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Abstract

In this paper we prove the existence of solutions for a hyperbolic hemivariational
inequality of the form

u” + Au' + Bu+9j(u) > f,

where B is a linear elliptic operator and is linear and nonnegative (nhot necessarily
coercive).d 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

The theory of variational inequalities provides us with an appropriate math-
ematical model to describe many physical problems (cf. Duvaut and Lions [8]).
It was started in 60-ties with the pioneer works of G. Fichera, J.L. Lions, and
G. Stampacchia. All the inequality problems studied by the use of these meth-
ods were related to convex energy functionals and therefore were closely con-
nected with the notion of monotonicity. In the 80-ties, Panagiotopoulos intro-
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duced the notion of nonconvex superpotential by the use of the general gradient
of Clarke [7]. Due to the lack of convexity new types of variational expressions
were obtained. These are so callegmivariational inequalitiesand they are no
longer connected with monotonicity.

For a comprehensive treatment of the hemivariational inequality problems as
well as for many applications, we refer to the monographs of Panagiotopoulos[23,
25], Motreanu and Panagiotopoulos [19], Naniewicz and Panagiotopoulos [20].

In this paper we study the following hyperbolic hemivariational inequality

u' +Au' +Bu+x = f,
u@@=vo, w'OQ)=vy1 ing, (1)
x(t,x)€dju(,x)) a.e.in(0,T)x £,

whereA € L(H, V') is an operator (not necessarily coercivBR)s L(V, V') is a
coercive operator; : R — R is a locally Lipschitz functiony, ¥1: 2 — R and
f:(0,T) — V'’ are given functions.

The model for our problem is the following second-order nonlinear evolution
equation callegine-Gordon equatian

%—i—a%—’; —Au—i—ysjnu:f,
u(0,x)=vYo(x),  0,x)=y1(x),

which is of great importance because of its physical applications (cf. Temam [31,
Chapter IV.2, p. 188]). Our work allows to introduce nonmonotone multivalued
constitutive laws into this model. Moreover, in our framework we can consider
damping terms more general than simple multiplication by a positive number (see
Section 4).

We prove the existence of solutions of (1) using a method similar to the
parabolic regularizationmethod from the book of Lions and Magenes [15];
namely we approximate the solution of our problem by a sequence of solutions of
some modified problems containing a coercive damping term. For the modified
problem we apply the result of Gaski [12].

2. Preliminaries

Let X be a Banach space with a notm ||x and X’ its topological dual. By
(-, Yx'xx we shall denote the duality brackets for the p@ir, X’). If X is in
addition a Hilbert space, then ly, -) x we shall denote the scalar productin

In the formulation of our hemivariational inequality the crucial role will be
played by the notion of Clarke subdifferential of a locally Lipschitz function.
A functionj : X — R is said to bdocally Lipschitzf for everyx € X there exists
a neighbourhood of x and a constarit, > 0 depending o/ such that

@) — I <kellz—ylx
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for all z, y € U. In analogy with the directional derivative of a convex function,
we definethe generalized directional derivative# a locally Lipschitz functiony
atx € X in the direction: € X by

. j "+th) —j !
O h) "§f||msupj(x+x + t) Jx +x ).
V0
It is easy to check that the functioki > # — j%(x; h) € R is sublinear and
continuous and thatj%x; #)| < k.||k|lx. Hence by the Hahn—-Banach theorem
j%x; ) is the support function of nonempty, convex ant-compact set

8j(0) L' x* € X1 (x*, ) xrnex < j%; h) forall h e X},

known asthe Clarke subdifferentiabf j at x. Note that for everyc* € 95 (x)
we have|x*||x» < ky. We have also that ifi, g: X — R are locally Lipschitz
functions, therd (j + g)(x) C 3j (x) + dg(x) andd(tj)(x) =tdj (x) forall t € R.
Moreover, ifj : X — R is also convex, then the subdifferentialjoih the sense of
convex analysis coincides with the generalized subdifferential introduced above.
Finally, if j is strictly differentiable ak (in particular if j is continuously Gateaux
differentiable atx), thend; (x) = {j'(x)}.

Let us introduce the following spaces, needed in the sequel:

H=L%%),
V=HY2)={v: ve L3(£2), D"ve L*)for0< || < 1},
V' =Vv'(2)=[H"2)].

It is well-known thatV ¢ H c V' form an evolution triple. Byc}, we will
denote “the continuity constant” for the embeddiWgc H (so also for the
embeddingd C V).

In our evolution case, we will also make use of the following spaces:

H=L*0,T; H)y=L*(0,T) x ),
V=L%0,T;V),
W={viveV, v eV}

3. Hyperbolic hemivariational inequality

Let T > 0 be any positive real number and I8t > 1. By 2 c RY we
will denote any open and bounded set. We consider the following hyperbolic
hemivariational inequality:
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Findu € C([0, T1; V) N CL([0, T1; H) with u” € V' andy € H, such that

u’(t) + Au'(1) + Bu(t) + x (1) = f (1)

inV’, fora.are (0, 7),
u@)=vo, W) =vy1 ing,
x(t,x)€dju(,x)) fora.a.(t,x)e(O,T) x £2,

(HVI)

whereA € L(H,V'),Be L(V,V'),j:R—R,v¥0,¥1:2 — Randf:(0,T) —
V’ are given.
For our existence result, we will need the following assumptions:

H(j) j:R — Ris alocally Lipschitz function, such that
() j(& =[5 Bs)ds, wherep € LS (R);
(ii) forevery& e R there exist limits lim_, z+ B(¢);
(iii) for every & € R, we havel8(&)| < co(1+ |€]7), with somecg > 0
and 0<r < 1.
H(A) A:H — V'is alinear operator, such that
(i) A is continuous, i.e., there exists, > 0, such that for alv € H,
we havel|Av|ly < aallvlla;
(i) Aly is nonnegative, i.e., for all € V, we have(Av, v)y vy’ = 0.
H(B) B:V — V’is alinear operator, such that
(i) B is continuous, i.e., there existg > 0, such that for alb € V,
we have| Bv|ly: <aglvlv;
(ii) B is coercive, i.e., there exisgs > 0, such that for alb € V, we
have(Bv, v)y v = Ballvll%;
(i) B is symmetric, i.e., for alb, w € V, we have(Bv, w)y/xy =
(Bw, v)y/xy-
H(va) fEH, WOEV,W:LEH.

Now we can state our main result.

Theorem 3.1. If hypothesed (), H(A), H(B) and H(f, v) hold, then(HVI)
admits a solution.

First, for any ¢ > 0 we consider the following regularized hyperbolic
hemivariational inequality:
Findu, € C([0, T]; V) with u}, € W andy, € H, such that

uy (1) + Aul(t) + e Buj(t) + Bug (1) + xo (1) = f (1),
(HVI,) us(0) = o, u, (0) =y,
Xe(t,x) € 0j (ue (2, x)).

Lemma 3.2. If hypothesesli(j), H(A), H(B) andH( f, ¥/) hold, then for any > 0
there exists at least one solutiag of (HVI,).
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Proof. This is a consequence of the result of Gaki (see [11] or [12]). To this
end note that operatot: (0, T) x V — V' defined byA(¢, v) = Alyv + eBv is
pseudomonotone (with respect devariable), bounded (in a sense that for a.a.
t€(0,T) and allv € V, we have|A(t, v)||y: < ai(t) + ¢1llv|ly, with some
ay € L%(0, T), andé1 > 0) and coercive (namely for a.ac (0, 7) and allv € V,

we have(A(z, v), v)y«yv > €BB ||v||%,). Thus, using Theorem 3.1 and Remark 3.3
of [12], we obtain our lemma. O

In the next lemma we show an estimate on selectiordg of).

Lemma 3.3. If hypothesedH(;) hold andu € C([0, T]; V) with u’ € W and
n € H are such that(z, x) € 9j (u(z, x)) for almost all(z, x) € (0, T) x £2, then

Imll# < c(X+ [lullr), (2)
with some constarit= ¢(£2, T, co) > 0 nhot depending om, n andr.

Proof. Using hypothesis Hy)(iii), we obtain

T T
||n||%=/||n<r)||%,dt=f/|n<r,x)|2dxdr

T
//4col+|u(t X)) 2 dxdt <8¢ / 2] + lu()13;) dt
0

< 8c0(T|9| + lullg),
so estimate (2) holds with®' co2v2 max 7121, 1}. O
The following lemma gives some estimates on the solutiorisivf ;).

Lemma 3.4. If hypothesesi(j), H(A), H(B), H(f, ¥) hold andu. is a solution
of (HVI,), then for any € (0, 1) we have

té?or’:%(llus(t)llv FlueOllm) + Veluglly + llully

< (X4 Ivolly + 1l + 11 fllx). 3)
wherec = ¢(2, T, co, a4, ap, Bg) > 0is a constant not depending ey, V1,
A, B, f,jandr.

Proof. Asu,,u €V, soin particula, is an absolutely continuous function and
t

ug(t)=/u;(s)ds+1/fo forallr € (0, T)
0
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(see Barbu [3, p. 19, Theorem 2.2]). Thus for any (0, T) we have
N
eI <2 [ o)1y de + 21voly. (4)

From the equality in(HVI,), taking the duality brackets om/(s) and
integrating over interval0, ¢), for anyz € (0, T) we obtain

t t

(T

0 0
t t

+8/(Bu;(s),u;(S)>v/deS+/<Bus(5) g ($))yry ds
0 0
t t

+ /(xs(S), Ug($))yr ey ds = /(f(S), g ($))yrsy ds- (5)
0 0
We will estimate separately each term in (5). First, we have
1

1 1
/wam%mmwvw=§wxm%—§wgm@

0
=%WNN%—;WN%
(compare Zeidler [32, pp. 422—-423, Proposition 23.23(iv)]). From hypothesis
H(A)(ii), we have
t
/(Au (), uy (). ds = 0.
0
Next, hypothesis H§)(ii) implies
t t
8/(Bu;(s),u;(s))v/xvds 28/33/”11;(5)”%/615-
0 0

Using the differentiation formula (see Zeidler [32, p. 881, Proof of Theo-
rem 32.E(lII)]) and hypotheses B{(i) and (ii), we obtain

t t

1(d
/(Bus(S) g ($))y,, y ds E/d (Bue(s), ue(s))y,, . ds

0 0
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1 1
= 5(Buc (), u:0) 1,y = 5(Buc(0),uc )y

ﬁ—Bllue(I)llv - —IIWOIIV

Next, using hypothesis H{(iii), the Young inequality, estimate (4) and the
continuity of the embeddiny C H, for all t € (0, T) we have

t t

/ (Xe (), U () ds = / (x (), ul()) , ds

0 0

t
—/ Ilx ()l e ()11 ds

——/Ilu ()5 ds — //c (14 lue (s, x)1)° dx ds

——/IIM (5)||Hds_CS/(|Q|+||Ma(s)||H)
0

1
>—5/||u;<s>||i,ds—cST|m

t

S
—cS/(ZT/ ||u;<r>||%,dr+2||wo||§1) ds
0

0

t t s
1
>—5/||u;<s>||%,ds—2Tc%//||u;<r>||%drds
0

00
— Tc3(121+ 2} I1voll?).
Finally, from the Young inequality, for all e (0, T') we have

t t

/ (F(©).up(®)yr, yds / (f(5), up(s)) , d

0 0

t
</||f<s>||ﬁ||u;<s>||ﬁds
0
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t t
< eiZas+t &d
S5 | lue@lyds+5 [ 1)y ds
0 0

1
1 2 1 .2
<3 [ o ds + 5171
0
Putting all the above estimates into (5), foradl (0, T') we obtain

t
1 Bs
5||u;(r)||§,+7||ug<r)||2v+sﬂ3f||u;<s>||2vds
0
2 } 2 } 2
<erteallvolly + Sl + 5113
t r s
/ 2 2 / 2
—+—/||u€(s)||Hds+2TCO//||u€(r)||Hdtds,
0 00

with ¢1 d=Bch§|.Q| andco d:efZTc}’Icg +ap/2. Thus, for allr € (0, T') we have

B

t
1
S + 2 e} +e/83/ il ()12
0

<cs(L+ I1vol? + vl + 1£113)

t t s
vea [ ds +ea [ [ o1 dr s 6)
0 00

wherecs d:‘Efmax{ 1/2, c1, c2} andey d:‘Efmax{ 1, 2Tc§}. Now, using the generaliza-
tion of the Gronwall-Bellman inequality (see Pachpatte [21, p. 758, Theorem 1]),
forall r € (0, T) we obtain

lup 17 < es(L+ ol + vl + 1£15,). (7)
wherecs @263(1 + 2T cqe Z4tD); 50
I, < eo(L+ Iollv + 1Vl + 1 £ l1x). ®)

wherecg cﬁfﬁ , and also

1%, < cr(1+ Iol§ + 1wl + 1LF 1) €)
wherecy d:Echs. Applying (7) to (6), we obtain

lue 1% < ca(L+ Yol + Ivalls + 11£13,) (10)
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and
/2 2 2 2
elluglly, < cs(1+ I1volly + Ivaliy + 1/ 1%), (11)
wherecg def (2/BB)(c3+ Tcacs(T/2+ 1)). Hence

lue () llv < co(L+ IWolly + 1¥alla + 1| fllx) (12)
and

Velugly <co(T+ Ivolly + ¥l + 11 1#). (13)

wherecg def J/¢cs. Using Lemma 3.3, continuity of the embeddidgc H and
estimate (10), for any > 0 we have

T
_ _ 2
lxellZ, < 26%(1+ |luzl13,) < 2c2<1+ (ch) f llue (112 dr)
0

<co(L+ I1Voll? + vl + 17113,

wherecio £ 262 max(1, T(c})?cg).

Finally, using the equation itHVI,), hypothesis HA)(i), continuity of the
embeddingd cC V’, inequalities (9)—(11) and the last inequality, fora# (0, 1)
we can estimatéu ||y as

T
2 2
12, = / W02, di
0

T
< 5/||A(t,u;(t))| 2, d
0
T T
+582/||B(u;(z))||f/, dt+5/“B(ug(t))| 2, di
0 0

T T
+5/ ||xs<r>||2wdr+5/ 1 F )12, di
0 0
T
<san [ ot ar
0

T T
+582a§/||u;(t)||zvdt+5a§/||u8(r)||zvdt
0 0
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T T
V\2 2 V2 2
+5(c}) / Ixe 12 di +5(c)) / 1 F D12 di
0 0

T
2 2 2 2 2 2
< Say llug I3, + Seaglluglls; + 50!3/ llue (D]ly dt
0

2 2
+5(ch) e 3, +5(ch) 1 £113,
<enn(L4 1voll? + vl + 17113,

f
wherecy; & 5(c3c7 +azcg(L+T) + (cj)?(cr0+ 1)); so

luglly < ec12(1+ Ivollv + 1¥alla + 1L k). (14)
with ¢12 = /c11.

Finally, from (8) and (12)—(14), we obtain (3), Wit cg + 2c9 + c12. O
Now we are in the position to prove our main result.

Proof of Theorem 3.1. From Lemma 3.4, it follows that for any € (0, 1), we
have

max u-(t + M/t + M// /<C ’
tE[O,T](” el + llup @) + lluglly < c13

with some constant;3 > 0 not depending on € (0, 1). Thus, we can choose a
sequencege, },>1 C (0, 1), such thag, ™, 0 and

ue, — u weakly in L>(0,T; V), (15)
u, — u weaklyin L*(0,T; H), (16)
uy —u weaklyin)’. (17)

But in facti = u’ andu = u”.
It is easy to see th&HVI,) is equivalent to the following problem:
Findu, € C([0, T1; V) with u,, € W andy, € H, such that

ul + A\u; +8§u; + Bue + Xe = f inV,
(HVI) ug(0)=vo, u,(0)=vy1 ing,
Xe(t,x) € dj(us(t,x)) fora.a.(r,x) e (0,T) x £2,

whereA:H — V' andB:V — V' are the Nemytskii operators corresponding
to the operatorgl and B, respectively. Our aim now is to “pass to the limit” in
(HVI).

As A andB are linear and bounded operators, from (15) and (16) we have
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Au, — Au' weaklyinV', (18)
Bu,, — Bu weaklyin)'. (19)

Next, from Lemma 3.4 we see that the seque{q¢e_nu;n},,>1 remains bounded
in V; hence

’1—>0 iny.

Enllg,

But using hypothesis H{)(i), we have thaﬂ|sn§u;n Iy < aB||gnu;n lly; thus in
fact

enBu, —0 inV. (20)
From (15), (16) and the compactness of the embeddihg H we obtain

ug, > u inH,
and, in particular, possibly passing to a subsequence,

ug, (t,x) »> u(t,x) fora.a.(r,x)e(0,T) x £2. (21)

Using convergence (15), Lemma 3.3 and extracting a new subsequence if
necessary, we obtain

Xe, = X weakly inH, (22)
with somey € H; hence also
xe, — x Weakly inL((0,T) x £). (23)

Now, because of (17)—(20) and (22), we can “pass to the limit” in the equation in
(HVI,) and obtain

u”—i—;l\u/—}—gu—i—x =f inV. (24)
Since for alln > 1 we have thaj,, (t, x) € 3 (ug, (¢, x)) for almost all(z, x) €
(0, T) x £2, thus, using convergences (21) and (23) and applying Theorem 7.2.2

on p. 273 of Aubin and Frankowska [2] (recall ttégtis a lower semicontinuous
multifunction with convex and closed values), we get

x(t,x)€dj(u(t,x)) fora.a.(r,x)e(0,T) x £2. (25)
Finally, from (15) and (16) we have that,, — u weakly in H(0,T; H),
hence also weakly irC ([0, T]; H). Analogously, from (16) and (17) we have
thatu, — u’ weakly in HY(0,T; V), hence also weakly i€ ([0, T1; V'). In
particular, we have that

ug,(0) — u(0) weaklyinH,

uy (0) —u'(0) weaklyinV’. (26)
To end our proof it remains to show that

ueC([0,T]; V)NCHIO, T1; H). (27)
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For this purpose let us recall the definition of the following function space
introduced in the book of Lions and Magenes [15]:

Co([0, T1; X) E'u e L0, T; X):

(*, u("))xxx is continuousru™ € X'}. (28)
Of course, one has
C(0,T]; X) CCs([0, TT; X).

Moreover, if X andY are two Banach spacek, being reflexive, with the dense
embeddingX C Y, from [15, p. 297, Lemma 8.1] we know that

Cs([0, TI; Y)NL®(O, T; X) = Cs([0, T]; X). (29)
In our case, due to (15)—(17) we have that
ueC(0, T H)NL>(0,T; V),
u'eC(0,TI; VHYNL*®O,T; H);
hence, from (29) we obtain
ueCs([0,T]; V), (30)
u' € Cs([0,T]; H). (31)

Next, using the same argument as in the proof of Lemma 3.4 (see (5) and the
sequel), for any € [0, T'] we can prove the following energy equality

' 11 + (Bu), @)y,
t
= Ilyall%; + (Bvo. Yo)vixv + 2[ (£ () = Au'(s) = x (), /' ()1, ds.
0

This shows that the function

E:[0,T]>t > [lu' Ol + (Bu(®), u(®),,,, R

V'xV
is continuous.
Taket,, t € [0, T] such that, — r and put

Sn = || (1) = 0|2, + (Bu(ta) = Bu(@), u(ty) —u(®),,,,,
= E(tn) + E(t) — 2{Bu(t), u(tn))yr .y — 2(u' (1), ' (1)) ;-
Thanks to (30), (31) and the continuity Bfwe have that
8y — 2E(t) — 2(Bu(t),u(®)),,, , — 2llu’ )% =0,
which, together with the inequality

80> u' () — ' )2, + Bo|utn) —u) |,
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gives us (27). Now, from (24)—(27) we obtain thais a solution of the following
problem:
Findu € C([0, T]; V) N CL([0, T); H) with u” € V' andy € H, such that
W +Au +Bu+x=f inV,
(HVI))  Ju@) =0, «'O)=y1 ing,
x(t,x)€dj(u(t,x)) fora.a.(t,x)e(0,T) x 2,

and in particulak is a solution of (HVI). O

4. Applicationsand examples

As mentioned in the introduction the classical model for our considerations
was the sine-Gordon equation

u' +oau' — Au+ysinu=f in2 xR,
u0 =1vo, w0 =1 ing.

Of course, agsinu| < 1 the assumptions of Theorem 3.1 are satisfied 3 0.
This is a “single-valued” case whejéu) = — cosu anddj (1) = {sinu}.

In the sequel we present some examples of “dampings”, which are admissible
in our framework. First let us consider a slight generalization of the one used in
the sine-Gordon equation; namely

Av=av, withaeL*®(£2), a>0a.e.

(SGB {

In this case (HVI) has the form

92u u .

2 +a(x)¥ + Bu+9dj(u) > f.

The above “damping” operators map into itself. The next two have values in
V’. This time takez € W1-°°(£2: RY) and consider

N N v
Alvzza—xi(ai(x)v), Aw:Zai(x)a—)Ci.
i=1 i=1
It means this time (HVI) has the form
N

92u 0 ou .
7 +iZf<ai<x>E> +Bu+0ju)> f

at? — dxi

or, respectively,

82”+§N ()82u +Bu+3ju)> f
—F a; (X u u .
8z T = g0y /
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The nonnegativity condition fod 1 yields

diva>0 in$2,
(a,n)>0 o0nas2,

wheren is the outer normal to the boundary ©&f. In the caseV = H&(Q) we
could drop the second inequality. Similarly, is nonnegative provided that

diva=0 ing2,
(a,n)=0 o0nas.

This time, if we tookV = H&(Q) we would need only the inequality

diva <0 a.e.ins2.
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