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Introduction 

In a famous papei [14] of 1926, E Artm and O Schreier introduced the nottoH (,t 
"real field" and showed how the condition of reality ~s connected ~lth the existence 
ot ordermgs on a field In a subsequent paper [15] Ar~m used these result- to solve 
posmvely Hllbert 's 17th problem, whether every posm~,e definite rational functlott 
over Q is a sum of squares of rational functions over Q in this paper we show that 
ma,iy of the results of Artm and Schreier for fields carry over to commutative (vop 
Neumann) regular rings The analogue of the notion of "ordering on a field" ~ 
called here "good preorder on a regular ring" (Sectmn 3) It turns out that the good 
preordered regular rings are known in the hterature as regular f-rmgs (see [9, 12]) 

In Section 3 we prove the basic quantifier elimination result, using a method ~f 
L~pshltz and Saracmo [3] (in fact their work convinced me of the possibih'y of a 
gcnerahzatlon of the Artm-Schreler theory) The e~dstence o,* a qlmntlfier eqmma- 
t~on opens the way to algebraic apphcatmns as A Tarski, A Robinson, P J Cohen, 
and S. Kochen have shown in several instances [16, 5, 17, 18] We use it m Section 4 
to solve Hflbert 's 17th prob'~m for regular f-nngs explicitly, in the ~ollowmg sense 

Let A = ( A t ,  ,A,.),  X = ( X ~ ,  ,X . ) ,  for gwen r ( A , X ) ~ Q [ A , X ]  there er~l 
finitely many a,(A ) and r,(A,X),  svch that ~-(A,X)= Xce,(A ) ~2,(A X), and s,~ch 
that for any regular f-ring R and a ~ R",  ~'(a, X) ts positive defimte over R zff 
0<-~,,(a) for all, 

Here a , ( A ) ~ Q ] A I  and ~-,lA.X)~ QIA IgX~l., these ring construction~ R IXl 
and R4;X~. are introduced m Section 4, Rg.X;~ looks like R ( X )  if R is a field, m 
fact R (X) is a quotlent of R .I:X ;l-, R IX I is generated over R by X~, , X., using 
ring operations and an absolute value function I [ 

This result generahzes and gives an elegant formulation of a theorem of I 
Henkm (,see [19]) who proved the existence of a finite number of possible 
decomposmons of a positive definite f (a ,X)E(Q(a) ) (X)  as a fimte sum 
~ot, (a)f~(a. X), (0 ~< a, (a)), for any gwen f(A, X)  E Q[A, X] 
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114 L van den Dnen 

In Section 5 we introduce sheaves Gf ordered t~elds and make our  result of 
Section 4 a httle more concrete (following a suggestlzra of G Cherhn)  In Sect ,'~r~ 6 
two notions of "real closure" of a r egu la r / - r i ng  ~ re defined, and existence and 
umqueness is proved for both For  the specml case of an ordered field w the 
mvartant real closure of F is nothing else than the classical real closure F, bat  the 
atomless real closure of F is the ring of locaVy constant functions defined on the 
Cantorspace c~ and w~th values m f f  Iu S, 'chon 7, dec~dabd~ty and related 
properties are d~scussed for real closed regular ] rmy, s W~th respect to Sectvgn 3' I 
was preceded by A Macmtyre and V Wet~pfeanmg [~, 20], m the p~oof 9f the 
existence of a quant~fier-ehmmat~on FurthermoCe, Leonard  Lpsh~tz has obtained 
Theorems 6 11 and 6 14 independently, see [25] 

I w~sh to thank Greg Cherhn and Jan Treur  for stimulating d~scusslon~ and 
pointing out error~ m ~n earher version 

A last remark on notation the inclusion symbol C l~ also used /or the 
substructure retat~on ff A and B are rings (w~th umt), then A C B means mat A ~s 
a subrmg of B (w~th the same umt) In general we use the model theoretic not~o,as 
and notations of [21, 22] 

O. Some elementary facts about rings 

Conventions s. Rings are always assumed to be commdta twe  with 1 The language 
of rings contams the binary function symbols + and , the unary function symbol 
- ,  and the constants 0,1 A rnult~phcatwely closed subset of a ring contam~ 1 but 
does not contain 0 A dornam Is a ring wtthou~ zero dwtsors and with 0 ~ 1 A prtme 
tdeal p of a ring R is an ideal such that R/_/2 is a domain (hence _p ~ R )  

It ~s well known that every mult~phcatwely closed set contains a prime ~deal m ~s 
complement,  and conversely, that the complement  of a prime ~deal is mult~phca- 
twely closed From this follow 

Fact 0.1. The minimal prime ideals are exactly the complemems of the maximal 
mult~phcatwely closed ~ets Every prime ~deal contains a minimal prime 1deal 

Fact 0,2. Suppo'~e S ts a maximal multlphcatwely closed set m the ring R, and 
p = R S, lhen for each a ~ p a ns ---- 0 for some n ~ N and s E S (otherwise a and 
S would generate a mult~phcatwely closed set str, ctly containing S) 

Fact 0.3. {x ~_ R 13n E N x '~ = 0} Is the mtersectl,*n of all (m, mmal) pr,me Ideals 
m R (for is x" ~ 0 Vn ~ N, then {x" I n ~ N t.J {0}} ~s a multiphcatwely closed set, 
hence Ls contained m the complement  of a prime deal) 

Fact 0.4. If R is a reduced ring (l e has no mlpotents other  than 0), then the 
canomcal mapping R --* H~ R/p., where _p vanes  over the minimal prime ideals of R, 
is an embedding of R in a product of domains 
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Fact 0.5. Convci  ,ely it a ring l~ embeddable  m a ~ e c t  product of domains, then 

the ring is reduced 

1. Real rings 

Let K be a cla,,s of rings such that A ~- B. B @ K ~ A C K 

Definition 1.1. Let R be a rmg, I an tdeal in R 

(a) I is called :t K-pnm~ if R / I  ~ K, 
(b) I IS called , K-radtca[ if I is an intersection o¢ K-r~r~me ~dea[s, 
(c) K - r a d ( I ) =  A { p l  p IS K-pr lme,  p D I}, 

(d) K-spec(R)  = {P-I _/9- ,s K-prime} - 

If K '.s the cla,,s of all domains,  these concepts coincide with "prime ideal", 

"radical Ideal", " the radical of an ideal",  and ' the spectrum of a ring" respectively 

"Ihese concepts, and the following appllcanon,  were respired by a study of [1] 

Definition 1.2. A ring R is called real lff 

V n E N V x ~  Vx.(~= x . = O z f f  x , =  = x . = O )  

For fields this is ~p accordance w~th 'he usual definition, a domain ~s ~eal ~5 .t', 

quotient  field is real 

Let K be the class of real domains  Instead of K-pr ime,  K-radical K-rad, 

K-Spec, we'll use the terms real p-line, real radical, realrad, Realspec Hence an 

ideal I of a ring R is real prvne lff It is prime and 

V n ~ N V x z  V~. x2, E l ~ x ~ I a n d  ' a n d r . ~ I  

Lemma 1.3. Let R be u real ring Then R l~ reduced ~1411 mtmmal prtme tdeals are 
real Fn,ne tdec, ls 

ProoL Suppose t" = 0, we may assume n = 2 k (k ~ N), and we get 

r 2~ = 0 ~ (r2~-') 2 = 0 ~ r 2k-' = 0 :-> ~ r 2 = 0 =), r = 0 

Let S be a multlphcatlvely closed subset ot R Then there is a mult]phcatlvcl~ 

closed S'  D S such that n E N, x .  , x. E S =), ~,~=~ x, z E S ' ,  namely takc 

Suppose 0 E S '  then 
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9 = s  ~ x ~ ( s ~ S ,  x , ~ S ,  h E N ) ,  

hence 0 = ~7=~ (sx,) 2, implying sx, = O, out also sx, ~ S, contradlctlon) So S'  is a 
multlphcatwely closed set From this it follows that the maximal multlphcatwely 
closed sets S satisfy 

• , } 
x ~ , ~ S  

n ~ N  '=' 

Hence their complements, the mmlm~l prime ~deals are real prime ideals [] 

This generahze~ a result of [2] 

Theorem 1.4. Let  R be a r, ng Then the followtr, g are equwalent  

(a) R ,~ a real ~ rag, 

(b) R ts embe&~able m a dtrect product o f  rear fields, 
(c) R ts embeddable m a junct tvn ring L x wtth L a real field and X ~ set 

Proof. 
(a) ~ (b) follows ,mmedmtely from Fact 0 4 and Lemma t 3 (and the fact that 

the quotient field of a real dcmar, n is a real feid) 
(b) =-3, (c) follows from the fact that for every set of real fields, there is a real 

field m which all are embeddable 
(c) ~ (a) l~ L l~ a real field, then L < is a real ~mg and also every subrmg of L x 

is a real ring []  

Theorem 1.5. Let R be a ring, I an ideal o f  R Then 

(Q I ~s real radtcal ¢'~ Vn  E N V x  VXn(~l x 2, ~ I ~ x~ ~ I and and 

x , ~ l ) ,  

(u) t[ I Is a real radtcal ideal, then I ~ a radtcal ~deal, all ~ts m m t m a l  prtme ~deals 

are real prtme ~deala and thetr mterseetton ts I 

Proof. Ad (1) if I is real radical, then I is intersection of ideals whlc~'~ satisfy the 
:lght-hand side of (Q, hence 1 itself satisfies the right-hand side of 0) Conversely if 
the rlght-hand side of (1) holds, then R / I  is a real rmg, and by using the lemma and 
the well known 1-1 correspondence between the 1deals of R / I  and the ~deals of/~ 
cot:taming L we get the left-hand side of (Q In the same way we prove (u) [] 

Theorem 1.6. Let R be a rm~', I an tdem m R Then 

realrad(I) = {x ~ R t 3k ,  l ~_ N 3y l  y, E R x2k + y~ + + y ~  I} 

Proof. If x2k+y~+  • . y ~ _ / ,  the.r) ( ak )e+y2+  y~Ereal rad( l ) ,  hence x ~ E  
realrad(I), so x ~ realrad(l) (use Theorem 1 5) Of course realrad(I) ts the smallest 
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real radical ideal containing L so it suffices to prove that the right-hand side of thc 
equahty ~s a real radical ideal 

(a) Suppose x 2~ + y~+ y~E I then for all r E R (rx) 2~ +(r'y,)-'-~ 
(rky,) 2 ~ I 

(b) S u p p o s e x 2 k + y ~ +  y ~ I ,  u2"+v~+ +v2 .~ ! ,wemayassumem ---- k, 
then 

(X + ~1~) 4k + (,,~, --  ~4) 41" = X 2k S 1 + ~12k S2 ' 

where S, and $2 are sums of squares, but x 2k S , + ~ , y ,  2 S~@I and u 2k $2+ 
(X v~) $2 ~E/, hence 

, x + u , , ~ + , x _ u ) . k + ( ~ "  y2) S , + ( ~  v~) S 2 ~ I  

From (a) and (b) it follows that the right-hand s~de ~s an ~deal, the easy proof ~hot 
this ideal ~s real radical is left to the reader []  

In the following Realspec(R) will be endowed w~th the Zanskl  topology. ~ e Ihe 
closed sets are the 

V ( X )  = {e E Realspec(L' ) [ X C p} (X C R ) 

Corollary 1.7. Let R be a nng Then Realspec(R) ts compact 

Proof. Let V(X,)O E I) be a family of closed sets every fimte subfamdy of which 
has a nonvold intersection It suffices to prove that the real radical of the idea) 
generated by t,.J,~x, is a proFer ideal Suppose 1 Is an element of thls radical, them 
by Theorem 1 6 . 1  + ~ n  y2 = ~ = ~  a~bk with b~ E ~ ,~tX, ,  but then 1 is an el,=me.~ 
of the real radical of Rb~ + + Rb., hence V{b). , b. } = 0, contradiction) 

The Corollary and Theorem 1 4 wdl be applied m proving that the theory of real 
rings has a model  compamon,  thus doing for real rings what Ltpstntz and Sarazmo 
[3]. and Carson [4], have done for reduced rings 

2. The model companion of the theory of real rings 

We begin w,th some useful facts on ldempotents and regulai rings 

Definition 2.1. An  element x of a ring R is called Mempotent if x 2 = x If p is a 
pnme  1deal of R and x E R is ldempotent  then either x /p  = I or x/_p = 0 m R /p  

The set of tdempotents of a ring R wlh be der, oted by B ( R )  and Is made a 
Boolean algebra by defining 
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x v y = x + y - x y  

x ^ y = x  y 

2 = l - x  

0 ~s tt:e smallest, 1 the largest element of B ( R )  
There is oft,.n a very convenient "geometr ical"  interpretation of this Boo!ea~ 

algebra" suppose there is gwen a family (p,),~ of prime 1deals of R, such that 
['),~tp, ={0}. Then R is canomcally embe~lded into H,~rR/pi, and B ( R )  is 1-1 
mapped into lhe Boolean algebra ~ I  by e ~ {~ E I I el_p, = 1}~ and thl~ ~s even an 
embedding of Boolean algebras 

Summarized if we Fook at the elements of R as functwns defined on L then the 
tdempotents are the characteristic [unctwn~ 

Definition 2.2. A ring R is called (Von Neumann)  regalar if Vx =ty (x2y = x) 

A regular domain is a field, hence all prime 1deals in a regular ring are maximal 
(hence are also minimal prime ideals) A regular ring is a reduced ring Hence,  ff R 
is regular, then R --~He~s~RR/p is an embedding of R m a product of fields 

Lemraa 2.3. Let R be ~ subrmg of S Fol each mmtmal pnme ,deal p_ of R there exlst~ 
a rnmtraal prime ideal q. of S such that q N R = p. 

Corollary 2.4. Let the regular nng R be a ~ubrmg of the regular rw~g S Then the map 
_q ~ _q 1"3 R (Spec(S)--- Spec(R))  ~s onto 

Proof of the lemma. Extend R.._p to a maximal multlphcatwely closed subset T of 
S, and put _q = S . .T  Then .q O S Ce .  and _q N R is prime, hence _q fq R = _p []  

Let T be the first order theory of real rings We'll  prove that T has a model 
compamon T (1 e ~- is an extension of T m the same language as T, each model of T 
can be embedded in a model of 'YI" and ccnversely, and "F is model complete,  A 
Robinson [5] has prcveca that a theory has at most one model compamon)  

The axioms of "F ,ire 
(Q the axioms of T, 

(it) regularity, 1 e '~IFX ] y  (x23  , = -~), 

(111) there are no mmlrrmt ,derrlpotents l e 

Ve(e  •= e #  0 - - * 3 f ( f #  e A f # O ^ [ 2 = [  ~ el)), 

(w) every monlc polynomial of odd degree has a root, 
(v) vx 3y (x~= y') 

Theorem 2.5. T ~s the model companwn of T 
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Proof. Let R b e a  model of 'F ,  a n d p  b e a p r l m e w d e a l o f  R Then R/p. t s a r e a l  
closed field that R i p  is a real field follows from the Lemma 1 3, that every momc 
polynomml of odd degree has a root follows from the axioms (iv), from ax 'om (v) At 
follows that every x ~ R i p  is of the form "¢" or - y2 The lest of the proof follows 
the hnes of Llpshltz and Saracmo [3], I only remark that the above corollary 
slmphfies sorae arguments [ ]  

Convention. It the contrary is not exphcltly stated all rings are assuwed to be 
non-tnvlal,  so the theory T of real rings w, ll include the axiom 0 # 1 

Theorem 2.6. For every two real rings R and S there ts a real ring tn which both can 

be embedded (m other words Mod(T) has JEP = the 1omt embed&t g pr, pcrty) 

Proof. (following Llpshltz and Saracmo) Let K be a real field, and X, Y ncmemp*y 
sets and f R ~ K x, g S ~ K ~" embeddmgs (these exist by Theorem 1 4 (c) and 
the fact that the clas,~ of real fields has JEP)  By means of diagonal map., K )" is 
embedded in (KX) ~ -- k x~Y and K ~ in ( K " )  x --- K ~'~ hence R and S can both be 

embedded into K x~v [] 

Using a well known result of A Robinson [6], we get 

Corollary 2.7. T ts a complete theory 

Remark 1. This corollary also follows from the "act that T has a (necessarily 
unique) prime model, l e a model of if', which can be embedded m every model of 

Let t) be the real closure of Q, let C°(~,(~) be the ring of locally conqant  
functions defined on the Cantor  space q¢ and with values lr (~ Then C')(~ 0 )  is the 
prime model of ~" C°(~,( ) )  is not a mtmmal model of ~I This wdl be proved m 

Section 6 . 

Remark 2. Regular  rings R without mm,.mal Mempoten(s have sever~,l pecuhar 
properties 

(a) R is neither noe thenan  nor a m m a n  

ProM. There exist a strictly descending sequence of ldempotents (e . ) .~.  and a 
strictly ascending sequence o~ tdempotents ( f . ) , , ~  and these give rise to a stnctiy 
descending sequence of ideals (e .R) .~N and to a strictly ascending sequence of 
ideals (f.R).~N 

(b) If f ~ R [X] has two &stmct roots m R, then it has mfimtely many n,ots m R 

Proof. Let a ,  # o~2 be roots of f ,  then eoq + ( 1 -  e)a~ is also a root f~,r ever5 
ldempotent  e, and in this way we get mfimtet~ man~ roots 
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Remark  3. M o d ( T )  doe~ not  have A P  (the Amalgama t lon  Proper ty)  Llpslutz and 

Saracmo [3], gwe an example  of  three real  rings A,  B, C such that A C B, A C C, 
and such that  there  are  no reduced  riftS; D and embeddmgs  B -~  D, C ~ D such 

that 

B 

A / D  

C 

commutes  

3. Preordered regular rings 

Definition 3.1. A p reo rde r  on a ring R ~s a subset 0 of h such that  

O) O+OcO,  
(11) 0 0 C O, 

(u0 o n ( -  o )  = {o}, 
0v) Va E R a 2 c:'_- 0 

This te rmmoiogy is taken from [7] 

A p re9rde r  O on a ring R defines a part ia l  o l d e r m g  -<- by a ~< b ¢:¢, b - a E O, 
which satisfies a~<b:: : ) ,  a + c ~ < b + c ,  a ~ < b  and O ~ c  ~ ac<~bc (note that 

a E O  ¢~ 0 ~  a )  

Example  1. The set of sums of squares m a real ring Is a p l e -o rde r  

Example 2. Suppose R Is a field If O ts a p reo rde r  and - x ~ (3, then O + Ox is 
again a p reorde r  on R 

This implies (via Zorn ' s  lemma)  that the maximal  p reorders  on R are  precisely 

the o lde rmgs  on R (where an order ing ~, identif ied with the set of ~ts nonnega twe  

elements) ,  and also that O C R is a p reo rde r  if and  only If O is the mterseet ton of a 
,3onempty collection of o rdermgs  

Remark .  A preordered  reduced  ring is a real  ring 

Now the fundamental  lemma 

Lemma 3.2 Let (R, O )  be a preordered ring, let e be a mmzmal pnme ideal of R 
Then O/p_ = {a/p_ l a E O} Is a preorder on R / p  

Proof. It suffices to check that 
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a + b ( ~ P -  } ~ aEp_ 

a , b ~ O  

So let a + b ~ _ p , a ,  b E O  Fac t021mphes tha t  tlaere~s n ~ N a n 0  , ~ R  _p such 
that (a + b)"x = 0 Let 

a , = a " ,  b , = 2 ( n )  a .... b', 
\ ~ /  

then 
a~ t- b~ E p, a~. b, ~ O, (a, +- box  = 0 

Hence a~x = - b~x, so a~x" = - b~x 2, but also a~x 2, b~x2E O, lmtdymg a~x" = O, 
hencea~E_p,~e a" ~ p, so a ~_ e [] 

T h e o r e m  3.4. Every model R of T has a umque preorder O, namely 0 ~s tt~e set o[ 
squares of  R 

Proof. O/p is for each prime 1deal e a preorder on the real closed field R/_p, her~ce 
consists exactly of the squares of R / p  Hence every element a E O v, "locarb"' a 
square, arid a compactness argument proves that a is a square Th:~t the ~et of 
squares is indeed a preorder ts proved in the same way 

We have seen that for preordered regular rings (R, O) with R # '1" the following 
holdb V p E Spec(R) (R/p_, O/p)  is an ordered field 

We'll now characterize those preordered regular rings (R, O) which have this 
prop~.rty 

Definition 3.5. A good preorder on a regular ring R is a proorder 0 on R st ch that 
V a E R B e E B ( R ) ( e a E O  and - ( 1 - e ) a E O )  

Fir t a small 

Lemma 3.6. Let (R, O) be a preordered regular r'ng Then for all a E R a E 0 
V_p E Spec(R) a/p_ ~ O/p_ Moreover, ~[ a lp  ~ O / p  (a ~ R, p ~ Spec(R)), then 
there ts an Mempotent e with e /p  = 1 and ea E 0 

Proof .  We first prove the second statement a/p_ E O / p  implies that there is a ~ ~ O 
s t a /p  = a'/p., let e be the ldempotent on which a and a '  are equal (see the 
lemma of Llpshltz and Saracmo [3], for the meaning of thls) Then e/_p = I and 
ea = ea '  ~ 0 The imphcation => of the first statemeqt holds by definmon, and 
follows by a compactness argament from the second statement 

T h e o r e m  3.7. Let (R, O) be a preordered regular ring Then we have 0 is a good 
p~eorder ¢~ Vp E Spec(R) (R/p ,  O / p )  zs an ordered field 



122 L van den Dries  

Proof. ---> let a G R, e G Spec(R),  we t, ave to preve that a/p G O/p or - a/p 
O/.p Choose e E B ( R )  s t  e a G O  and - ( 1 - - e ) a G O  If e p-, then a/p.= 
ea/p_ ~- O/p-, ff e G p then 1 - e ~ ~ and - a/p. = - (1 - e)a/p_ E 0 / ~  

let a G R ,  choose for each .p G Spee0~ ) an ldempotent  e~ s t ee/_p -- 1, and 
e e a G O  ff a/p.~O/p_, - %  a G O  ff -alp_GO~p_ (such an e e exlsts by the 
second statement of the lemma) 

Finitely many of these ldempotents e~, , e,, e, ~, , e ..... co~,er Spec(R),  (note 
that we often identify e G B ( R )  with {_p G S p e c ( R ) l e ~ _ p } ) ,  where for l ~ t ~< 
n e ,aGO,  for n4 l<<-r<~n+m -e,  a G O ,  andwe may also assume that they 
are pmrwlse disJOint (for ~f necessary. ~e  replace them by smaller ~dempoter~ts). 
then the follo~vmg holds for 

e =  e, e G B ( R ) ,  e a G O ,  l - e =  e,, 

hence - ( 1 - e ) a G O  [] 

Corollary 3.8. / f  R ~ "F, then the untque preorder on R ts good 

Definitior~ 3.9. A preorder  O on a nng  J~ is called archlmedean lff Vr G R :qn G N 
r~-~-.n 

Theorem 3.10. Let (R, O)  be a good preordered regular ring Then the following are 
equtvalent 

(1) O t s  archimedean, 
(u) Vp ~ Spec(R) (R/p., O/p)  ts an archtmedean ordered fieM, 

(m) (R, O) ts embeddable m the ring c,f bounded functions f X --~ R (preo'defed 
by f ~O ¢:~ Vx G X f ( x )~O)  for some nonempty X 

Proof. 0)=), (tl) zs )nvlal Assume (11), from the Lemma 3 6  follows that 
(R, O)-.He~,.p..n)(R/p_, O / p )  is an embedding but (R/p_, O/p)  Is (umquely) em- 
bedded m R, hence we have a canomcal embedding (R, O ) - .  R s~c~n), where R s~'¢n) 
~.~ preordered by ] ~ O ¢ O V x E S p e c ( R )  f(x)>~O Moreover,  if r G R ,  
e G Spec(R). then there is n e G N, with r/p_ <~ help-, and with the lemma we can find 
e e G B(R) ,  e /p. = 1, s t re e <~ n e Finitely many of these ee'S cover Spec(R),  and 
taking n to be ,  be maximum of the corresponding n e's, we get r ~ n, and this holds 
of course alto for their mlages m R sv~"u) We have proved (Ul) 

(m) :g. (1) J,, tnwal [ ]  

Theorem 3,1 1. The class of good preordered regular rmgs has the amalgamatton 
property 

Proof. Let (R, O),  (S,P),  (T, Q)  be good preordered regular rings wtth (R, O ) C  
(S P,~, (R, O)  C (T, t')) By tile Corollary 2 4, it is easy to see that we can find an 
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index set I and families of p, lme 1deals (p,),~, of S, (q,),~_, of T, (rr3,),~, of R ~,uch 
that Spec(S) = {.p, I~ ~ I}, S;,ec(r)= {q, I-~ ~ I}, Spec(R) = {~n, t z ~ I}, and fm aJl 
~ I  p , ~ R  =q,  N R  = _m, 

Hence we nave for each t E I  emheddmgs (RD_n,, O/nt,)--~(S/p, P/p~) and 
(R/n~,, O/~l,)-->(T/q_,, Q/q,) of ordered fielcts, hence fol each t E I a,e can find an 
ordered field (L,, O,) and embeddmgs such that 

(S l_p,, Pip, ) 

(R/m,, O/m,) (L,, 0,) 

( r %  Q/q,) 

commutes Putting together all these commutative d~ag~ams we get a commutat~w 
diagram 

(s, e )  . . . . .  ~ I-[ (s/p_,, P /8 )  

(R,O)- .., ~ (n/,_,, Olm,)  FI(L,,O,~ 

o> H (r/q,, o/q,)  < 

laence an amalgamatmn dmgram 

/,) 
S (s' 

(R, o)  I] (L,, o,) 

Remark 1. Note that we used that ordered fields are good preordered regular 
rings, and that the class of good preordered regul,~r rings is Oosed under dlre,A 
products (both facts are easy) 

Remark 2. This method works also for the class of regular rings, for which Llpshltz 
and Saracmo state the amalgamation property However the reference m their 
proof to a result of P M Cohn ~s lr my opmmn not cocrect, because Cohn proves 
amalgamatlgn for a wider class of (not r ecessarlly commutatwe) rmg~ 

The language L(O) of preordered nngs is the language L of ring% augmemed by 
one unary predlcate symbol Q However, to get better model theoretic results, we 
have to change the language (just as Llpshltz and Saracmo w. [3] do) We introduce 
two new unary function symbols - i  I t, which we derive m the *heory T(O) of 
good preordered regular rings by the defimng axioms 
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( x - ~ ) ~ =  x - '  ~o_(ixI'~ 
These functmns are indeed umquely defined m every good preordered regular ring 
by these axioms Let "r'(Q,~,l t) be the extensmn of definmons of T ( Q ) j u s t  
described But we can also go the other d~rect~on we can axmmat~ze the theory of 
good preordered regul~tr rings m the language L(-~,t I) (th~s axmmat~zatmn ~s 
denoted by T( -~, I I)) m such a way th,-t ff we define the unary predicate symbol Q 
by Q ( x ) ~ x  = Ix [, then the corresponding extension by definmons T( -~, l t )(Q) 
~s equwalent w~th T(Q,-~ , I  1) The mare advantage of th~s ~s that T(-'.I 1) ~s 
umversal theory (the reader can easd~¢ provide a set of umversal axioms) Note 
however that the notions of embedding and homomorph~sm (between two good 
preordered regular rings) do not change Let T(-~,I I) be the correspondmg 
extension by defimtmns of T Now T(-~, l l) ~s the model compamon of the upwersaI 
kheory T(-~,!l),  which has t'ae amalgamation property, and by results of A 
Rgbmson [5] r,~ad Eklof and Sabbagh [8] we get 

Corollary 3.12. T(- ' ,  I I) ts the model  completton o f  T(-', I I), and  admtt~ e h m m a -  

uon of  quanttfier~ 

Remark. Alter oo~'ammg these results, I read A Macmtyres ' Model completeness 
for shea,,e,, of structures" [9}, where w,zaker but more genera ~ rest~lt~ are proved 
The discuss1,,,, o' ?zg,. .  86, $7 ar, d 88 of h~s paper estabhshes essentJall) that 
"~( '.! ~) is complete and the model c,~mpamon of T(-' I ~), but a ~hghtbr different 
termmotc,gy is u',cd, which I'tl now e~:plam Hzs notion of resular f-ring is 
equwaler~t with the r, otlon of good preordered regular ring m the folh~v, mg ,.en~e 

I f  (R.  % v, ,. ) Js a regular f r~ng then (R. ~, i i ~ tx a good preordemd regular nng  
(where ~andl ~arcdefinedby ~'x ' : ' x . x ( ~  ~)'--x ', ~ ' = ( x , / f ) ) + ( - x v O ) )  
and conz erselv the parttal ordering ~ ~7 ~ a good preordercd regular ring (R.  ~ ' J) 
de[~ nes ~ /atttce ~truct~re ( "~ v. ^ ) on !~ ~ut h that ( R ~- , ~, ,~ ) t~' a regular f -nng  

As h~s termmol~gy ~s more standard we'll adopt the 

Convention. In the f~t owing good preordered regular ring,, wdl be called regular 

f ~rmg~ 

Added ,n p~o¢)l recently Welspfennmg's paper 120] appeared where the results 
of [9] are generah/ed ,,tdl further it contains also a general version of Theorem 
311 

4. P~itive definite functions over regular f-rings 

Up tdl now we excluded the trivial ring {0}. for the sake of making r complete 
However, it w~ll be convement in the fo!lowmg to include {0} m our conszderations, 
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so {0} wall count as a real nng, regular ring, regular f-~mg and even as a mode~ of 
"~'(-~,t I) Th~s has the following effect 

Lemma 4.1. (I) Mod T(- ') ,  the class of  real regular rings, ts an equattonal class 
(II) Mod T(- ' ,  I I), the clas~ of regular ~-rmg~, ts an equauonal class 

P r o o f .  A~ (1) We can a×mm,mze T(- ' )  by 
(1) tb ~. axioms for rings (whtch -an be expressed b,¢ equatmns), 
(2) x x '=  x, ax ('~-')~= x- ' ,  
(3) (.x2+~,k.~y, ~) (.t~'+X~_,y,2) ' x -  x (for each k Eo~) 

For suppose a ring (R, -~) satisfies (1), (2) and (3) If a'- t- ~,~ , b, 2 = 0, then (3) mlphes 
that a = 0, hence (R,  -~) is indeed a real regular ring Conversely let (R, ') be a teat 
rmg, then for any prime 1deal _/2 (and x, y~, , vv E. R)  rather x -= 0(mod _p) anc 
hence 

x e +  y~ ,~ '+ y~ x =  v(mod[ , )  
i ~ l  l = l  - 

or x / 0 t m o d  p)  Implying ~:+ 2 ~ , yY/0(rood_p)  and hence 

x ~" + v] ~-'+ ~ )~ ,: = x(m,,d_p~ 
t 

We ha,.e pro,,ed that P 'e cquatmns ('4) hohl lo~.allv hea~.e tbe~ hold 
Ad (II) Wc can a , u , n , m z e  F( ',', {) by 

(I) Fhe ring axioms. 
(2) ~-" ~ ' - :  r, l (~ ' y = ~ .  ' 

In the ~ame wa) a~ m ca,,e (I) we p to ; e  that a ~.gular ~-rmg ',, t)',he-, (1) (2~ ,rod (~) 
Conversely, tf (R, ',I ) ,.at;slie,, (t) (2) and (31, then (a ={,v  ) ~@R~ ), ,t 
weorde r  {b} ('~], and c~e,~ a g,)t)d prc()rder (b', the equatm,) t ' =  x ") and ~ 
luxt the absolute value func)um reduced b} O hence (R, ' () ~s an f-r~'gu]a~.. 
ring C.3 

It p, well known that onc can define tile polynamml ring R[Y) ,  ,A,, I ,n n 
vm,ahles up to isomorplu~m m e r  the ring R as follow,, 

R [ X ,  ,X,,] r~ a ring extension o] R generated over R by n dtstmgm~hed 
elements X, ,  , X .  ~uch that for each ring mo.phzsm <h R -+ S and each n-tuple 
(a,, , a . ) U S " ,  there ts a umque extemum ~ RIX) ,  , X , , ] - * S  oJ ~b w|th 

4 , ( X , )  = a, (1 ~ t -< n )  
The e,~stence and umqueness o~ such an extensmn follow,, from the fact that the 

class of rings ~s an equatmnal cla',s From the same umver~al-algebrmc argument' ,  ~) 

follows" 
(1) Each real regular nng R has a real regular extenston t { (,.*,, , X ,  ~ generated 



126 L van ~en Dnes 

over R by n dtstmgulshed elements X~ , X .  such that for each homomorphlsm 
~b R ---> S wtth S real regular and each n-tuple ( a .  , a.) E S" there zs a umque 
extenswn ~ R(X~. ,X.)--->S of ek wtth q , (X , )=a ,  ( l~< t~<n)  (Note that 
R (X~, , X. ) is generated over R by X,. . X.  using the rmg operations and the 
real regular nng oFeratwn ) 

(II) Each reguh:r f -nng R has a regular f -extenswn R I X .  , X .  1 generated over 
R by n d~stmgw~hed elements X~, , X .  such that for each homomorphtsm 
q~ R - - > S w t t h S a . e g u l a r f - n n g a n d e a c h n - t u p l e ( a .  , a . ) E S " t h e r e l s a u n t q u e  
extenswn q/ R [ X .  ,X . ] - -~S  of ~b w~th ~b(X,)=a,  ( l~<i~<n) .  (Note that 
R I Xl, , X. t is gent ra ted  over R by X~, . X. using the ring operatmns and the 
regular f -nng op.'ratwns -~ and I [ ) 

In case (I) as wel! as m case (II) ~he umqueness ot the extensmn (up to 
R-lsomorI~hlsm) t31tows easdy from the existence 

Now we have to make a number  of essentmlly tnvml remalks 
Note  that a term ~'(X~. , X . )  m the language L( -~, _a)~R (wnh a constant .a for 

each a E R, R I = "I'-~)) denotes an etemen! of R (X,.  , X. )  Slmdarly for terms m 
the language L(- ' , I  I,_a)~ER and R ~ T ( " . !  ,) 

It is well known "hat a polynomml r E  R[X~, . , X . ]  defines a polynomial 
function S" ~ S fiJr each ring extension S of R .  the image ~f a ~ S" is denoted t~} 
r(a)  

In the same wa¢ we ha~e 
(1) I f R r S .  R. S r ea t r egu l a r r mgs . ' :~ R(X~ ,  . X , , ) , t h e n f o r e a c h a E S ~ . t h e  

~mage of r under the homomorphtsm R (X~. . X~) - -  ~ which fixes R and ~aps  
X, onto a,, ~s denoted by r(q)  So r ~ R ( X , .  , X . )  defines a map a - r ( a )  
(S ~ -* S) 

(2) Similarly If R C $ ,  R , S  regular j-ring% then z E R [ X ~ ,  .X .  Idefine~ a 
map S" --~ S, and the ~mage of a ~_ S ~ wader th~s .nap ,~ denoted b) ~(a)  

I f  R ~s an mfimte field, then f E R [ ~ .  , X . ]  ~ umquely determined by ~t~ 
corresponding polynomial functton R" ---, R ,  however ttus ~ not true m the case of 
real regular nng~ z = (X  ~ - 2)(X z -  2) -~ ~. Q(X)  defines the map r - 1 (Q--~ Q) as 
does 1 E Q(X),  but r ~  1, because r does not define a constar~t map from Q( \ /2 )  to 
Q( \ /2 )  Stdl we have 

Lemma 4,2. Let R be a regular f-nng, R C S ~ = T ( " , !  [) Then for r E  
R t X~, , X,. i we have 

r - ~ 0 ~  Va ~ S ° ~'(a)=O 

Proof. =:> is trwlal 

~==. regular f -nngs  have amalgam~llon, so we may assume even that 
R[XI ,  , X ~ t C S ,  then the n-tuple (X~, . X . )  is an element of S, so 
r (Xj ,  ,, X,,) = O, but ~-(Xj, , X.)  = ~-, (this can be proved by reduction), and we 
have proved the statement for ~- E R [ X~, , X.  I 12] 
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Lemma 4.3. (1) I[ R ts a real ring, then R[X~, ,X,,] ts a real nng (Hence 
R[X, ,  ,X . ]  can be embedded m a real regnant ring) 

(2) Let (R, O)  be a preordered regular ring Ttien (R, O) can be embedded m a 
(good) preordered regular nng (S P) wtth S ~ ~f 

(3) Let R be a regular [-nng Then 

~" { +  " (1~- ~ R , r ,  i 0 = a ,r ,  l k ~ w ,  a, ~ R I X ~  . k . [  ~ 

t, a preorder on R I Xt, , X.  [ uhtch e~tends the (good) preorder 4 R 

Proof.  (1) ,t will suffice to prove th~s for n = I ff E, ~ , ]~ = 0 (f, ~ R [X II and not all 
/', are zero, then let a. E R be the toefficlenl of X'" m ~, and rake n maxHea~ wah 

the propert?, thai some a , / 0 ,  then we h a y :  ~ ~a" = O contrad~caon T 

(2) (Ro 0 ) - ~  l-le~,e.~,r,(R/p - O/p}  ~s an c m b c d d m g  by the iemma of Tl 'c  , re in  ~, 7 
Bat  O @  ~s an m~er,,ect~on of a family of ordermg~ ( 0  v ,},~,, l e / 0  (see E" ample 2 

of Sectton 3), hevce for each p (R/:~. O/~2)---~ I],~ ;o (R/p .  O e ,) ~s an t : ,nbedd,nz ,)[ 

(R/p, O/if) m a product  of orde~ea fields 

Let for each U2, t) w~th t ~  L ( R  e, Pc,) be an exlen,.mn of (R/p  ,Oe,) '~,~th 
Re,t'~T Then (Rtp, O@) ~- nataralb¢ e m b e d d e d  , ,  [I , (R, ,  Pc,) and fi,~allv 
(R, O )  ~s naluralt)  embedded  m 

and S ~ "  7.3 
(3) it V, tll ~Uffi'~ e to prove ~hat 

t'3 

so suppose .~.,, ~ a , r ~ = 0 ,  take a regular  / -ex tens ion  S of R with S ~ T  qhen  
~"~ a,r~(s) = 0 Vs ~ S", hence a,r~(~) --- 0 V5 ~ S" (note that ~e h ,ne  assumed all 
a, ~- 0), which by Lemma 4 2 imphcs that a,r~ = 0 0  C' R ~s a preorde~ ~m R, wh~ct~ 

contains the gwen good preorder  on R. and a. a good preorder  ,s a rna~m,d 

preorder ,  O D R zs equal  to the glven p r e m d e r  on R [3 

Before coming to our mare )oplc we m&cate  which inclusion re lanons hofd 

between the rings in t roduced so far 

Theorem 4.4. (A) I[ R and S are real regular rtr'gs and R C S then the to'lowme 
relations hold 

(1) r [ x , ,  , X.  l C R{X, ,  , ~..) 
(2) Let R be Q(V'2), ~ be Q(~"2), then R(X)f f .  S ( X )  

(B) If  R and S are regular f-rings and R C S, then 
(1) RtX,, .,X.]cRIX,, .X.i 
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(2) RIX , ,  ,X .  I C S ! X , ,  ,X .[  
(3) Let R be Q(V'2), ordered by X/2 > O, then R(X)g~ R t x I .  

(The mcluswns are all supposed to be reduced by canomcal homomorph,sms ) 

Proof. (A) (1) Let  d~ R [X~, 
fixing R and the X,, R [X~, 
regular ring T Now there ~s a umque  homomorph l sm tp 

.,X.}--->R(X~, , X . )  be the canomcal  mapping  
, X . ]  is real (Lemma 4 3), hence ~s a subrmg of a real 

R (Xb , X . )  ~ T fixing 
the X, such that 

R (" " - ~ T  

R(X, ,  ,X,,) 

commutes  But then 

R[X,, ,X.] C > T 

R~X,, , X.)  

also commutes  because (b °7 fixes R and the X, Hence  r is 1-1 
(2) (X~+ ~v/2)(X2+X/2)-~ considered as an element  of S(X)  Is equal to the 

identity 1, but (X2+ V '2) (X2+ ~v/_5) -~ considered as an e lement  of R ( X )  is not 
equal to 1 

R is a subfield of the real field Q( X/ --Z--x~) and 

((x-" * V ~ ) ( x  2 + v ] ) - ' ) ( V - : - - - ~ )  = 0 

Hence  the canomcal  map R (X) ~ S,(X) Is not 1-1 
(B) (l)  As m L e m m a  ~, 3 t l )  one proves that 

O = {,=, a:r:lO<~a, E R, r, ~ R[X, ,  ,X.]  

is a preorder  on R [Xt, , .k. ] (although one has to be a httle more  careful), hence 
for each minimal prime ideal p of R[X, ,  ,X . ] ,  O / p  is a preorder  on 
nix,, ,x.]/e 

Now we use tl',e following fact whJch is easy to prove 
If (D, P) is a preordered domain, then (Ot(D), Qt(P)) Is a preordered field and 

P C Ot(P), where Qt(D) ~s the quotwnt field of D, and 

Qt(P) = {alb I a e P, b E P\{O}} 

In fact Ot(P) ts the smallest preorder on Ot(D) contammg P 
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So let T e = ( Q ' ( R [ X , ,  . X.]/F_), O~(O/_p)) (p a minimal prime), then T e ~ a 
preordered regular nng, as is H e T e , using Lemma 4 3 (2) II  e T e is embedded m a 
regular f-ring 7, and xt ~s eas,, to see that R - ~  T (the composition of 
R ~ R [ X ~ ,  , X . I ~ I I e R [ X , .  ,X . ] /_p- - I I~ '~ - - - ,  T) ~s an embedding of ~egu- 
lar f -nngs  Now the proof proceeds as in (A) (1) 

(2) ~s easy, using Lemma 4 2 
(3) As m (A) (2) we prove that (X 2 + ~ '2) (X"  + ",/2)-~, considered as an clement 

of R IX] ,  is the ldenUty, but (X~'+ \ /2 ) ,XZ+ X/2)-' considered as an elemem of 
R ( X )  is not the ,,dent~ty [ ]  

We have the following necessary and sufficient condmon for 

R(X, ,  ,X, , )C R IX,, ,X .  t 

Proposition 4.5. Let R be a regular f-rmg 
(a) If  R (X)  C R IX[ then the preorder {~k,=~ a~ [ k E ~, a ~ R} equalv the gwen 

good preo,'der of R 
(b) I f  {Y~,~=,a~l k ~ w , a , ~ R }  equals the gwen good preorder of L', then 

n<x,, ,xo>c~lx,,  .x, ,!(vn~.,)  

~'~ a~ Proof. (a) Suppose O~<rER,  but . ~  O-=a~{~, , [ tcEw, a , ~ R }  Then for 
some prime _p of R, r!p ft. O/p_ We easily see that one can change r m such a way 
that r becomes a unit m R without changing the value of r/p 'qow there exists an 
m d e n n g  O e on R@ such that -r /_p E O e, let S be the leai extensmn held 
( R / p ) ( X / -  r/p_) of R i , ,  we see that (X~'+ r)(X2 4 r)- '  ~s mapped onto zero b,, the 
map R(X)---~S which extends R--~RIp  and maps X Onto N// -r /e  , hence 
(3gz + r ) ( X  2 + r)-', as an e 'ement  of R (X), is not the laentlty, bctt (X ~ + r ) (X '  + r ) '  
is the identity of R}XJ  

(b) Under  the stated condmon O ={E,k=~'r~[k EoJ, r,~R(XT~, ,X.)} Is a 
preorder  on R(XI ,  , X . )  extending the gwen preorder  on R Hence by Lemma 
4 2  there is an extensmn (S,P) of (R(X~, ,Xo), O),  with S ~ ' I ' ,  consequently 
(S ,P)  is also a regular f-extensmn of R Now we have a unique regular f-ring 
morphlsm tO R [Xt, , X.  I - "  (S, P)  fixmg R and the X, But this lmphes that 41 o l 
coir cldes with the embedding R(X, .  ,X . ) - -~S  (where ~ is the canom~al map 
R(X. .X . ) - - -~RIX .  ,X~[)  and this ,mphes that t is 1-1 

Now we are going to discuss posm,m definiteness 

Definition 4.6. Let i~' be a regular f-ring, S a regular f-extension ot R with S ~ 
Then ~ ' E R ] X .  ,k ' . [  is posmve defin'.te ¢~a°fVs~ S" z ( s ) ~ O  

Remark.  Using the fact that .~(-1, [ t) is the model completion ~f T(- ' ,  l [) it doesr"~ 
matter which S we take, m a later section i will prove that e, ery regular f-ring R 
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has a unique prime model extension (m the sense of "Saturated Model Theory"  of 
G Sacks), so we could have taken S as this prime model extension of R Still 
another alternatwe is to define 7" ~_ R I Xb  , X~ I to be positive definite lff for each 
regu la r / - ex tensmn S of R we have Vs ~ S" r ( s )  ~ 0 

A rather trivial fact ~" ~ R I X~, , X.  I is positive defimte lff r = l ¢ I, this follows 
from r = r ( X ~ ,  . , X . ) f o r e a c h . c ~ R I X ~ ,  , X .  l N o w r ~ R I X ~ ,  , X .  I m a y  
involve the absolute value operation 7['hose which do not, form the regular subrlng 
R .~Xt, , X.  ::t-, more precisely 

Definition 4.7. Let R be a regular f -  ring, and let R (X~, , X.)--~ R I X~, . X. I 
be the real regular nng homomorphlsm fixmg R and the iX', The image of this map 
l~ by definmon R ~ ~ ,  , X.  ~t- 

Theorem 4.8. Let R be a regular f -r ing,  ~- ~ R ~Z X~, , X~ ~ Then "r ts posture 
define ¢~ r = ~=~ a,r~ for some k ~ ~,, 0 <~ a, E R, r, ~ R ~ X , ,  , X .  :t" 

Proof. <-:- is tn~ ml So let r be posmve definite 

O =  ~ a, r2 ,1keoJ,  "c, e R 4 Z X , ,  , X , , *  

is a preorder  on ~ ~zX~, , X.  Jr extending the gwen preorder  of R By (2) and (3) 
of Lemma 4 3 there is a preordered extensmn (S P)  of (R *X~, . X. ~I-, O)  w~th 
S ~ ' r  Then (S, P) is a regular f-extenslon of h Hence 

~'=z(X~,  , X . ) E P N ( R ~ z X .  , X . ? t ' ) = O  [] 

I do not k ' low whether the theorem can also be proved for "posmve  defimte" 
~" ~ R (X1, , X.)  (R a regular / - r ing)  A t least the corresponding lemma does not 
hold 

let R = Q(x/2), ordered such that V'9~ > 0. then 

I ,1 0 = a,r 2, O ~ a , ~ R ,  r, E R ( X  

is not a preorder on R (X) ,  for let e = (X 2 + V ~ ) ( X  2 + V~)  -1, then (1 - e ) ( X  2 + ~/2) 
is the ,,ero-ele-nent of R ( X ) ,  but ( l - e ) X  ~ ~s an element of O and # 0 ,  and 
( 1 - e ) ~ " 2  v, an element of O and / 0  (note that 1 - e  takes the value 1 on 
subsmutmg ¥ ~ X / - - ~  m the real extensmn Q(~/-~-X~) of R )  

We are now going to strengthen this theorem by showing that there exists a 
"uniform" decomposmon of a posmve definite • ~ R ~X~, ,X,~ ~ as a sum of 
squares with posmve coefticlents 

Lemma 4.9. Let for each t~ ~ M S~ be a regutar f -nng,  l e t s  = 1-[~MS~ Each of  the 
prolecao,ns S--~S~ can be extended' to a regular f - n n g  homomorphtsm 
zr~ S IX,, , X. I ~ S~/X,,  . X~ I by putting ~r~ (X,)  = X,. Then 
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r ~ S l X , ,  ,X,, I ts posture defimte e~ V.~Mzr.~'r)~S. IX,, 
defimte 

, X. ! ~s po~mve 

Proog. Let $,. be any regular f -extensmn of S~ w~th $ .  g "[' Then S =a°'[[S,, ~ a 
regular f-extension of S wtth S ~ "I" Now ~t is easily seen that for r ~ S I X,. , X. I 
a n d a  = (o~', . ~ " ) ~ ( S ) "  we have ( r ( a ) ) .  = (Tr,.(r))(oe~ . a ; )  for all tx ~ M  
Hence 

r ( a ) ~ 3 ¢ >  V (~r,.(r))(c~.. ,~.)~.0 

From this the coaclaslon follows, []  

Theorem 4.10. LetRbearegularf-rmg, z ( A , X ) E ( R ! A , ,  Aml)~.X,, ,X,,;~ 
Then thereextstk~to, a , ( A ) E R [ A , ,  ,Am]~ 

r , ( A , X ) ~ ( R ] A .  ,Aml)~X~,  .X . ;~ ( I  ~ t ~< k) 

such that for each regular f-nng ertenslon S of R and each a E S ~ wtth posmoe 
defimte r (a ,X)ES~.X, .  , X ~  we have 

r(a,  X )  = ce, (a) 2, 

anda,(a)>-Oforall l<<-t<~k (A. Xdenotethetuples (A,,  ,A. . ) .  (g , ,  ,X~))  

Proof. Suppose the theorem does not hold Using a Cantor  diagonal argument 
we'll derive a contradlctmn The negation of the theorem is as follows for each 
fimte sequence tz = (c~. "rd. , (a~, l-k ) with 

ot ,~RIA, .  ,A,.I,  r , ~ ( R I A , ,  .A.,I)#FX,, ,X.~i" 

there is a regular f - rmg extension S~ of R and an m-tuple a. = 
((a.)l, , (a~) , . )E (S.)",  such that z(a , . ,X)C S.aCXb ,X.~I. is posmve defimte 
and rather 

k 

or  (*) 
t~,(a, .)~0 for some 1 ~ ~ ~ k 

Now we form the direct product S = I L  S.. Note that R ~s embedded in S by the 
diagonal map We define the m-tuple  a = ( a .  , a~, ) ~ S ~' by (a,)~ = (a~), for  

l ~ l ~ m .  Thenbythe lemma~' (a ,X)ES~zX.  , X . > l s p o s m v e d e f i m t e  Let T 
be the regular f -subrmg of 9 generated over R by a~, ,a.,, m other words 
T = { a ( a ) l a ~ R I A ~ ,  ,/~.,[} T h e n r ( a , X )  is also a posm'.e  defimte element of 
T'CX~, ,X. :~  (making a mvml ldentlf icmon prowdecl by Theorem 4 4) Hence. 
by Theorem 4.8 there exist a,(a), , a ~ ( a ) E  T, 
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• .,(a, x ) ,  , r~ (a, X )  ~ T*X,, 

(where a, = a,~A) ~ R I a , ,  

such that r(a, X) = E,~=~ a, (a) 
T4zX~, , X . ~ ,  hence also m S~X~,  ,X.:t .)  
(a~,'&), ,(a~,~r~), then we have (by applying ~r.) 

k 

r(a~ X ) =  E a, (a . )  r,~(a,~,X), 

and a, (a~)>I 0 for all 1 ~ t ~< k Th.s contra&cts (*)~ 

,x .~  

,A~[ ,  r , ( A , X ) ~ ( R I A ~ ,  ,A~I)~zX, ,  ,X .~ ' )  

z~(a,X) and o~,(a)~>0 for all 1 ~< ~ ~< k (m the nr, g 
Let /z be th~s sequence 

[] 

Perhaps a more attracnve formulanon of the theorem ~s the following 

Cerollary 4.11. Let z ( A , X ) ~ Q [ A , X ]  There extst k ~ t o ,  a , ( A ) ~ Q I A I ,  
~-,(A,X)E Q!A [.¢:X~(1 <~ z ~ k ), such that for each ordered field R and each 
a ~ R ~ wtth postttve defimte ~-(a,X)E R[X]  we have ~'(a,X)= ~=la,(a)~'~,(a,X) 
and a, (a) ~ 0 [or all 1 <~ t ~ k (A = (A ~, , A~ ), X = (X~. , X . )  ) 

Proof. It suffices to note that Q[A X] is naturally embedded as a ring m 
(QI A I)(X), and that for an ordered field R and f (X)  ~_ R [X] we have f Is posmve 
defimte as an element of R (X) lff f i posmve defimte as an element of R I x I  This 
eqmvalence follows by considering/~' as embedded in C°(~ ---> aft) ~ :F where c~ is 
Cantor space,/~ the real closure of R and C°(% v -->/~) the ring of locally constant 
functmns with domain c~ and codomam /~ [] 

A remar~ of G Cherhn suggested to me that these results can be strengthened 
still further 

Theorem 4.12. Let ~ ' ( A , X ) ~ ( Q f A I ) ' ~ X ~ .  There exist K ~ t o ,  c , ( A ) E Q I A 1 ,  
"r,(A,X)~ (QiA f)4gX~ " (1 <~ t <~ K)  such that 

K 

7(A,X)-= \'~ c,(A) r2,(A,X) 

and such that for every regular f -nng R and m-tuple a = (a,, , a,.) ~ R "  (the 
[oltowmg hoM~ ~qa, X)  ~ R ~zX Ye ts posmve defimte ¢~ 0 <~ c, (a ) for all 1 <~ l -~ K)  

We first collect the necessary tools m a lemma 

Lemma 4.13. (1) For each open formula <b(A)= tb(A,. .A . . )  of L(-~.I [) there 
,'xt~ts 7. E Q IA t, such that for each regular/-nng R, each m-tuple (a,, , a.,) E 
R "  and each m E Spec(R) we have 

R/m. 1=(6(a~/?, ,am,.~)e~ ~',(a,/~, ,am/.,,)= 1, 

R/m. ~-ltkfal:~_, ,a~,~_)¢~ r,~(a,/_,r, . , a . . ~ ) = 0  
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(2) [.breach r(A, X) ~ (Q A ])agX:k and each regular f-r, ng R and each m-tupte 
a = (a~, , a~) ~ R " we have 

~'(a, X ) = 0 (m R ~ X ~ )  ¢:~ VLn E Spec (R) r ( a /m ,  X) =: O m R/n3 ~.X~ and 

z (a ,X)~  R agX~ ~ posture defimte ¢:~ Vm ~ Spec(R)'r(a/~_n,X)~ R/m a;X> ts 
posture defimte (a/nt denotes the m-tuple (a~,.,,, , a , . ~ ) )  

Proof. (1) with reduction we put z~+ = 1 -  z,, z , ^ , =  z,  r, and for an atomic 
formula 4~ = t r (Aa ,  , A m ) = 0 w e  put z , =  1 - ( c  -~ or) 

~2) both eqmvalenzes are proved aslng the techmque of the preceding lcmma 
(note that R ~II,.~s,,o~R~R/m is an embedding of regular f-rings) []  

Prooi of the theorem. T(- ' ,  [ [) has a quantifier elimination, hence there is an open 
formula Pos(A) of L(-~,[ l) such that for ever) regular f-ring R ant' m tuple 
a = ( a .  , a , . ) ~ R "  we have r ( a , X ) ~ R ~ X ~ k  is posture defimte e~ 
R D P o s ( a , ,  ,a~.) Let P ( A ) ~ O [ A [  correspond to the formula Pos(A) as 
descrmed m the lemma, part (1) Then we have, using part (2) of the lemm~ 

z(A,X)  = ~ (P(A) o¢(A)) ~'~(A,X) 
i = l  

+ (1 - F(A))(½ + ½ ~-(a, X)) 2 

+ ( e ( a ) -  1)(~ - ~r(a ,  X)y,  

(where a, (A) and ~-, (A, X)  are chosen as m Theorem 4 t0) Put K = k + 2, 

c , (A)=P(A)  a , (A)  (1~<~ ~< k), 

ck+,(A)=I-P(A) .  "rk~,(A.X)=½+½"r(A.X). 

c~.z(A) = P(A ) -  i, ~'k+2(A,X) = 12- ~z(A,X) 

Then again part (2) of the lemma shows that ~'(a, X)  is posmve defimte ¢=> V1 ~.~- t <~ 

K c,(a)~O [] 

Finally we gwe some easy examples of decomposmons  as described m the 

theorem 

Example 1. 

X 2 + A , X + A 2 = I  (X+½A,)2+(Az-~A~) 1" 

and X2+ a~X+ a2 ls t'~,bttwe defimte tff a ~ - ¼ a ~ 9  

Example 2. 

X*+A,X2+A2 =1 (X2+~(A~^O))2+(A,~O) X 2 + ( A , - ( ½ ( A , ^ 0 ) )  2 ) 1 ~ 

and X4+ a~X2+ a2 is posmve defimte tff a2- (½(A,  ^ 0)) z ~>0 
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(In both examples al and a2 are eleme',ts of some regular f-ring, and " v "  and 
" ^ "  denote the lattice operatmns ) 

5. Sheaves of ordered fields 

R Wlegand has constructed the "regular hull" /~ of a ring R([10]) We'll 
generahze hls constructmn Let T be a set of umversal ~entences in the language of 
rings 

Let us call a nng R T-regular tf R ts regular and embeddable in a dtrect product of 
F-fields (whele a T-field is by definmon a field which is a model of T) 

Proposition 5.1. (1) A nng R is T-regular tff R ts regular and Vm E 
Spec(R) R/m_ ,~ T 

(2) "~'he class of F-regular nngs ts a variety (or equatwnal class) using the 
language L (1 )  

Proof. If R is regular and R / m  ~ T for all _m ~ Spec(R). then R is T-regular 
becaase R -o [I~sp~.R)R/m is an embedding of R In a direct product of T-fields 
Conversely let R be a regular suormg of the direct product H ,~F ,  with F, a T-field 
Vt E I I.et n..l C S9ec(R) By the corollary of Section 2 there Is a maximal Ideal M 
of H E such that M Iq R = _m Then R/_m is a subfield of (H F,)/M, but (H F,)/M is 
in fact an ult:aproduct of the fields E, hence (H E ) / M  ~ T, implying R / m  ~ T Now 
(1) is proved Using (1) It IS easily shown that the class of regular T-rings is closed 
under "homomorphlc images, regular subrmgs and direct products, hence (2) 
holds [] 

Definition 5.2. Let R be a ring, a pair (t,/~) where z is a rmgmorphlsm i R ~ / ~  
and/~ is T-regular, .s called a T-regular hull of R lff for each morphlsm I R --> S 
with S T-regular, there Is a unique morphlsm O R ~ S such that 

R ' , I ~  

t / ! , /  (9 
d 

S 

commutes For T = O the folloccmg has been proved by R Wlegand 

Theorem 5.3. Ever¢ rmg R has an (up to R-,somorphtsm ) umque T-regular hull 
(z,/~), l R ~ / ~  ts 1-1 ~ff R Is embeddabte m a product of T-fields Every element of 
1~ is a fimte sum of elements (ta) Oh) -1 (a, b ~ R )  

(The proof of this theorem will contain more reformation on (z,/~) ) 
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Proof. Let us define for any Meal ~r ot R ! is T-pr ime fff R/I  ,s embeddabte  m a 
7-field Let  Specr  (R)  be the set of T-pr imes,  let for a ~ T 

D r ( a )  -- {_p ~ SpecT(R)  I a ~ _p}, 

Vr(a) = {.p E Spec~-(R) [ a ~ p} 

Then the D7 (a )  and V r ( a )  form a clopen subbase for a Boolean topology on 
SpecT(R)  Thxs is proved by a race model  theoretic argument  (th,s is one of the 
points where the proof  differs f rom Wlegand 's  fm T =  ~t) 

Let  FL be the theory of fields and D"/ : '  be the poslt ,vt  dmgr~m of R Then a 
T-field gh lch  extends R/p(p E Specr  (R))  is essentially a model of T ~.IFL U D~R 
m which {_a = 01 a ~ _p} U-{_a-/0! a ff _p} ,s sat,stied, more prec,sely le~ L(R)  be the 
language of rings augmented  by a constant _a for each a ~ R, let B be the Boolean 
algebra o~ open L(R)-sentences  modulo  eqmvalence by T ~3 F L U  D R Let S(B) 
be the Boolean space of ultratilters ot B, then p ~ {cb ~ B [ Rip ~ ~b} as a bllectlon 
of S p e c r ( R )  onto S(B) The inverse map  ,s gwen by ,.~ ~ {a ~_ R I the formula 
a = 0 belongs to 0%} Now the Boolean space S(B) has as a clopen subbase the 
collectmn of sets 

d(a)= {~ =~ S(B) i9 = 0 belongs to ~}, 

v(a) = {~s E S(B)} a~ 0 belongs to ~} 

If we transfer this subbase to S p e c r ( R )  by the above bijectaon we obtain the 
clopen subbase consisting of the D r ( a )  and V.r(a) 

Let  X be the Boolean space SpecrR with the md,cated topology Put K, = R/~c 
(x ~ X)  and let ~ be the d~slomt union I..J~,~ K, ,  for a, b ~ R we define 

[a,b] X--*~ by [ a , o ] ( x ) = a , / b ~ K ,  , f b ~ / 0 ,  

= 0 ~ K ~  if b~ = 0  

We topologlze ~ by the stro, gest topology which makes  a~J maps [a, b] X - .  
continuous. I e O C ~ as open lff Va, b ~ R[a, b]-~(O) ,s open m X If we define 
zr ~ ~ X by zr-Z{x} = K~, then a long but tedmus argument  shows that (?]L w, X)  
is a ranged space AI'  stalks K~ are T-fields, hence, using a result of tl S P,erce 
(Theorem I0 3 m [11]) we have /~ =d~fF(X,N)  Is a regular ring, x ~ ~ ---e~f{cr 
/~ [¢ (x) = 0} is a homeomorph l sm of X onto Sp~c(/~) and [a, b ] ( x ) ~  [a, b]/2 ,s an 
isomorphism of K. onto  /~1£ (Vx ~ X)  It is easily seen that [a, b] ~ /~ ,  and that 
a ~ [ a ,  1 ] l s a r m g m o r p h i s m ,  R ~ / ~ .  a n d [ a . b ] = ( t a )  (tbV ~ We h a v e [ a .  1/-- 
0¢:~ a ~ f " l~xx ,  hence ~ R---~/~ ~s 1- I  ,ff R ~s embeddable  m a product of 
T-fields 

We  now prove  that each o" ~ / ~  as a fimte sum Ela , ,  b,] (this proof ~s more 
e lementary than Wiegand's)  Fnst  of all c r ( ~ ) = [ a , b ] ( x )  ~'~r some a , b ~ R ,  
depending on x, hence, using that X ~s Boolean,  o- = ~,%~ e, [a, b,] for ldempotents  
e, ~ / ~ ,  a,, b, ~E K Every ~dempotent e ~ / ~  ~s a boolean comb.nanon of Mempo- 
tents which are characteristic functmns of a set Dr (a) C X ~ s m g  the fo~lowmg 
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tc~) [a, a ]  = charactensttc functton of DT(a), 
(fS) [a, hi[c, d] = [ac, bd], - [a, b] = [ - a, b], [a, b] -~ = [b, a] ,  we see by mduc- 

t~on that an ~dempotent e ~ / ~  ~s a fimt~, sum of elements [a, b], substituting the~e 
sums m 0. = E~=~ e, [a,, b,], and ,~gam using (1~) we arrive at the conclusion that 0. as a 
fimte su~'n of elements [a, b] 

Let I R ~ S be any ring ,norph~sm w~th S a T-regular ring We want O /~ ~ S 
w~th 61t = I  Let y ~ SpecrS,  then l-~y ~ SpecrR = X, and R/1-~y ~s embedded m 
S/y We put (O(0.))(y) = o-(]-~y) for o ~ / ~  Again ~t ~s a tedious exercise to check 
that 6/(o-) SpecrS ~ I . .J~s~s S/y xs a global section of the ringed space belong- 
mg to S as defined m [1l], and that 61 is a nngmorph~sm of/~ into ~he ring of global 
sections, which ~s S ~tself after an ~dentlficat:on, and that Ot = I Umqueness  of 19 
follow~ by 19(E[a,,b,])= E(9(a,) (~9(b,))-' [ ]  

Remark 1. 0 ~s onto ¢:> ],'R) generates S as a regular ring 

Remark 2. Let us take for T the set of axioms 

~ x , ~ = O f f  x, = = x . = O  
t = l  

Tnen we have that every real ring R has a umque real regular hull/~, ~ e /~' is a 
real regular rmg containing R as a subrmg such that each morphmm of R into a real 
regular ring S can be umqueb, extended to a morphlsm of /~ into S,  moreover  
every element of /~ is a in~te sum ~a,b -~ (a,,b, E R )  Hence the following 
corollary ~s ~mmedmte 

Corollary 5.4. LetRbearealregularrmg FhenR(X~, , X ~ ) = ( R [ X ~ ,  ,X , ] )  ^ 
and every element of R (X~, ,X,,? (and aJso of R,l:X~, ,X, ,~ lf R Is a regular 
f-ring) ~s a fimte sum ~, f, g.~ wtth f,, g, E RIgid, X~ ] 

This makes our  results m the preceding section m(.re concrete We shall also gwe 
a more concrete description of R IX1, , X.I  by this method 

We adopt the defimtlon of "sheave of structures" gwen m [9] However.  the 
4 tuple (S, X, 7r, t~) wdl be abbreviated here as (I..Jx~x ¢r-l{x}, 7r, X),  or even as 
( U ~ x r r - l { x } , X )  In the following all structures are L(O)-structures ,  and Q is 
used mo,tly for preorders on a ring It wdl be clear now what ~s meant  by a sheaf of 
ordered fields Let (R, O)  be a regular f -nng  As a regular ring R-'= F(X,  SPa) 
where X = Spec(R), 7R = ( I . J~xR/x ,  7r, X)  and 7r I J ~ x R / x  ---> X is defined by 
rr(a/~)= x (a ~ R) (see [11]) 

We make YYR a sheaf of ordered fields 5~<n o) = ( ' . . J~x (R/x, O/x),  ~r, X),  then 
the asomorphlsm is even an isomorphism between (.~, O)  and F(X, 5~tR o)), this ~s 
essentmlly Theorem 3 7 and the lemma which precedes It Conversely If 5e Is a 
sheaf of ordered fields on a boolean ~pace X, then (R, O)  =d~F(X,  9 °) is a regular 
f-ring and X is homeomorph' ,c with Spec(R) wa x ~ {or E F(X, ~ ) t  0.(x) = 0} 
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To derive an analogue of Theorem 5 3 for regular f-rml~'s ~e  need a:~ analogue of 
"T-pr ime  ~deal" 

Definition 5.5. Let R be a ring O C R ~s called a hnear ordering ~deai of R ff 
O + O c O ,  O x O c O ,  O U - O = R  

If O Is a hnear ordering ideal taen I = O r ~ - O  is an 1deal ot R and 
O/I  = {a/I t a U R} is a hnear ordering on the ring' R / I  Convelsely ff ~b R --* S 
is a rmgmorphlsm and P is a hnear ordering on S, then O = 4~-'(P) Is a hnear 
ordering ideal of R and ker ~b = O f-1 ( -  O)  and (R/ket  4~. O/ker  4~)--" (5, P)  ,s an 
embedding 

Let (R. P) be any ring with a subset P We let X be the space of 1 near ordering 
ideals O with O C'l - O prime and O D P We define 

V ( a ) = { O E X l a f ~ O } ,  D ( a ) = { O E X I a ~ O } ( a ~ R ) ,  

and adam the V(a)  and D(a)  form a clopen subbase for a boolean topology on X 
Thls is shown by an argument slmdar to that m tla¢ proot of Theorem 5 3 let/3 be 
the boolean algebra of open sentences of L(O, a_).~R, modulo eqmvalence by 
OFL  U D*(R, P) where OFL  ~s the theory of ordered fi~ lds m the language I (Q) 
and D +(R, P)  Is the posture  dmgram of (R. P)  Then :T ~ {a E R I Q (_a) belongs to 
~} is a bllectmn of the Stonespace S(B)  of B onto X, and using this bqectlon we 
transfer the topology on S(B)  to X (note that an atomic formula 3 =0 .  ~s 
equwalent to O ( a ) ^  O ( - a ) )  For  x = 0 ~ X  ,.~,e put K~ =quotlentf iek |  of 
R / O  f'~ - O, ordered by the ordering which extends O / O  F) - O ,  we define lbe 
maps [a, b] X--* U . ~ x K .  and the sheaf ~ as m the proof of Theorem 5 3 Then 

is a sheaf of ordered fields aria for (/~, t 6) =J°rF'(X, ~ )  we have 

Theorem 5.6. (I) (I~, P) ~s a regular f-ring and the map i (R, P)--> (/~, P) t~ a 
morphzsm such that for each morph~srn : (R~ P)---> (S, Q) wzth (S, Q) a regular 
f-ring, there zs a umque morphtsrn 0 (R, P)---~ (S Q) such that 

( R , P )  ' . ,  (/~./3) 

..~-f e.- o 

(s,o) 

commutes 
(2) l ~s an embedding tff (R, P) is embeddable m e d~rect proc.uct of ordered fields 
(3) Every element ofl~ ts a fimte sum of elements e (ta) (tb) -~ w~th a, b ~ R, e an 

Mempotent of R 

Proof. Similar to the proof of Theorem 5 3 We indicate only the differences The 
characteristic function of D(a)  is [a, I]-,  ([a, I]-)  -~ where x =d°~x ^ 0 for x m an 

f - n n g  
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Hence. the tdempotent e m (3) can be choaen as a boolean combmation of elements 
o]theform [a, 1]- ([a, 1]-) -~ (a  E R) .  This fact can be used to prove the uniqueness 
of O To check that the constructmn of O goes through one needs that for (S, Q)  as 
m (1) O ~ O f 3 -  O defines a homeomorphlsm of the space of prime hnear 
o rdenng  ideals over Q onto Spec(S),  this is easily proved using tile compactness of 

the spaces [ ]  

Remark  1. O is onto  ¢0 I ( R )  generates (S, Q)  as a regulai f-ring 

Remark 2. Let R be a regulai f-ring, P = {x U R t x 1> 0} Then, with the notations 
of Theorem 5 6 ,  we have 

R I X , ,  ,X .  I = (R[X , , .  , X.  1,/~), 

henc,~ every element of R IX~, , X ,  I is a finite sum of elements e , f  g-~ with 
f, g u R [X~, , X.  ] aqd e an ldempotent  

Although it wll~ not be needed it seem'~ appropriate here to give an elementary 
characterization (,f tb.ose (R, P)  whlch are embeddable in a d~rect product  of 
ordered fields 

Definition 5.7. For a subset P of a ring R and a~, , a .  ~ R we define 
P[al ,  . ,  a .]  as the smallest subset of R containing P and a~, , a,, and which is 
closed under addition and multiphcatmn 

If P-contains all squares of R and Is closed under  addWon and multlphcation, 
then clearly 

P[a,, , a . ]  = {fta~, , o ~ ) [ f E R I X , .  ,X,,] 

has ail coefficients m P and every monomial  has degree at most 1 in each X,} 

Theorem 5.8. Let R ke a ,(ng P C R then the following holds (R, P) ts embeddakle 
m a direct product of ordered fields ¢~ 

(1) P ts a preorder on R, 
(2) Vn ~ N Va) Va. ~ R I"1.,=+i P[ela,,  , e.a.] = P, 
(3) V a E R ( a 3 ~ P  ~ a E P )  

Remark. Li [12] it is proved that the conjunction of (1) and (2) is equivalent to R, P 
Js embeddable in a direct product of linearly ordered rings. 

Proof. ~ is straightforward. 
~ .  assume that (1), (2) and (3) hold. Let a ~ P. If we put O -= P, then the 

following condmons on O hold 
(a) p c o ,  
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(b) 0 ~s closed under  addmon and mult~phcat~on 
(c) v o  v a ,  v a ,  v .  N a ¢ n . . . .  , O[e,a~, 

For (a) and (b) th~s ~s clear, ~f 

~"*'r :  N e[~,a,, ,~.o.]=P, 

then a *" ~ P for some m ~ N (by mult~phcat~on w~th an even power of a), and by 
mduct~on on m th~s gwes a ~ P, eontra&ct~on), so (c) also holds for P Let O~ b c a  
max,real subset of R which s~t~sfies (a), (b) and (c) 

Then O. ,s a hnear ordering ~deal of R for suppose c ~ O ~ ,  - c ~ O o ,  ~hen 
O. [c] and O~ [ -  c] are proper extensions of O, which satisfy (a) and (b), hence 
there are n ~ N, a,, .o~, b~, ,b, ~ R wah 

a~"~'~ n (O,,[c])[~a,, , ~ a ~ ] ,  

hence 

a2""'E n (O,,[-c])[6,b, ,  ,8,b~] 
5~=-+1 

a 2"+' ~ f'~ O,,[eoc, elai, ,e.~a~,8~b,, ,8,tbt] 

which contradicts (c) Put Io = Oo N -  O.  Then (R. ,Oo)=(R/I~ ,O~/L)  ~s a 
hnearly ordered ring From (c) we knew that a 2"+' ~ O0, (Vn ~ N), hence a = a/L 
is not nfipotent m / ~ ,  and consequently there Is a minimal prime ideal p. of/~,, such 
that for S. = (/~o/p., 0 . / po )  we have a/p. < 0  m S,, and S. is a hnearly ordered 
domain Summarized for an arbltraly a ~ P we have found a hnear~y ordered 
domain ~% with a homomorph~sm (R, P)---~ S~ such that the ~mage of a m So ~s 
stnctl¢ negatwe m S° They (R, P ) - ~  H . S .  whele a runs over all elewen/s ~ P, ts 
an embeadmg of ( R , P )  m a product  of hnarly ordered domains 

As a fiaal apphcatlon of sheaves we gwe an example of a real regular ring R, 
which has no good preorder  rhls  contrasts wah  the s~tuat~on for fields v.here ~t ~s 
an old result of Ar tm and Schre,er that every real field has an ordering 

Example. Let X = N U {~} be the one point eompactlficatlon of the &screte spac~ 
N In [13], page 250, A B Carson constructs a sheaf K = ( U ~  ~ ~'x, x )  of fields o~ 
X with K. = R  for n ~ N ,  K==Q('X/2),  such that ~- 6efi led by 

~(n) = ( -  1)" VS. ~ K., 

~-(~) = V~e K~, 

is an element of F(X, K) As X is boolean and all K~ are real f iek ~ =~°' F (X  K) 
is a real regular ring Suppose R has a good preorder  O ,  this 0 m< es an o~dermg 
on each stalk K. ,  suppose it reduces on K= the ordering ¢vlth r(o ) : \ ~  > 0, but 
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thls would lmpty that r ( n )  = ( -  1)" %/2 > 0 in K.  = R for all sufficiently large n ~ N, 
which ~s ~mposs~ble, s~mdarty we reach a ct.ntrad~ct~on ff the reduced orderwg on 
K~ satisfies V'2-<-0 Hence R has no good preorder  

6. Real closures of regular f .  rings 

We introduce twe notions of "real closure of a regular f-ring R " ,  and prove 
existence and umquenes for both In general the two real closures of  a regular 
f -nng  R do not comclde, they coincide ff and only ff R has no minimal 
xdempotents Lemma 6 1 ~s basic for all the following It was respired by a 
sheaf construchon of A Carson (Lemma 2 2 of [13]) Due  to the fact that we can 
&stmgmsh the distract roots of a polynomml o~,er an ordered field, we can prove 
stronger staten,ent~ than in the s~tuatlon considered by Carson 

Let ~'~ be m the following a regular f-nng, K = ( I . . J ~  K~, X )  be the corresponding 
sheaf of ordered fields on X = Spec(R)  as defined before We zdenttfy R with 
F ( X , K )  Let f ( Z ) =  Y~'/d,~ f ,Z '  E?_ R[Z]  be a momc polynomml (f,,+~ = I) of d,:gree 
n + 1, n ~ 1, where esther n + 1 ~s odd, c r  n + 1 = 2 and f ( Z ) =  Z 2 -  r for some 
0 ~< r ~ R For x ~ X w~ put ]- (Z)  = ~,%*~ f, (x )Z '  ~ K, [Z]  

Lemma 6.1. There exists an up to K-tsomorphtsm umque sheaf L sach that 
(a) L ts a sheaf of ordered fields (I..J~x L~, X )  over X wtth K a subshcaf of L 
(b) Vx E X L~ = K~ (Ax) where A~ ts the largest zero of f. (Z)  mth, .  real closure 

of I<~ 

Proof. We define A~ as the largest zero of f~ (Z)  m the real closure of K~ and order 
Kx(A~) by the ordering reduced by this real closure Put L~ = K,(A.)  and define 
o. X - - . U ~ L x  by t r ( x ) = A x ( x ~ X )  

Let ~ be the collection of all sets {•7=0 a, (r)(o-(x)) '  Ix E N} where (ao, , a.)  
runs over R "+' and N over the clopen subsets of X ~ is an open basis for a 
topology on t,..)x~× Lx, and with this topology L = (I,.)~xL~, X )  is a sheaf satisfying 
<a) and (b) For this last statement to be true it suffices to check the following" 

= t ,-o a, (x)(o'(x)) '  l ao, , a. ~ R } .  

(2) V(a~, , a . )G  R "~ V(bo, , b . ) E  R"+'~(Co, , c . )G  R "+' 

I 0 ~ = 0  t = O  

(3) V(ao, 'a")~R"~'Vx~X( 2,=o a,(x) (o~(x))' =0=> 

3 o p e n N ~ x  V y ~ N ~ a , ( y ) . ( o y y = O  , 
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(4) V(a,,. )' , a , ( x )  (~r.~ >-0  

::I open N ~  ~ Vy E N  a , ( y )  (cry)' ~> 0 

(1) follows because  X is boolean  (hence K~ = {a (x ) la  ~ R}) and because cr(~) 

Is a root  of a momc polynomial  of (n + l)th degree  

(2) o ''*~ = - ~ ' k o ~ o " ,  and with mductmn st is shown that every power (r~(K 
N) Is of the form ELo  c,cr'(c, ~ R )  

(3) and (4) the theory R C F  of real  closed fields has a quantif ier  ehmmat~on ~o 

there  extst open formulas  ,hi(a, [ )  and (b2(a/ ' ) ,  (a = (ao, , a , ) ,  [ = (f,, f~) are 
taken as n- tuples  of variables here)  such that R C F ~  do~(a,f)*->Vs (~ iq the 

largest zero of fo+f~Z+ + f , , Z " + Z "  ~--~a,,+a~s+ +a, ,s  " = ( ' )  and 
R C F ~ b 2 ( a , f ) ~ , V s ( s  Is the largest zero of f , ,+f~Z+ +f~Z"+Z"~'---~a,+ 
a,s + + a.s" ~ O) 

Because ~b,(a,f) l~ an open formula  and I~J~sxK. is Hausdorff .  we can t~se 

L e m m a  3 of [9] to get ff K~ ~ d),(a(x),f(x)),  then there exists an open O -D x w~th 
Ky ~ ~b,(a(y ) ,[(y )) for all y ~ 0 (a ~ R"~ ' , [  ~ R " " )  Now (z) and (4) fol~o~v 

eas,ly 

Umqueness Let L = (I..J~=\ L., X )  be a sheaf as descr ibed m the lzmma We defin.~ 

cr X---> I,.J~,~L. by o'(x)-: &(Vx  ~ X),  and we prove that cr ~ continuous let 

r ~ X, and suppose  o ' ( x ) =  a(x)w~th an a (-~ F ( X , L ) .  there  is an open [ormula 

aS(s, f0, ./ . ,) w~th 

R C F ~  4~(s, f0, ,f.)~-~s 

~s -he largest zero of 

fo+ f~Z + + f .Z"  + Z "+', 

hence L. ~ 4)(a(x), fo(x), , f. (x)), and using Lemma 3 of [9] there ts an open qet 
O B x w~th 

L~ ~ 6 ( a ( y ) , / o ( y ) ,  , f,,(y)) Vy ~ O, 

hence o ' (y)  = a ( y )  for all y ~ O F r o m  o- ~ [ ( X ,  I ) ~t follows that ff  ~s a basts for 
the gwen topology on I...),ex L,, so th~s topology is umquely de te rmined  []  

Remark .  Note  that for S = F(X, L )  we have R is a regular  f - subnng  of S, B ( R )  = 
n 4 - I  j B(S),  o ' ~ S ,  ~,=0f, o" = 0  and consequent ly  S = R + R  cr ~- R o-" 

S = R[cr] is m a certain sense a umv,.rsal construction 

Lemma 6.2. Let The a regalar f-extenston of R. L = (l.3y~ ~ Lv. i') us ~orrespondmg 
sheaf of ordered fielas over Y = Spec(T) ,  suppose s E T ~s a ze,o of f (Z) ,  such that 
for each y ~ Y s (y )  zs the largest zero off,  (Z)  ELy [Z]  m the real clowre of L, Then 
there exzsts a umque R-morph~sm 4, S = R[cr]--~ T, moreover cI) ~ an embedding 
w~th Cb(cr)= s 
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Proof. Extstence define 4~ by: 

ao-r a~cr + + a.cr" ~ ao + a~s + + a.s ~, 

where a, ~ R We have to show the following 

(1) • ts welldefined, ~ e ff ao + a~o" + + a~o -" = 0, then 

ao ~- a~s + + a.s" = O, 

(2) • is 1 - ~ , l e  i f a o + a ~ s +  +a~s"=O,  t h e n e o + a ~ o - +  + a . o - "  = 0 ,  
(3) • is a regular  f - r ing  morphlsm 

ADO) .  let ao+  a~o- + + a . ~ = O ,  and take any y ~ Y ,  f o r t h e l m a g e x = y N R  
cf y in X we have K~ is an o rde red  subfield of Ky and K~ ~ d~(a(x)~f (x) )  where 

¢~) is the open formula  defined m the proof  of L e m m a  6 1, this gwes 

Ky~d?~(a(y) , f (y ) ) ,  L-nplymg ao (y )+a~(y ) s ( y )+  + a . ( y ) ( s ( y ) ) ~ = 0 ,  as th~s 
holds for any y ~ Y, we get  ao + a,s + + a.s ~ = 0 

Ad~2). use the first corol lary of Section 2 and reverse  the proof  of (1) 
Ad(3)  that qO is a ring morphlsm ~s t~:vml by (1) 

"[he equwalence  

a o + a ~ r +  + a . c r " > ~ O C ~ a o + a l s +  +a.s">~O 

Is proved as m (1) (2) using the open formula  ~b._(a,f) instead of q~l(a,f) 

Uniqueness Suppose  ~ R[tr]---~ T is an R - m o r p h l s m ,  let th (s , f )  be the open 
formula defined m the last part  of the  proof  of L e m m a  6 1, take any y E Y and let 

x = @ - ~ y ,  ~ reduces a morphlsm R[o']/x--*Ly of o rdered  fields, which is 
necessarily an embedding ,  by the meaning of d~(s,f) we have 

R[cr ] / x~b ( ( r ( x ) , f o ( x ) ,  , f . ( x ) ) .  hence L y ~ b ( ~ ( o ' ) ( y ) , f o ( y ) ,  , f . ( y ) ) ,  and 

this means that q)(cr)(?)  is the largest z~.,o o i fy  ( Z )  m the real closure of Ly This 
holds for any y ~ Y, so s = ~b(cr) [ ]  

Let R, S, T denote  n the  following regular  f - r ings  

Definition 6.3. S is called an 0dempoten t )  mvarlan" R-extenston, if S is an 
ex~enslon of R wltl'~ B ( / ~ ) =  B ( S )  

Definition 6°4. S Is called an integral R-ex tenswn (or integral  over  R) ,  if every 
s E S ~s a zero of a momc polynomml over  R 

A s tandard argument  shows If S ~s an mvanan t  R-ex tens ion  then S is integral  
over  R lfl (Vm E Spec(S)  S/m_ Is algebraic over  R / m  r ) R )  

Definition 6.5. S ts called real closed if every ~ ~ 0 )n S Iv a square and every -nomc 

polynomial  of odd degre.- over  S has a root  m S ,  eqmval, ,nt ly S/.m is a real  closed 
f e l d  for all _rn ~ Spec(S)  
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Definition 6.6. S ~s called an mvartant  r ,al  closure of R ~t S is an mvanan t  integral 

R extension which ~s real closed 

Lemma 6.7. Let  T be a real closed extenston of R Then there ex~st~ an S w,t/~ 

R C S C T such that S Is a real closed :noariant R-extenston 

Proof. Take  fol S a regular  f - subrmg of T including R, wlatch is maximal w~th 

respect  to the p roper ty  of being an mvanan t  R-ex tens ion  We show that S is leal  

c losed,  let f ( Z )  ~. S [Z]  be mome where ei ther  f ( Z )  = Z ~ - r for some 0 <~ r E S, or 
f Is of odd degree ,  

f ( Z )  has a zero t m T such that for all y ~ Y = Spec(T) ,  t ( y )  is the largest zero of 

f y ( Z ) ~  Ly[Z]  m Ly, (where (I , .J~vLy, Y) is .s the sheaf corresp,~ndmg to T) 

This s ta tement  is p roved  uslr~g the argument  m the umquenesspar t  of Lemma 6 1 

to show that  o- ~s a g lobal  section F r o m  L e m m a  6 2 and the remark  following 

L e m m a  1 ~t follows that  S [ t ] C  T is an mxanan t  extension of S, and by the 
maximahty  of S, th~s y~elds t ~ S Hence  f ( Z ) ~  S[Z]  ha~ a zero m S 

Lemma 6.8. Wtth the same hypothesis as m L e m m a  67 ,  there is an S wt~h 

R C S C T such that S is a real closed integral R-exteaston 

Proof. Take  for S a regular  f - s u b n r g  of T including R which is maximal wltt~ 
respect  to the p roper ty  of being mtegla l  over  R We show that S -~ real closed lc~ 

f ( Z ) ~  S [Z]  be momc,  where ei ther  f ( Z )  = Z 2 -  r with 0 ~< r ~ S, or f ( Z )  is of odd 
degree  As  m the proof  of Lemma 6 7  we see that f ( Z )  has a root t ~ T such that 

S[t] is a regular  f - subrmg of T Because S is integral  over  R and t ~s integral ovcr 
S, we get Sit]  is integral  over  R, hence by the maxlmahty  of S t E S []  

By first applying Lemma 6 7  and then L e m m a  6 8  we get  Lervma 6 (, 

Lemma 6.9. I f  T ts a real closed extension o f  R, then there is S with R C ~ 7 T such 

that S is an mvariant  real closure o f  R 

Lemma 6.10. I f  S t s  an ln~ tnant  real closure o f  R, then there is no S' with 

R C S ' c S  with S'  real close,! 

Proof. Let  m ~ Spec(S)  Then R/m. f3 R C S'/m_ ¢3 S ' C  S / r ,  and S / m  is the real 

closure of R / ( m  f', R ) ,  henoe, ff S '  were real closed, then Y'/(,n r) S') = S / m  foi 
each _m *-Spec(S) ,  and from this ~t follows that S ' =  S (because S :s an mvarlant  

S ' -extens lon)  [ ]  

Theorem 6.11. R has an mvartant real clc*s,~re 1~, R is unique up to R-,somorphism 

For any real closed extens:on T o f  R,  there :s a umque R-morph:~m of  t£ :nto T ,  this 

morphism ~s an embedding 
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Proof. R has a real  closed extension,  h~.nce by L e m m a  69 ,  R has an mvar lant  real 

c losure /~ .  Uniqueness  of iff follows in the  usual way from the  last s ta tement  of the 

theo lem,  so w~. prove this s ta tement  first Let  T be any real closed exte~lslon of R 

We consider  tI~e set of all pairs (S, 4,) with R C S C R and 4, an R - e m b e d d i n g  of S 
in T, and we part!ally orde i  this set by (S, 4))~< (S' ,  4, ' )¢:>d'fS C S '  and 4, is a 

restr ict ion of ,b' Let  K be the sheaf o f / ~  and L the sheaf of T 

By Zorn ' s  lemma this set has a maximal  member ,  say (S, 4,); suppose  S ;~/~, then 

by L e m m a  6 1 0  S is not real  closed, hence there exists a monlc  po lynemia l  

f (Z)~  S[Z], ei ther  of the form Z 2 -  r, 0 ~  < r ~ S, or  of odd degree ,  which has no 
root  m S But f(Z) has a root  a m R, and  a root  b in T, such that Vx ~ Spe c (R)  

a(x) is the largest root  of ]~ (Z)  in K~, and such that Vy ~ Spec (T)  b~y) is the 

largest root  of fy(Z) m Ly L e m m a ' s  61  and 6 2  imply that S[a] is a regular  

f - subrmg of iff and that  we can extend 4' to an embedd ing  S[a] --~ T by a ~ b This 
contradicts  the maximahty  of (S, 4") Hence  we have proved the exmtence of an 

R-embedd ing  4' o f / ~  into T 
Suppose $ is any R - m o r p h l s m  of l(' into T We look at the set of all 5 wlth 

R C S C/~ such that ~ I S = 4' ! S By Zorn ' s  lernma there  exis s a maximal  S in this 

set, suppose S ~ / ~ ,  then we use the same argument  as before  and the uniqueness-  
part  of Lemma 62 ,  to deduce  a cont rad lchon [ ]  

Example 1 For  ordered  fields the concept  of "mvar ia i l t  re~l c losure"  cotrc~des 

with the usual concept  cf " rea l  c losure"  

Example  2. If X is a boolean space, F an o rde red  field F Its real  closure, then 

C°(X, F )  is the mvarian~ real  closure of C°(X, F) 

Here  C°(X, F )  Ks the regular  f - r ing of locally constant  functions wlth dom~ n .k\ 
and with values In F, and with f>~O¢~ Vx ~X(f(x)>~O), for f~C°(A,F)  
C'(X, F) will also be used in this sense if F is not  o rdered ,  of course C°(X, 7) Ks 
then only a regular  ring 

U p  tilt now we only considered mvanan t  extensions,  l e extensions in which no 
new ~dempotents occur Now we are going to study extensions which are  genera ted  
over  a given ring by idemp3tents  

Definition 6.12. S is called atomle~s if B(S) is an atomle,  s boolean  algebra  

(Of course in this definition R and S can be arbl t rary  nngs)  

Definition 6.13. S is called an atomless real closure of R if S is a real  closed 

atomless extenslor, of R such that for any real closed atomtess extension T of R 
there exists an R - e m b e d d i n g  of S into T the d iagram 
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R ~S  

~- e / " o  
7" 

commutes  for a statable embedding O 

Of course the real closed atomless extensions are ,'.xactlv the ~ xtens~ons whmh 
are models ef ~'(-~, l [), and those who are familiar with "Saturated Model Theory"  
of G Sacks will see that the notmn of "'aromless ieal closure' comcides w~tb the 
not~on of " p n m e m o d e l  extensmn wl*h r,espect to the theory T(- ' , I  I)'" Th~ 
followmg wdl be proved 

