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Abstract

In this paper we prove the existence of solutions for a hyperbolic hemivariational
inequality of the form

u′′ +Au′ +Bu+ ∂j (u) � f,

whereB is a linear elliptic operator andA is linear and nonnegative (not necessarily
coercive). 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

The theory of variational inequalities provides us with an appropriate math-
ematical model to describe many physical problems (cf. Duvaut and Lions [8]).
It was started in 60-ties with the pioneer works of G. Fichera, J.L. Lions, and
G. Stampacchia. All the inequality problems studied by the use of these meth-
ods were related to convex energy functionals and therefore were closely con-
nected with the notion of monotonicity. In the 80-ties, Panagiotopoulos intro-
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duced the notion of nonconvex superpotential by the use of the general gradient
of Clarke [7]. Due to the lack of convexity new types of variational expressions
were obtained. These are so calledhemivariational inequalitiesand they are no
longer connected with monotonicity.

For a comprehensive treatment of the hemivariational inequality problems as
well as for many applications, we refer to the monographs of Panagiotopoulos [23,
25], Motreanu and Panagiotopoulos [19], Naniewicz and Panagiotopoulos [20].

In this paper we study the following hyperbolic hemivariational inequality
u′′ +Au′ +Bu + χ = f,

u(0) = ψ0, u′(0) = ψ1 in Ω,

χ(t, x) ∈ ∂j (u(t, x)) a.e. in(0, T )×Ω,

(1)

whereA ∈ L(H,V ′) is an operator (not necessarily coercive),B ∈ L(V ,V ′) is a
coercive operator,j :R → R is a locally Lipschitz function,ψ0,ψ1 :Ω → R and
f : (0, T ) → V ′ are given functions.

The model for our problem is the following second-order nonlinear evolution
equation calledsine-Gordon equation:{

∂2u

∂t2
+ α ∂u

∂t
−∆u+ γ sinu = f,

u(0, x)= ψ0(x),
∂u
∂t
(0, x) = ψ1(x),

which is of great importance because of its physical applications (cf. Temam [31,
Chapter IV.2, p. 188]). Our work allows to introduce nonmonotone multivalued
constitutive laws into this model. Moreover, in our framework we can consider
damping terms more general than simple multiplication by a positive number (see
Section 4).

We prove the existence of solutions of (1) using a method similar to the
parabolic regularizationmethod from the book of Lions and Magenes [15];
namely we approximate the solution of our problem by a sequence of solutions of
some modified problems containing a coercive damping term. For the modified
problem we apply the result of Gasiński [12].

2. Preliminaries

Let X be a Banach space with a norm‖ · ‖X andX′ its topological dual. By
〈·, ·〉X′×X we shall denote the duality brackets for the pair(X,X′). If X is in
addition a Hilbert space, then by(·, ·)X we shall denote the scalar product inX.

In the formulation of our hemivariational inequality the crucial role will be
played by the notion of Clarke subdifferential of a locally Lipschitz function.
A functionj :X → R is said to belocally Lipschitzif for everyx ∈X there exists
a neighbourhoodU of x and a constantkx > 0 depending onU such that

|j (z)− j (y)| � kx‖z− y‖X
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for all z, y ∈ U . In analogy with the directional derivative of a convex function,
we definethe generalized directional derivativeof a locally Lipschitz functionj
atx ∈ X in the directionh ∈X by

j0(x;h) def= lim sup
x′ → 0
t ↘ 0

j (x + x ′ + th) − j (x + x ′)
t

.

It is easy to check that the functionX � h �→ j0(x;h) ∈ R is sublinear and
continuous and that|j0(x;h)| � kx‖h‖X . Hence by the Hahn–Banach theorem
j0(x; ·) is the support function of nonempty, convex andw∗-compact set

∂j (x)
def= {

x∗ ∈ X′ : 〈x∗, h〉X′×X � j0(x;h) for all h ∈X
}
,

known asthe Clarke subdifferentialof j at x. