a inte sum $\sum a_{i} b^{-1}\left(a_{i}, b_{1} \in R\right)$ Hence the following corollary is immediate

Corollary 5.4. Let R be a real regular ring Then $R\left\langle X_{1}, \quad, X_{n}\right\rangle=\left(R\left[X_{1}, \quad, X_{n}\right]\right)^{\wedge}$ and every element of $R\left\langle X_{1}, \quad, X_{n}\right\rangle$ (and a'so of $R \nless X_{1}, \quad, X_{n} \ngtr$ if R is a regular f-ring) is a finite sum $\Sigma f_{1} g^{-1}$ with $f_{i}, g_{1} \in R\left[X_{1}, \quad X_{r}\right]$

This makes our results in the preceding section mure concrete We shall also give a more concrete description of $R\left|X_{1}, \quad, X_{n}\right|$ by this method

We adopt the defintion of "sheave of structures" given in [9] However, the 4 tuple (S, X, π, μ) will he abbreviared here as $\left(\cup_{x \in X} \pi^{-1}\{x\}, \pi, X\right)$, or even as $\left(U_{x \in x} \pi^{-1}\{x\}, X\right)$ In the following all structures are $L(O)$-structures, and O is used mo,tly for preorders on a ring It will be clear now what is meant by a sheaf of ordered fields Let (R, O) be a regular f-ring As a regular ring $R \simeq \Gamma\left(X, \mathscr{S}_{R}\right)$ where $X=\operatorname{Spec}(R), \mathscr{P}_{R}=\left(\bigcup_{x \in X} R / x, \pi, X\right)$ and $\pi \bigcup_{x \in X} R / x \rightarrow X$ is defined by $\pi(a / r)=x(a \in R)($ see [11])

We make \mathscr{S}_{R} a sheaf of ordered fields $\mathscr{L}_{(R O)}=\left(\bigcup_{x \in X}(R / x, O / x), \pi, X\right)$, then the isomorphism is even an isomorphism between (R, O) and $\Gamma\left(X, \mathscr{S}_{(R}\right.$ o) , this is essentally Theorem 37 and the lemma which precedes it Conversely if \mathscr{S} is a sheaf of ordered fields on a boolean space X, then $(R, O)={ }^{\text {det }} \Gamma(X, \mathscr{S})$ is a regular f-ring and X is homeomorph:c with $\operatorname{Spec}(R)$ via $x \mapsto\{\sigma \in \Gamma(X, \mathscr{S}) \mid \sigma(x)=0\}$

To derive an analogue of Theorem 53 tor regular f-rmps we need an analogue of " T-prime ideal"

Definition 5.5. Let R be a ring $O \subset R$ is called a linear ordering adeal of R if $O+O \subset O, O \times O \subset O, O U-O=R$

If O is a linear ordering ideal then $I=O r_{1}-O$ is an ideal of R and $O / I=\{a / I \mid a \in R\}$ is a inear ordering on the meng R / I Conversely if $\phi R \rightarrow S$ is a ringmorphism and P is a linear ordering on S, then $O=\phi^{-1}(P)$ is a linear ordering ideal of R and ker $\phi=O \cap(-O)$ and $(R / \operatorname{ke1} \phi, O / \operatorname{ker} \phi) \rightarrow(S, P)$ 1s an embedding

Let (R, P) be any ring with a subset P We let X be the space of 1 near ordering ideals O with $O \cap-O$ prime and $O \supset P$ We define

$$
V(a)=\{O \in X \mid a \notin O\}, \quad D(a)=\{O \in X \mid a \in O\}(a \in R)
$$

and again the $V(a)$ and $D(a)$ form a clopen subbase for a boolean topology on X This is shown by an argument similar to that in the prool of Theorem 53 let B be the boolean algebra of open sentences of $L(O, \underline{a})_{a \in R}$, modulo equivalence by OFL $\cup D^{+}(R, P)$ where OFL is the theory of ordered fic Ids in the language $l(Q)$ and $D^{+}(R, P)$ is the positive dagram of (R, P) Then $\mathscr{F} \rightarrow\{a \in R \mid O(\underline{a})$ belongs to $\mathscr{F}\}$ is a bijection of the Stonespace $S(B)$ of B onto X, and using this byection we transfer the topology on $S(B)$ to X (note that an atomic formula $\underline{1}=0$, is equivalent to $O(\underline{a}) \wedge O(-\underline{a})$) For $x=0 \in X$ we put $K_{x}=$ quotientfield of $R / O \cap-O$, ordered by the ordering which extends $O / O \cap-O$, we defint the maps $[a, b] \quad X \rightarrow U_{x \in X} K_{x}$ and the sheaf \mathscr{R} as in the proof of Theorem 53 Then \mathscr{R} is a sheaf of ordered fields and for $(\hat{R}, \hat{P})={ }^{d e t} \Gamma(X, \mathscr{R})$ we have

Theorem 5.6. (1) (\hat{R}, \hat{P}) is a regular f-ring and the map $t(R, P) \rightarrow(\hat{R}, \hat{P})$ is a morphism such that for each morphism $)(R, P) \rightarrow(S, Q)$ with (S, Q) a regular f-ring, there is a unique morphism $\Theta(\hat{R}, \hat{P}) \rightarrow(\mathcal{S} Q)$ such that

commutes

(2) its an embedding iff (R, P) is embeddable in a direct procuct of ordered fields
(3) Every element of \hat{R} is a finte sum of elementse (ia) ($(b)^{-1}$ wth $a, b \in R$, e an idempotent of R

Proof. Similar to the proof of Theorem 53 We indicate only the differences The characteristic function of $D(a)$ is $[a, 1]^{-},\left([a, 1]^{-}\right)^{-3}$ where $x_{,}={ }^{\operatorname{def}} x \wedge 0$ for x in an f-ring

Hence. the idempotent e in (3) can be chosen as a boolean combination of elements of the form $[a, 1]^{-}\left([a, 1]^{-}\right)^{-1}(a \in R)$. This fact can be used to prove the uniqueness of Θ To check that the construction of Θ goes through one needs that for (S, Q) as in (1) $O \mapsto O \cap-O$ defines a homeomorphism of the space of prime hnear ordering ideals over Q onto $\operatorname{Spec}(S)$, this is easily proved using the compactness of the spaces

Remark 1. Θ is onto $\Leftrightarrow J(R)$ generates (S, Q) as a regulai f-ring
Remark 2. Let R be a regulat f-ring, $P=\{x \in R \mid x \geqslant 0\}$ Then, with the notations of Theorem 56 , we have

$$
\left.R\left|X_{t}, \quad, X_{n}\right|=\left(R \mid X_{1}, . \quad, X_{n}\right], \hat{P}\right)
$$

henc: every element of $R\left|X_{1}, \quad, X_{n}\right|$ is a tinte sum of elements e,f g^{-1} with $f, g \in R\left[X_{1}, \quad, X_{n}\right]$ and e an idempotent

Although it will not be needed it seem: appropriate here to give an elementary charactenzation of those (R, P) which are embeddable in a direct product of ordered fields

Definition 5.7. For a subset P of a ring R and $a_{1}, \quad, a_{n} \in R$ we define $P\left[a_{1}, ., a_{n}\right]$ as the smallest subset of R contaning P and a_{1}, \quad, a_{n} and which is closed under addition and multiplication

If P contains all squares of R and is closed under addition and multiplication, then cleduly

$$
\left.P \mid a_{1}, \quad, a_{n}\right]=\left\{f\left(a_{1}, \quad, a_{7}\right) \mid f \in R\left[X_{1}, \quad, X_{n}\right]\right.
$$

has all coefficients in P and every monomial has degree at most 1 in each X_{1}]
Theorem 5.8. Let R te a $r_{i n g} P \subset R$ then the following holds (R, P) is embeddatle in a direct product of ordered fields \Leftrightarrow
(1) P is a preorder on R,
(2) $\forall n \in \mathbb{N} \forall a_{1} \quad \forall a_{n} \in R \bigcap_{\varepsilon_{1}= \pm 1} P\left[\varepsilon_{1} a_{1}, \quad, \varepsilon_{n} a_{n}\right]=P$,
(3) $\forall a \in R\left(a^{3} \in P \Rightarrow a \in P\right)$

Remark. Lis [12] it is proved that the conjunction of (1) and (2) is equivalent to R, P is embeddable in a direct product of inearly ordered rings.

Proof. \Rightarrow is straightforward.
\Leftarrow. assume that (1), (2) and (3) hold. Let $a \notin P$. If we put $O \cdot=P$, then the following condituons on O hold
(a) $P \subset O$,
(b) O is closed under addition and multiphication
(c) $\forall a \forall a_{1} \quad \forall a_{k} \quad \forall n \in \mathbb{N} a^{2 n+1} \notin \bigcap_{\varepsilon_{1} *+1} O\left[\varepsilon_{1} a_{1}, \quad, \varepsilon_{k} a_{k}\right]$

For (a) and (b) this is clear, if

$$
a^{2 n+1} \in \bigcap_{n,= \pm \infty} P\left[\varepsilon_{1} a_{1}, \quad, \varepsilon_{n} a_{n}\right]=P,
$$

then $a^{3 m} \in P$ for some $m \in \mathbb{N}$ (by multiplication with an even power of a), and by induction on m this gives $a \in P$, contradiction', so (c) also holds for P Let O_{a} be a maximal subset of R which satisfies (a), (b) and (c)

Then O_{a} is a linear orderng ideal of R for sunpose $c \notin O_{a},-c \neq O_{a}$, then $O_{a}[c]$ and $O_{a}\lceil-c]$ are proper extensions of O. which satisfy (a) and (b), hence there are $n \in \mathbf{N}, a_{i}, \quad, a_{k}, b_{1}, \quad, \dot{b}_{1} \in R$ with

$$
\begin{array}{ll}
a^{2 n+1} \in \bigcap_{t_{1}- \pm 1}\left(O_{a}[c]\right)\left[\varepsilon_{1} a_{1},\right. & \left., r_{k} a_{k}\right] \\
a^{2 n+1} \in \bigcap_{\delta_{1}= \pm 1}\left(O_{a}[-c]\right)\left[\delta_{1} b_{1},\right. & \left., \delta_{l} b_{l}\right]
\end{array}
$$

hence

$$
a^{2 n+1} \in \bigcap_{\substack{t,=\rightarrow t \\ \delta_{i}=1}} O_{a}\left[\varepsilon_{0} c, \varepsilon_{1} a_{i}, \quad, \varepsilon_{h} a_{k}, \delta_{1} b_{1}, \quad, \delta_{i} b_{l}\right]
$$

which contradicts (c) Put $I_{a}=O_{a} \cap-O_{a}$ Then $\left(\bar{R}_{a}, \bar{O}_{a}\right)=\left(R / I_{a}, O_{a} / I_{a}\right)$ is a linearly ordered ring From (c) we kncw that $a^{2 n+1} \notin O_{a},(\forall n \in \mathbb{N})$, hence $a=a / I_{a}$ is not milpotent in \bar{R}_{a}, and consequently there is a minmal prime ideal p_{a} of \bar{R}_{a} such that for $S_{a}=\left(\bar{R}_{a} / \underline{p}_{a}, \bar{O}_{a} / \underline{p}_{a}\right)$ we have $a / \underline{p}_{a}<0$ in S_{a} and S_{a} is a linearly ordered doman Summanzed for an arbitray $a \notin P$ we have found a linearly ordered domain S_{a} with a homomorphism $(R, P) \rightarrow S_{a}$ such that the image of a in S_{a} is strictly negative in S_{a} Then $(R, P) \rightarrow \Pi_{a} S_{a}$ wheie a runs over all elements $\notin P$, is an embedding of (R, P) in a product of linarly ordered domains

As a final application of sheaves we give an example of a real regular ming R, which has no good preorder This contrasts with the situation for fields where it is an old result of Artin and Schreter that every real field has an ordering

Example. Let $X=\mathbf{N} \cup\{\infty\}$ be the one point compactification of the discrete space N In [13], page 250 , A B Carson constructs a sheaf $K=\left(U_{\lambda \epsilon x} K_{x}, X\right)$ of fields on \boldsymbol{X} with $\boldsymbol{K}_{n}=\mathbf{R}$ for $n \in \mathbb{N}, K_{\infty}=\mathbf{Q}(\sqrt{ } 2)$, such that τ cefil ed by

$$
\begin{aligned}
& \tau(n)=(-1)^{n} \sqrt{2} \in K_{n}, \\
& \tau(\infty)=\sqrt{2} \in K_{c},
\end{aligned}
$$

is an element of $\Gamma(X, K)$ As X is boolean and all K_{x} are real fielc $Q={ }^{\text {net }} \Gamma(X K)$ is a real regular ring Suppose R has a good preorder O, this O ine es an oidering on cach stalk K_{x}, suppose it induces on K_{∞} the ordering with $\tau(0)=\sqrt{2}>0$, but
this would imply that $\tau(n)=(-1)^{n} \sqrt{2}>01 \eta K_{n}=\mathbf{R}$ for all sufficiently large $n \in \mathbf{N}$, which is impossible, similariy we reach a ccintradiction if the induced orderirg on K_{α} satusfies $\sqrt{2} \leqslant 0$ Hence R has no good preorder

6. Real closures of regular f-rings

We nitroduce twe notions of "real closure of a regular f-ring R ", and prove existence and uniquenes for both In general the two real closures of a regular f-ring R do not comosde, they concide if and only if R has no mimmal idempotents Lemma 61 us basic for all the following It was inspired by a sheaf construction of A Carson (Lemma 22 of [13]) Due to the fact that we can distinguish the distinct roots of a polynomial over an ordered field, we can prove stronger statement, than in the situation considesed by Carson

Let R be in the following a regular f-ring, $K=\left(\cup_{x \in x} K_{x}, X\right)$ be the corresponding sheaf of ordered fields on $X=\operatorname{Spec}(R)$ as defined before We udentufy R with $\Gamma(X, K)$ Let $f(Z)=\sum_{i=0}^{n+1} f_{i} Z^{\prime} \in R[Z]$ be a monic polynomial $\left(f_{n+1}=1\right)$ of dggree $n+1, n \geqslant 1$, where ether $n+1$ is odd, or $n+1=2$ and $f(Z)=Z^{2}-r$ for some $0 \leqslant r \in R$ For $x \in X$ w put $f(Z)=\sum_{i=0}^{n+1} f_{i}(x) Z^{\prime} \in K_{\mathrm{t}}[Z]$

Lemma 6.1. There exists an up to K-isomorphism unque sheaf L such that
(a) Lis a sheaf of orciered fields $\left(\cup_{x \in X} L_{x}, X\right)$ over X with K a subshcaf of L
(b) $\forall x \in X L_{x}=K_{x}\left(\lambda_{x}\right)$ where λ_{x} is the largest zero of $f_{x}(Z)$ in the real closure of K_{x}

Pruof. We define λ_{x} as the largest zero of $f_{x}(Z)$ in the real closure of K_{x} and order $K_{x}\left(\lambda_{x}\right)$ by the ordering induced by this real closure Put $L_{x}=K_{x}\left(\lambda_{x}\right)$ and define $\sigma X \rightarrow U_{x \in X} L_{x}$ by $\sigma(x)=\lambda_{x}(x \in X)$

Let \mathscr{F} be the collection of all sets $\left\{\sum_{i=0}^{n} a_{i}(x)(\sigma(x))^{\prime} \mid x \in N\right\}$ where $\left(a_{0}, \quad, a_{n}\right)$ runs cver R^{n+1} and N over the clopen subsets of $X \mathscr{F}$ is an open basis for a ropology on $U_{x \in X} L_{x}$, and with this topology $L=\left(U_{x \in X} L_{x}, X\right)$ is a sheaf satisfying ${ }^{(a)}$ and (b) For this last statement to be true it suffices to check the following.
(1) $\forall x \in X L_{x}=\left\{\sum_{i=0}^{\dot{S}} a_{t}(x)(\sigma(x))^{\prime} \mid a_{0}, \quad, a_{n} \in R\right\}$.
(2) $\forall\left(a_{0}, \quad, a_{n}\right) \in R^{n+1} \forall\left(b_{0}, \quad, b_{n}\right) \in R^{n+1} \exists\left(c_{0}, \quad, c_{n}\right) \in R^{n+1}$

$$
\sum_{i=1}^{n} a_{i} \sigma^{\prime} \quad \sum_{i=0}^{n} b_{i} \sigma^{\prime}=\sum_{i=0}^{n} \iota_{i} \sigma^{\prime}
$$

(3) $\forall\left(a_{0}, \quad, a_{11}\right) \in R^{n+1} \forall x \in X\left(\sum_{1=0}^{n} a_{1}(x)(\sigma(x))^{\prime}=0 \Rightarrow\right.$
\exists open $\left.N \ni x \forall y \in N \sum_{i=0}^{n} a_{1}(y) \cdot(\sigma y)^{i}=0\right)$,
(4) $\forall\left(a_{0}, \quad, a_{n}\right) \in R^{n+5} \forall x \in X\left(\sum_{1=0}^{n} a_{1}(x)(\sigma x)^{\prime} \geqslant 0 \Rightarrow\right.$

$$
\exists \text { open } N \ni: \forall y \in N\left(\sum_{i=0}^{n} a_{i}(y)(\sigma y)^{\prime} \geqslant 0\right)
$$

(1) follows because X is boolean (hence $K_{x}=\{a(x) \mid a \in R\}$) and because $\sigma(x)$ is a root of a monic polynomial of $(n+1)$ th degree
(2) $\sigma^{n+1}=-\sum_{=0}^{n} f \sigma^{2}$, and with induction it is shown that everv power $\sigma^{k}(K \in$ $\mathbf{N})$ is of the form $\sum_{i=0}^{n} c_{1} \sigma^{2}\left(c_{1} \in R\right)$
(3) and (4) the theory RCF of real closed fields has a quantifier elmmation 50 there exist open formulas $\phi_{1}(\boldsymbol{a}, \boldsymbol{f})$ and $\phi_{2}(\boldsymbol{a} \boldsymbol{f}),\left(\boldsymbol{a}=\left(a_{0}, \quad, a_{n}\right), \boldsymbol{f}=\left(f_{n} \quad f_{n}\right)\right.$ are taken as n-tuples of vanables here) such that $\operatorname{RCF} \vDash \phi_{1}(a, f) \leftrightarrow \forall s$ (s is the largest zero of $f_{0}+f_{1} Z+\quad+f_{n} Z^{n}+Z^{n+1} \rightarrow a_{0}+a_{1} s+\quad+a_{n} s^{n}=0$ and RCFF $\phi_{2}(a, f) \leftrightarrow \forall s$ (s is the largest zero of $f_{0}+f_{1} Z+\quad+f_{n} Z^{n}+Z^{n+1} \rightarrow a_{+}+$ $\left.a_{1} s+\quad+a_{n} s^{n} \geqslant 0\right)$

Becruse $\phi_{t}(a, f)$ is an open formula and $U_{x \in x} K_{x}$ is Hausdorff, we can use Lemma 3 of [9] to get if $K_{\mathrm{r}} \vDash \boldsymbol{\phi}_{:}(a(x), f(x))$, then there exists an open $O \ni x$ with $K_{y} \neq \phi_{1}(a(y), f(y))$ for all $y \in O\left(a \in R^{n+1}, f \in R^{n+1}\right)$ Now () and (4) foliow eas'ly
Uniqueness Let $L=\left(U_{x \in, ~} L_{x}, X\right)$ be a sheaf as descubed in the limma We definu $\sigma X \rightarrow U_{x \in \chi} L_{x}$ by $\sigma(x)-\lambda_{x}(\forall x \in X)$, and we prove that σ is continuous let $x \in X$, and suppose $\sigma(x)=a(x)$ with an $a \in E(X, L)$, there is an open formula $\phi\left(s, f_{0}, \quad, f_{n}\right)$ with

$$
\operatorname{RCF} \vDash \phi\left(s, f_{0}, \quad, f_{n}\right) \leftrightarrow s
$$

is the largest zero of

$$
f_{0}+f_{1} Z+\quad+f_{n} Z^{n}+Z^{n+1}
$$

hence $L_{x} \vDash \phi\left(a(x), f_{0}(x), \quad, f_{n}(x)\right)$, and using Lemma 3 of [9] there is an open set $O \ni x$ with

$$
L_{v} \vDash \phi\left(a(y), f_{0}(y), \quad, f_{n}(y)\right) \quad \forall y \in O,
$$

hence $\sigma(y)=a(y)$ for all $y \in O$ From $\sigma \in I(X, I)$ it follows that \mathscr{F} is a hasis for the given topology on $\bigcup_{x \in, ~} i_{x}$, so this topology is uniquely determined

Remark. Note that for $S=\Gamma(X, L)$ we heve R is a regular f-subring of $S, B(R)=$ $B(S), \sigma \in S, \sum_{i=0}^{n+1} f_{i} \sigma^{\prime}=0$ and consequently $S=R+R \quad \sigma+\quad R \sigma^{n}$

$$
S=R[\sigma] \text { is in a certain sense a unversal consiruction }
$$

Lemma 6.2. Let T be a regular f-extension of $\left.R, L=\left(\bigcup_{y \in \gamma} L_{y-}\right)^{-}\right)$its corresponding sheaf of ordered fields over $Y=\operatorname{Spec}(T)$, suppose $s \in T$ is a zero of $f(Z)$, such that for each $y \in Y s(y)$ is the largest zero of $f_{y}(Z) \in L_{y}[Z]$ in the real closure of L, Then there exists a unqque R-morphism $\Phi S=R[\sigma] \rightarrow T$, moreover Φ is an embedding with $\Phi(\sigma)=s$

Proof. Existence define Φ by:

$$
a_{0}+a_{1} \sigma+\quad+a_{n} \sigma^{n} \mapsto a_{0}+a_{1} s+\quad+a_{n} s^{n}
$$

where $a_{1} \in R$ We have to show the following
(1) Φ is welldefined, 1 e if $a_{0}+a_{1} \sigma+\quad+a_{n} \sigma^{n}=0$, then

$$
a_{0}+a_{1} s+\quad+a_{n} s^{n}=0
$$

(2) Φ is $1-1$, l e if $a_{0}+a_{1} s+\quad+a_{n} s^{n}=0$, then $c_{0}+a_{1} \sigma+\quad+a_{n} \sigma^{n}=0$,
(3) Φ is a regular f-ring morphism

Ad (1). let $a_{0}+a_{1} \sigma+\quad+a_{n} \sigma^{n}=0$, and take any $y \in Y$, for the image $x=y \cap R$ of y in X we have K_{x} is an ordered subfield of K_{y} and $K_{x} \vDash \phi_{1}(a(x), f(x))$ where ϕ_{1} is the open formula defined in the proof of Lemma 61, this gives $K_{y} \vDash \phi_{1}(a(y), f(y))$, lnplying $a_{0}(y)+a_{1}(y) s(y)+\quad+a_{n}(y)(s(y))^{n}=0$, as this holds for any $y \in Y$, we get $a_{0}+a_{1} s+\quad+a_{n} s^{n}=0$
Ad(2). use the first corollary of Section 2 and reverse the proof of (1)
Ad(3) that Φ is a ring morphism is trivial by (1)
The equivalence

$$
a_{0}+a_{1} \sigma+\quad+a_{n} \sigma^{n} \geqslant 0 \Leftrightarrow a_{0}+a_{1} s+\quad+a_{n} s^{n} \geqslant 0
$$

is proved as in (1) (2) using the open formula $\phi_{2}(a, f)$ instead of $\phi_{1}(a, f)$
Unryueness Suppose $\Phi R[\sigma] \rightarrow T$ is an R-morphism, let $\phi(s, f)$ be the open formula defined in the last part of the proof of Lemma 61 , take any $y \in Y$ and let $x=\Phi^{-1} y, \Phi$ induces a morphism $R[\sigma] / x \rightarrow L_{y}$ of ordered fields, which is necessarily an embedding, by the meaning of $\phi(s, f)$ we have $R[\sigma] / x \neq \phi\left(\sigma(x), f_{0}(x), \quad, f_{n}(x)\right)$, hence $L_{y} \vDash \phi\left(\Phi(\sigma)(y), f_{0}(y), \quad, f_{n}(y)\right)$, and this means that $\Phi(\sigma)(y)$ is the largest ziou oi $f_{y}(Z)$ in the real closure of L_{y} This holds for any $y \in Y$, so $s=\Phi(\sigma)$

Let R, S, T denote n the following regular f-rings
Definition 6.3. S is called an (idempotent) mvarian ${ }^{*} R$-extenston, if S is an extension of R with $B(\kappa)=B(S)$

Definition 6.4. S is called an integral R-extension (or integral over R), if every $s \in S$ is a Lero of a monic polynomal over R

A standard argument shows if S is an invariant R-extension then S is integral over R iff $(\forall \underline{m} \in \operatorname{Spec}(S) S / \underline{m}$ is algebraic over $R / \underline{m} \cap R)$

Definition 6.5. S is called real closed if every $s \geq 0 \mathrm{~m} S$ is a square and every monic polynomial of odd degre $=$ over S has a root in S, equival.ntly S / \underline{m} is a real closed field for all $\underline{m} \in \operatorname{Spec}(S)$

Definition 6.6. S is called an invariant ral closure of R it S is an invanant mentegral \mathfrak{K} extension which is real closed

Lemma 6.7. Let T be a real closed extension of R Then there exists an S with $R \subset S \subset T$ such that S is a real closed invanant R-extension

Proof. Take foi S a regular f-subring of T including R, which is maximal with respect to the property of being an mvariant R-extension We show that S is teal closed, let $f(Z) \in S[Z]$ be monic where elther $f(Z)=Z^{2}-r$ for some $0 \leqslant r \in S$, or f is of odd degree,
$f(Z)$ has a zero t in T such that for all $y \in Y=\operatorname{Spec}(T), t(y)$ is the largest zero of $f_{y}(Z) \in L_{y}[Z]$ in L_{y}, (where $\left(U_{v \in \gamma} L_{y}, Y\right)$ is is the sheaf corresponding to T)

This statement is proved using the argument in the umquenesspart of Lemma 51 to show that σ is a global section From Lemma 62 and the remark following Lemma 1 it follows that $S[t] \subset T$ is an manant extension of S, and by the maximality of S, this yields $t \in S$ Hence $f(Z) \in S[Z]$ has a zero in $S \quad \square$

Lemma 6.8. With the same hypothesis as in Lemma 67, there is an S with $R \subset S \subset T$ such that S is a real closed integral R-extenston

Proof. Take for S a regular f-subrirg of T including R which is maximal with respect to the property of being integial over R We show that S ca real closed ic: $f(Z) \in S[Z]$ be monic, where either $f(Z)=Z^{2}-r$ with $0 \leqslant r \in S$, or $f(Z)$ is of odd degree As in the proof of Lemma 67 we see that $f(Z)$ has a root $t \in T$ surh that $S[t]$ is a regular f-subring of T Because S is integrai over R and t is integral over S, we get $S[t]$ is integral over R, hence by the maximality of $S t \in S$

By first applying Lemma 67 and then Lemma 68 we get Lemma 6 ,
Lenma 6.9. If T is a real closed extenston of R, then there is S with $R C \in \subseteq T$ such that S is an invariant real closure of R

Lemma 6.10. If S is an invinant real closure of R, then there is no S^{\prime} with $R \subset S^{\prime} \subsetneq S$ with S^{\prime} real closed

Proof. Let $m \in \operatorname{Spec}(S)$ Then $R / m \cap R \subset S^{\prime} / \underline{m} \cap S^{\prime} \subset S / r$, and S / m is the real closure of $R /(\underline{m} \Gamma, R)$, hence, of S^{\prime} were real closed, then ${ }^{\prime} /\left(\cdot n \cap S^{\prime}\right)=S / \underline{m}$ fot each $\underline{m} \in \operatorname{Spec}(S)$, and from this it follows that $S^{\prime}=S$ (becaust S is an invariani S^{\prime}-extension)

Theorem 6.11. R has an invariant real closure \vec{R}, \vec{R} is unique up to R-somorphism For any real closed extension T of R, there is a unique R-morphism of \dot{K} into T, this morphism is an embedding

Proof. R has a real closed extension, hunce by Lemma $69, R$ has an invariant real closure \bar{R}. Uniqueness of \bar{R} follows in the usual way from the last statement of the theorem, sc wh prove this statement first Let T be any real closed extension of R We consider the set of all pars (S, ϕ) with $R \subset S \subset \bar{R}$ and ϕ an R-embeding of S in T, and we partally order this set by $(S, \phi) \leqslant\left(S^{\prime}, \phi^{\prime}\right) \Leftrightarrow{ }^{\text {det }} S \subset S^{\prime}$ and ϕ is a restriction of b^{\prime} Let K be the sheaf of \bar{R} and L the sheaf of T

By Zorn's lemma this set has a maximal member, say (S, ϕ); suppose $S \neq \bar{R}$, then by Lemma 610 S is not real closed, hence there exists a monic polynomal $f(Z) \in S[Z]$, ether of the form $Z^{2}-r, 0 \leqslant r \in S$, or of odd degree, which has no root in S But $f(\bar{Z})$ has a root a in R, and a root b in T, such that $\forall x \in \operatorname{Spec}(R)$ $a(x)$ is the largest root of $f_{x}(Z)$ in K_{x}, and such that $\forall y \in \operatorname{Spec}(T) b(y)$ is the largest root of $f_{y}(Z)$ in L_{y} Lemma's 61 and 62 mply that $S[a]$ is a regular f-subring of \bar{R} and that we can extend ϕ to an embedding $S[a] \rightarrow T$ bv $a \mapsto b$ This centradicts the maximality of (S, ϕ) Hence we have proved the existence of an R-embedding ϕ of \bar{R} into T

Suppose ψ is any R-morphism of \bar{R} into T We look at the set of all S with $R \subset S \subset \bar{R}$ such that $\psi|S=\phi| S$ By Zorn's lemma there exis s a maximal S in this set, suppose $S \neq \bar{R}$, then we use the same argument as before and the uniquenesspart of Lemma 62 , to deduce a contradiction

Example 1 For ordered fields the concept of "invanant rea l closure" corrcides with the usual concept of "real closure"

Example 2. If X is a boolean space, F an ordered field F its real closure, then $C^{0}(X, F)$ is the invanian, real closure of $C^{0}(X, F)$

Here $C^{\prime}(X, F)$ is the regular f-ring of locally constant functions with doma $n \boldsymbol{X}$. and with values in F, and with $f \geqslant 0 \Leftrightarrow \forall x \in X(f(x) \geqslant 0)$, for $f \in C^{0}(\lambda, F)$ $C^{\prime \prime}(X, F)$ will also be used in this sense if F is not ordered, of course $C^{0}(X, 7)$ is then only a regular ring

Up till now we only considered invariant extensions, 1 e extensions in which no new idempotents occur Now we are going to study extensions which are generated over a given ring by idempotents

Definition 6.12. S is called atomless if $B(S)$ is an atomlers boolean algebra
(Of course in this definition R and S can be arbitrary nings)

Definition 6.13. S is called an atomless real closure of R if S is a real closed atomless extension of R such that for any real closed atomless extension T of R there exists an R-embedding of S into T the diagram

commutes for a sutable embedding Θ

Of course the real closed atomless extensions are exactly the x tensions which are models of $\overline{\mathrm{T}}\left({ }^{-1}, 11\right)$, and those who are familiar with "Saturated Model Theory" of G Sacks will see that the notion of "atomless real closure" comendes with the notion of "primemodel extension with respect to the theory $\overline{\mathrm{T}}\left(^{-1},| |\right)$ " The following will be proved

Theorem 6.14. Every regular $f-r_{i} n g$ has an atomless real closure $\tilde{R} \tilde{R}$ is unitue up to R-isomorphism and is integral over R