Theorem 6.14. Every regular f-r, ng R has an atomless i'eal closure 1~ I~ t~ un,q~,e t~p 
to R-tsomorphtsm and ~s integral ooer R 

First some lemma's  

Lemma 6.15. Let F be an ordered field ¢constdered as a regular f-ring) Then 
C°(U, F) ts a prime atomless extenston of F i e C°(U, F) :s an atomless eg~en~lon 
which can be F-embedded into any atomles~ extenston o f F ,  moreover C°(~, F) :~ up 
to F-:somorph:sm the oniy prime atomle~s extens:on ot' F 

Proof. Let R be any atomless extension of F B ( R )  ~s then an atomless boolean 
algebra, hence includes a countable atomless boolean algebra Applying the 
(contravanant)  Stonespace functor we get a continuous map h of the Stonespace of 
B ( R )  onto U (whmh is the Stonespace of any countable atomtess boolean algebra) 
But the Stonespace of B ( R )  is naturally homeomorphlv with X = Spec(R) (~cc 
[13], Theorem 1 5), so we may cons2der h as a continuous map of X ooto T Let 
K -= ((.Jx~xK~,X) be the sheaf of ordered fields associated with R ,  F is naturally 
embedded m each K~ = R / x  (because x f3F={0}) ,  so we have C°(X ,F)C 
F(X, K)  = R Let ~ be the map o- ~ cr o h of C°(U, F) into C~(X, F), then I l,, an 
t ' - embeddmg of C°(U,F)  into R 
Umqueness It suffices to prove the foltowmg let F C R C C"(U, F)  and suppose R 
is atomless, then R is F-Isomorphic with C°(U, F) 

Here follows the proof B ( R ) C B ( C ° ( U , F ) )  and B(C'(U.  F)) is countable 
hence B ( R )  ~s a countable atomless boolean algebra, b¢ ,~pplymg the Stone- 
space functor th~s gl~es u~ that X = Spec(R) and U are homeomorph~c Let 
K = (!,.Jx~xK~, X)  be the sheaf assocmted wlth R ,  then IC = F for all x ~ X (hew 
we need both mclusmns F C R and R C C°(<g, F)), hence 

R = F(X,  K)  = C°(X, F)  - C°(U, F)  [ ]  

We need the following notations Let R be a regular f-ring and e an ~dempotent 
of R ,  then we have a canomcal decomposmon R = (R t e) × (R [ l - e) of R as a 
dtrect product of two regular f-rings, here (R I ~ ) 'q taken as the ~deal eR which ,~c 
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make a regular f-ring by taking e as the idennty, and defining the other  operations 
and relations as restrictions of the opc-atlons and relanons on R ,  note that e ~s an 
atom ~ff R le is a field, let A t ( R )  be the set of atoms of B ( R )  

Propos i t i on  6.16. Every regular f-nng R has a p:tmeatomless extension S, ~ e an 
atomless extension which can be R-embedded m each atom;ess e~tenston of R 
Moreover S ts unique up to R-tsomorphtsm 

Proof. Let K = card(At(R))  and let (e.) .<.  be a 1-1 enumeranon  of A t ( R )  We 
define an ascending chain of regular f-rings (R.)._.., beginning with Ro-- R such 
that 

(A) a t ( R , ) = { e o l A  <~v<.K} 

Suppose 7.  IS already defined such that (A) holds, and A <.1 + 1 ~< K, then 
R~ --: (R. I 1 -  ez)x  (RA l e,) and R,A }e~ IS an ordered field, we "replace"  It by ItS 
prime atonaless extension C°(~, R.  I e.), i e R.~, is the extension (R~ i 1 - e,) x 
C°('¢,R. le.) of R~, it is easdy shown that At(R.~O=At(R, ) . . {e , }  and 
R , . , t l - e ~ = R .  I I - e .  

Let 0 < ~ < ~ K  be a hm~t ordinal and let (A) hold for all A</ .~ ,  we put 
R,. = I . . j . : .  R. and we see that (A) also holds for A = tz This construction shows 
also that R,  l e. = R [e, for all A "~ A ' ~  K 

We claim that R~ is a prime atomless extension of R ,  by (A) R.  is an atomless 
exteasmn of R ,  let T be any atomless ertenslon of R,  with induction we construct 
a sequence of embeddlngs i. : R,  --~ T (0 ~< A ~< K) such that 

t. is a restriction of t,, for A < /x  ~ i< lo is the inclusion map R --* T,  suppose t~ is 
defined (A < A + 1 ~< ~), i. embeds the direct factor R.  I e. of R,  into T I e., and 
R, I e~ is an ordered field and T I e, is atomle~s (oecause T ~s), hence by Lemma 
615 l~ can be extended to an embedding t,.~ (R, t l - e . ) x C ° ( ~ g ,  R te.)  = 
R ,  +1 --~ T 

For/~ a hmit o~dmal ~ K we put t~ = I , . J ~ A  Hence we have constructed the 
sequence (t,),~., whose last member  l. gives the demred R-embedd ing  of R.  
mto T 
Unlquenes~ As r,l Lemma 6 15 it suffices to prove the following let R C T C_ R~ 
and suppose T is atomless, then T and R~ are Rqsomorphlc  Proof of this fact 
F, rst note that from ( R l e . ) C ( T N R ~ ) I e . C ( R .  t e . ) = ( R I e . ) I t  follows that 
these mclusmns are m fact equalmes We construct a sequence of R-embeddmg' ,  
i, R~ --~ T (0 ~< A ~< ,<) such that for A < / z  ~ K ~ is a restriction of t,. and such that 
for all 0 ~ A ~< K t . (R, )  = T Cl R , .  the construction ~s hke the preceding one excepl 
1o: lhe following essentml detail suppose that for A < A + 1 ~ r we have alrea(~y 
constructed t. mapping R.  lsomorphlcally onto T N R. and fixing R ,  restrictions t 
and / of ta map 

R. I (1 - e~) lsomorph~cally onto (T  f? R . ) I  (1 - e,) and R~ I e. isomorphIcally 
onto (T  ~ R~)I e. ~espectwely 
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F~rst of al', 

( 1 -  e ~ ) ( T N R , + , ) =  T f 3 ( I - e ~ ) R , + ,  

= Y f ~ ( 1 - e , ) R ,  = [ l - - e , ) ( T f ' ) R , ) ,  
mlplymg 

( T f '  R . ~ , ) [ ( I -  e . ) =  (T rl R . ) t ( 1 -  e~) 

Secondly (T ~"~ R ~  ~)[ e, is atomless (because T l~ atomless and R, +, contains a'l 
ldempotents ot R~ ~maller than e,) and 

ele,=R, Ie,=(TnRa)!e, C ( T n  R,.)le~ C R~.!e~ 

= C°(q¢, R, [e~), 

hence, by the umquenesspart  of Lemma 6 15 we can extend I to an isomorphism L 

of R ~+~ l e~ onto (T n R~+,)] e,. using (*) we get an tsoroorphlsm 

~+, =j~ × L of R . ,  = (R~ [ 1 -  e , ) ×  (n~. ,  I e~) 
onto 

T A R A + , = ( T N R ~ ) I t l - e ~ ) x ( T r 3 R ~ . J I e ,  

The sequence (t~) being constructed t. is the desired R-Isomorphism of /;L onto 
T = T Cl R~ [] 

Remark 1. Beginning with Lemma 6 15 everything remains valid If we omit 
everywhere tile predicate "o rdered"  m "ordered field" and the prefix " / "  m 
"'f-ring". I think this ts of independent interest For instance if we consider boolean 
rings, it shows th~'t a boolean algebra has a prime atomless extenslor, (probably tht~ 
Is known but I have not seen it in the literature) By Stone's  representatxon theory 
of boolean algebras this lmphes the following 

let X be a boolean space, we constder parrs ( Y, f )  with Y a boolean space wtthout 
~solated points and f Y--~ X continuous and onto, there extsts a parr (fC, zr) ~uch 
that for every pmr ( Y . f )  we can complete th,' dtagram 

~) contlnblou~ 
and onto 6)///fl ~k~  

/ 
Y ...... ~ X  f 

Moreover (~2, ,r) ts determined up to X-tsomorphtsm by tht~ property 

R e m a r k  2. Note  that m Lemma 6 15 C°(R, F) is generated as a ring over F by 
ldernpotents, going through the consnucnon  of the prime atomless exten~lon 
S = R, of R ,~e see that also S is generated over R by ~dempotents, hence S ~s 
integral over -~, moreover,  if R is reat closed S is also real closed 
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Now we can finally prove Theorem 6 14 Take ~or /~ the prime atomless 
extension of the mvanant  real c l o . ~ e  /~ of R By Proposition 6 15 and the 
precedm2 remark/~  ~s an atomless real closed integral extension of R ~[ T ~s any 
atomless real closed extension of/~,  we first R - e m b e d / ~  into T (using Theorem 
6 11) and then extend th~s embedding to ar  embedding of /~ into T 
Un,.queress Suppose R C S C/~ and S atomless and real closed, then /~ C S by 
Theorem 6 11. and v.e have the s~tuat~on /~ C S C/~ and S atomtess, using the 
proof of the umquenesspnrt of Proposition 6 16, th~s y~elds S ~s R-lsomorph~c w~th 

We make one further remark on these matters An u ~pubhshed result of S 
Shelah says that for each coraplete theory A m a countable language which admits 
quantifier ehmmatlon the following holds 

t fA ts  ~table o. quast-totally +ra~tscendental, then each sub: 'ructure of a model of A 
has a umque pnmemodel extenszon to a model of A (See [21] and [22] for these 
concepts ) 

We'll show that th~s result cannot be used in our sltuat~on to get Theorem 6 14 
Note that T(- ' , I  I) is complete, ~dm~ts quant~fierehmmat~on and that the regular 
f-nngs are exactly the substructures of models of T(-~,I I) 

Proposition 6.17, The theory T(-~, I I) is not stable and not quas~-totally transcen- 
dental 

Proof. Z is an lnfimte subset of each model ot T(-~, I I) which is hnearly ordered by 
the (definable) ordering of the model Hence ~gy Theorem 7 1 33 of [21] T(-~, l l) is 
not staole For any regular f -nng R. let S(R)  be the space of 1-types over R as 
defined m Section 27 of [22], and let SB(R) = {p E S [ R ) l t h e  formula x 2 = x 
belongs to p} Hence SB(R) is a ciopen subset of S(R)  

In pamcular  SB (Q) = {p0, p~, p2} where po is the principal type generated by x = 0, 
p~ is generated by x = 1 and p. is generated by x 2= x ^ 0 < x  < I 

Let R = C°(c~, Q). so B(R)  is a countable atomless boolean algebra, hence B(R)  
contains a subset which is a dense linear ordering without endpomts and thls 
Jmphes by a wellknown argument that SB(R)is  uncountable Hence D"S(R)f3  
S~ (R)  ~ ~ for a~l ordinals a (for otherwise we can find for each p E S~ (R)  a clopen 
Np C S(R)  with {p} = D~S(R)A  SB(R)tq Np for some ct, and this lmphes that 
Np~ Nq ff p ~  q~ but there are only countable many clopen s~)b~ets ef  S(R),  hence 

S . ( R )  is countable, co~atradlctlont) Further the natural embedding Q ..... ) R  
satlsfies 

St(D"S(R) lq, Sa (R)) C D"S(Q) f3 S, (Q), 

hence D~S(Q) fq So (Q) ~ ~t for all a, hence p: @ D"S(Q) (3 Sa (Q) for all ~, but p~ Is 
an isolated point of S(Q), hence the ranked points of ~](Q) are not dense m S(Q), so 
T(-~,l t) Is not q,Jas!-totally trascendental []  
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7. Decidability 

Theorem 7.1. If  R and S are real closed ,eguIar f-rings then R ~ S ¢:> B ( R  ) ~ 
B (S )  

Proof .  :::), Is t r lvml A s s u m e  that  B ( R ) ~ - B ( S )  B) the u l t r apower  t h e o r e m  of 

She lah -Ke t s l e r  we may  even  as sume  that  B ( R )  = B(S )  q h e n  R -= S fol lows f rom 

T h e o r e m  1 2 of  [23] [ ]  

T h e o r e m  7.2. The theory of real closed regular f-rings Is decidable 

Proof .  It  ts easy to see that  this falls u o d e r  the  scope  of  T h e o r e m  1 5 of [23] 

Or ig ina l ly  I p r o v e d  T h e o r e m  7 1 and ~ theorem 7 2 by a m e t h o d  due  to A B 

Carson  [24] Thls  m e t h o d  gwes  s o m e  a d d l q o n a l  resul ts  which may be useful t TM 

m e n t i o n  

Theorem 7.3. Let R, S be real closed reg,,tar f-nngs wlt~ R C S Then we h,~ve 
(1) T C v S  ~ff every atom of B ( R )  Is as1 atom of B (S )  
(2) R < S  ~ff B ( R ) <  B(S) 

Proof .  R e p l a c e  in L e m m a  2 2 and  Propos i t ion  2 4 of [24] the  theory  ~ ,  b'~ the  

theory  of real  c losed  regu la r  t - r ings ,  and n o t e  that  the  p roofs  go tl~rough [ ]  
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