First some lemma's

Lemma 6.15. Let F be an ordered field (constdered as a regular f-ring) Then $C^{0}(\mathscr{C}, F)$ is a prime atomless extension of F ie $C^{\prime \prime}(\mathscr{C}, F)$ is an atomless exiension which can be F-embedded into any atomles, extension of F, moreover $C^{\prime}(\mathscr{C}, F)$ is up to F-isomorphism the oniy prime atomless extension of F

Proof. Let R be any atomless extension of $F B(R)$ is then an atomless boolean algebra, hence includes a countable atomless boolean algebra Applying the (contravariant) Stonespace functor we get a continuous map h of the Stonespace of $B(R)$ onto \mathscr{C} (which is the Stonespace of any countable atomiess boolean algebrd) But the Stonespace of $B(R)$ is naturally homeomorphic with $X=\operatorname{Spec}(R)$ (sєe [13], Theorem 15), so we may consider h as a continuous map of X onto ' ϵ Let $K=\left(U_{x \in X} K_{x}, X\right)$ be the sheaf of ordered fields associated with R, F is naturally embedded in each $K_{x}=R / x$ (because $x \cap F=\{0\}$), so we have $C^{0}(X, F) C$ $\Gamma(X, K)=R$ Let a be the map $\sigma \mapsto \sigma \circ h$ of $C^{0}(\mathscr{C}, F)$ into $C^{\prime}(X, F)$, then is an I-embedding of $C^{0}(\mathscr{G}, F)$ into R
Uniqueness It suffices to prove the following let $F \subset R \subset C^{0}(\mathscr{C}, F)$ and suppose R is atomless, then R is F-isomorphic with $C^{0}(\mathscr{C}, F)$

Here follows the proof $B(R) \subset B\left(C^{0}(\mathscr{C}, F)\right)$ and $B\left(C^{\prime}(\mathscr{C}, F)\right)$ is countable hence $B(R)$ is a countable atomless boolean algebra, by applying the Stoncspace functor this gives us that $X=\operatorname{Spec}(R)$ and \mathscr{C} are h meomorphic Let $K=\left(U_{x \in X} K_{x}, X\right)$ be the sheaf associated with R, then $K_{x}=F$ for all $x \in X$ there we need both inclusions $F \subset K$ and $R \subset C^{0}(\mathscr{C}, F)$), hence

$$
R=\Gamma(X, K) \approx C^{0}(X, F) \approx C^{\theta}(\mathscr{C}, F)
$$

We need the following notations Let R be a regular f-ring and e an idempotent of R, then we have a canomical decomposition $R=(R \mid e) \times(R \mid 1-e)$ of R as a direct product of two regular f-rings. here $(R \mid$,$) 's taken as the 1$ deal $e R$ which we
make a regular f-ring by taking e as the identity, and defining the other operations and relations as restrictions oi the ope ations and relations on R, note that e is an atom iff $R \mid e$ is a field, let $\operatorname{At}(R)$ be the set of atoms of $B(R)$

Proposition ó.16. Every regular f-ring R has a prmeatomless extension S, e an atomless extension which can be R-embedded in each atomiess extension of R Moreover S is unique up to R-isomorphism

Proof. Let $\kappa=\operatorname{card}(\operatorname{At}(R))$ and let $\left(e_{\lambda}\right)_{\lambda<\kappa}$ be a 1-1 enumeration of $\operatorname{At}(R)$ We define an ascending chain of regular f-rings $\left(R_{\lambda}\right)_{\lambda \leqslant \kappa}$, beginning with $R_{0}=R$ such that

$$
\begin{equation*}
\operatorname{At}\left(R_{\lambda}\right)=\left\{e_{v} \mid \lambda \leqslant v<\kappa\right\} \tag{i}
\end{equation*}
$$

Suppose R_{λ} is already defined such that (A) holds, and $\lambda<\lambda+1 \leqslant \kappa$, then $R_{\lambda}=\left(R_{\lambda} \mid 1-e_{\lambda}\right) \times\left(R_{\lambda} \mid e_{\lambda}\right)$ and $R_{\lambda} \mid e_{\lambda}$ is an ordered field, we "replace" it by its prime atomless extension $C^{0}\left(\mathscr{C}, R_{\lambda} \mid e_{\lambda}\right)$, e $R_{\lambda+;}$ is the extension $\left(R_{\lambda} \mid 1-e_{\lambda}\right) \times$ $C^{0}\left(\mathscr{C}, R_{\lambda} \mid e_{\lambda}\right)$ of R_{λ}, it is easily shown that $\operatorname{At}\left(R_{\lambda+1}\right)=\operatorname{At}\left(R_{\lambda}\right)\left\{e_{\lambda}\right\}$ and $R_{\lambda+1}\left|1-e_{\lambda}=R_{\lambda}\right| 1-e_{\lambda}$

Let $0<\mu \leqslant \kappa$ be a limit ordinal and let (A) hold for all $\lambda<\mu$, we put $R_{\mu}=U_{\lambda-\mu} R_{\lambda}$ and we see that (A) also holds for $\lambda=\mu$ This construction shows also that $R_{\lambda}\left|e_{\lambda}=R\right| e_{\lambda}$ for all $\lambda \leqslant \lambda^{\prime} \leqslant \kappa$

We claim that R_{κ} is a prime atomless extension of R, by (A) R_{κ} is an atomless exteasion of R, let T be any atomless eytension of R, with induction we construct a sequence of embeddings $l_{\lambda}: R_{\lambda} \rightarrow T(0 \leqslant \lambda \leqslant \kappa)$ such that
i_{λ} is a restriction of t_{μ} for $\lambda<\mu \leqslant \kappa \quad t_{0}$ is the inclusion map $R \rightarrow T$, suppos t_{4} is defined ($\lambda<\lambda+1 \leqslant<$), l_{λ} embeds the direct factor $R_{\lambda} \mid e_{\lambda}$ of R_{λ} into $T \mid e_{\lambda}$, and $R_{\lambda} \mid e_{\lambda}$ is an ordered field and $T \mid e_{\lambda}$ is atomless (because T is), herice by Lemma $615 t_{\lambda}$ can be extended to an embedding $l_{\lambda+1}\left(R_{\lambda} \mid 1-e_{\lambda}\right) \times C^{0}\left(\mathscr{C}, R \mid e_{\lambda}\right)=$ $R_{\lambda+3} \rightarrow T$

For μ a limit oidinal $\leqslant \kappa$ we put $t_{\mu}=\bigcup_{\lambda<\mu} l_{\lambda}$ Hence we have constructed the sequence $\left(l_{\lambda}\right)_{\lambda \leqslant \kappa}$, whose last member l_{κ} gives the desired R-embedding of \boldsymbol{R}_{κ} into T
Uniqueness As in Lemma 615 it suffices to prove the following let $R \subset T \leftrightharpoons R_{\star}$ and suppose T is atomless, then T and R_{κ} are R-isomorphic Proof of this fact First note that from $\left(R \mid e_{\lambda}\right) \subset\left(T \cap R_{\lambda}\right) \mid e_{\lambda} \subset\left(R_{\lambda} \mid e_{\lambda}\right)=\left(R \mid e_{\lambda}\right)$ it follows that these inclusions are in fact equalities We construct a sequence of R-embeddings $t_{\lambda} \quad R_{\lambda} \rightarrow T(0 \leqslant \lambda \leqslant \kappa)$ such that for $\lambda<\mu \leqslant \kappa l_{\lambda}$ is a restriction of i_{μ} and such that for all $0 \leqslant \lambda \leqslant \kappa \iota_{\lambda}\left(R_{\lambda}\right)=T \cap R_{\lambda}$, the construction is like the preceding one except for the following essential detal suppose that for $\lambda<\lambda+1 \leqslant \kappa$ we have alreacy constructed l_{λ} mapping R_{λ} isomorphically onto $T \cap R_{\lambda}$ and fixing R, restrictions t and $/$ of l_{λ} map
$R_{\lambda} \mid\left(1-e_{\lambda}\right)$ isomorphically onto $\left(T \cap R_{\lambda}\right) \mid\left(1-e_{\lambda}\right)$ and $R_{\lambda} \mid e_{\lambda}$ somorphically onto ($T \cap R_{\lambda}$) $\mid e_{\lambda}$ respectively

First of al:

$$
\begin{aligned}
\left(1-e_{\lambda}\right)\left(T \cap R_{\imath+1}\right) & =T \cap\left(1-e_{\lambda}\right) R_{\imath+1} \\
& =T \cap\left(1-e_{\lambda}\right) R_{\lambda}=\left(1-e_{\lambda}\right)\left(T \cap R_{\lambda}\right),
\end{aligned}
$$

implying

$$
\left(T f^{\prime} R_{\lambda+1}\right)\left|\left(1-e_{\lambda}\right)=\left(T \cap R_{\lambda}\right)\right|\left(1-e_{\lambda}\right)
$$

Secondly ($T \cap R_{\lambda+1}$) $\mid e_{i}$ is atomless (because $T \mathbb{K}$ atomless and R_{r+1} contans a'l idempotents of R_{κ} smaller than e_{1}) and

$$
\begin{aligned}
R\left|e_{\lambda}=R_{\lambda}\right| e_{\lambda} & =\left(T \cap R_{\lambda}\right)\left|e_{,} \subset\left(T \cap R_{1+1}\right)\right| e_{\lambda} \subset R_{\lambda+1} \mid e_{\lambda} \\
& =C^{0}\left(\mathscr{C}, R_{\lambda} \mid e_{\lambda}\right),
\end{aligned}
$$

hence, by the uniquenesspart of Lemma 615 we can extend ρ to an isomorphism L of $R_{\lambda+1} \mid e_{\lambda}$ onto $\left(T \cap R_{\lambda+1}\right) \mid e_{\lambda}$. using (*) we get an isomorphism

$$
L_{\lambda+1}=J_{\lambda} \times L \text { of } R_{\lambda+1}=\left(R_{\lambda} \mid 1-e_{\lambda}\right) \times\left(R_{\lambda+1} \mid e_{\lambda}\right)
$$

onto

$$
T \cap R_{\lambda+1}=\left(T \cap R_{\lambda}\right) \mid\left(1-e_{\lambda}\right) \times\left(T \cap R_{\lambda+1}\right)^{\prime} e_{\lambda}
$$

The sequence (i_{1}) being constructed l_{κ} is the desired R-isomorphism of R_{κ} onto $T=T \cap R_{\kappa}$

Remark 1. Beginning with Lemma 615 everything remains valid if we omit everywhere the predicate "ordered" in "ordered field" and the prefix " f " in " f-ring". I think this is of independent interest For instance if we consider boolean rungs, it shows thit a boolean algebra has a prime atomless extensior (probably this is known but I have not seen it in the iterature) By Stone's representation therry of boolean algebras this umplies the following
let X be a boolean space, we consider pairs (Y, f) with Y a boolean space without isolated points and $f \quad Y \rightarrow X$ contunuous and onto, there extsts a pair (\tilde{X}, π) such that for every patr (Y, f) we can complete thi dtagram

Moreover (\bar{X}, π) is determined up to X-isomorphism by this property
Remark 2. Note that in Lemma $615 C^{6}(\mathscr{C}, F)$ is generated as a ring over F bu idempotents, gong through the constuuction of the prime atomless extention $S=R_{x}$ of R we see that also S is generated over R by idempotents, hence S is integral over Q , moreover, if R is real closed S is also real closed

Now we can finally prove Theorem 614 Take for \tilde{R} the prime dtomless extension of the invariant real clo sie \bar{R} of R By Proposition 615 and the precedinct remark \tilde{R} is an atomless real closcd integral extension of R if T is any atomless real closed extension of \vec{R}, we first R-embed \vec{R} into T (using Theorem 611) and then extend this embedding to ar embedding of \tilde{R} into T
Unqqueress Suppose $R \subset S \subset \tilde{R}$ and S atomless and real closed, then $\bar{R} \subset S$ by Theorem 611 , and we have the situation $\bar{R} \subset S \subset \tilde{R}$ and S atomiess, using the proof of the unquenesspart of Proposition 616 , this yields S is R-isomorphic with \tilde{R}

We make one further remark on these matters An u apubhshed result of S Shelah says that for each cor plete theory A m a countable language which admits quantufier elimination the following holds
if A is stable or quasi-totally transcendental, then each sub: tructure of a model of A has a unque promemodel extenston to a model of A (See [21] and [22] for these concepts)

We'll show that this result cannot be used in our situation to get Theorem 614 Note that $\bar{T}\left({ }^{-1},| |\right)$ is complete, admits quantifierelimination and that the regular f-rings are exactly the substructures of models of $\bar{T}\left({ }^{-1},| |\right)$

Proposition 6.17. The theory $\bar{T}\left({ }^{-1},| |\right)$ is not stable and not quasi-totally transcendental

Proof. $\mathbf{Z}_{\text {is }}$ an infinte subset of each model of $\bar{T}\left({ }^{-1},| |\right)$ which is linearly ordered by the (definable) ordering of the model Hence sy Theorem 7133 of [21] $\bar{T}\left(\mathcal{C}^{-1},| |\right.$) is not stade For any regular f-ring R, let $S(R)$ be the space of 1 -types over R as defined in Section 27 of [22], and let $S_{B}(R)=\left\{p \in S(R) \mid\right.$ the formula $x^{2}=x$ helongs to $p\}$ Hence $S_{B}(R)$ is a clopen subset of $S(R)$

In particular $S_{B}(\mathbf{Q})=\left\{p_{0}, p_{1}, p_{2}\right\}$ where p_{0} is the principal type generated by $x=0$, p_{1} is generated by $x=1$ and p_{4} is generated by $x^{2}=x \wedge 0<x<1$

Let $R=C^{0}(\mathscr{C}, \mathbf{Q})$, so $B(R)$ is a countable atomless boolean algebra, hence $B(R)$ contains a subset which is a dense linear ordering without endpoints and this smples by a wellknown argument that $S_{B}(R)$ is uncountable Hence $D^{a} S(R) \cap$ $S_{B}(R) \neq \emptyset$ for all ordinals α (for otherwise we can find for each $p \in S_{B}(R)$ a clopen $N_{p} \subset S(R)$ with $\{p\}=D^{\alpha} S(R) \cap S_{B}(R) \cap N_{p}$ for some α, and this imples that $N_{p} \neq N_{q}$ if $p \neq q$, but there are only countable many clopen suboets of $S(R)$, hence $S_{B}(R)$ is countable, contradiction') Further the natural embedding $\Omega \longrightarrow R$ sansfies

$$
S_{l}\left(D^{\alpha} S(R) \cap S_{B}(R)\right) \subset D^{\alpha} S(\mathbf{Q}) \cap S_{B}(\mathbf{Q})
$$

hence $D^{\alpha} S(Q) \cap S_{B}(\mathbb{Q}) \neq \emptyset$ for all α, hence $p_{2} \in D^{\alpha} S(\mathbb{Q}) \cap S_{B}(\mathbf{Q})$ for all α, but p_{2} is an isolated point of $S(Q)$, hence the ranked points of $S(Q)$ are not dense in $S(Q)$, so $\bar{T}\left(^{-},| |\right)$is not quasi-totally trascendental

7. Decidability

Theorem 7.1. If R and S are real closed regular f-rings then $R \equiv S \Leftrightarrow B(R) \equiv$ $B(S)$

Proof. \Rightarrow is trivial Assume that $B(R) \equiv B(S)$ By the ultrapower theorem of Shelah-Keisler we may even assume that $B(R)=B(S)$ then $R \equiv S$ follows from Theorem 12 of [23]

Theorem 7.2. The theory of real closed regular f-rings is decidable
Proof. It is easy to see that this falls under the scope of Theorem 15 of [23]
Onginally I proved Theorem 71 and Theorem 72 by a method due to A B Carson [24] This method gives some addi'onal results which may be useful iv mention

Theorem 7.3. Let R, S be real closed regular f-rings with $R \subset \prime$ Then we have
(1) $T C_{*} S$ iff every atom of $B(R)$ is an atom of $B(S)$
(2) $R<S$ If $B(R)<B(S)$

Proof. Replace in Lemma 22 and Proposition 24 of [24] the theory Σ_{1} by the theory of real closed regular f-rings, and note that the proofs go through

References

[1] G Cherin, Algebratally closed commutative rings, J of Sym he Logic 38 (1973) 493-499
[2] P Ribenboim, Le Thêorème des Zéros pour les corps ordonnes, Seminare d'Algebre et Theone des Nombres, Dubret1-Pisot 24e annee 1970-1971, Exp 17
[3] L Lipshitz and D Saracino, The modelcompanion of the theory of commutative rings without nulpotent elements, Proc Am Math Soc 38 (1973) 381-387
[4] A B Carson, The modelconpletion of the theory of commutanve regular rings Algebra 27 (1973) 136-146
[5] A Robinson, Introduction to Mofel Theory and to the Metamarhematics of Algebra (NorthHolland, Amsterdam, 1965)
[6] A Robinson, Infinte Forcing in Model Theory, Proceedings of the Second Scandinavan Logic Symposium (North-Holland, Amsterdam, 1971)
[7] E Becker and E Kopping, Reduzierte quadratische Formen und Semordnungen reeller Korper, to aopear
[8] P Eklof and G Sabbagh, Model-completions dind modules, Ann Math Logic 2 (1970/71) 251-295
[9] A Macintyre, Modelcompleteness for sheave, of structures, Fund Math 81 (1973) 73-89
[10] R Wiegand, Modules over universal reguiar angs, Pacific J Math 39 (1971) 807-819
[11] R S Pierce, Modules over commutative regular rings, Mem Am Math Soc 70 (1967)
[12] L. Fuchs, Partally Ordered Algebrate Systems (Pergamon Press, 1963)
[13] A B Carson, Representations of semisimple algebrasc algebras, I Algebra 24 (1973) 245-757
[14] E Artm and O Schreier, Algebratsche Konstruktion reeller Korper, Hamb Abh 5 (1926) 35-99
[15] E Artin, Uber die Zerlegung definter Funktionen in Quadrate, Hamb Abh 5 (1927) 100-115
[16] A Tarsk, A dec isonmethod for elemertary algebra and geometry, second ed (Un v of Calif press, Berkeley, 1751)
[17] P' C Cohen, Decision procedures for rea and p-adic fields, Comm Pure Appl Math 22 (1969) 131-151
[18] S Kochen, Integer valued rational functions over the p-adic numbers, Proceedings Symp Pire Math 12 (1969) 57-73
[19] I Henkin, Sums of squares, Summanes of Summer Institute for Symbohe Logic (Cornell Unversity, 1957)
[20] V Weispfenning, Modelcompleteness aid elmmation of quantifiers for subdirect products of structures, J Algebra 36 (1975) 252-277
[21] Chang and J Kelser, Model Theory (North-Holland, Amsterdam, 1974)
[22] G Sacks, Saturated Model Theory (Benramin, Reaang, MA, 1972)
[23] S Comer, Elementary properties of structures of sections, to appear in Bol Soc Mat Mexicana
[24] A B Carson, Algebraically closed regular rings Canad J Math 26 (1974) 1036-1049
[25] L Lip,htz, The real closure of a comnutative regular f-ring, Fund Math 90 (1977) 173-176

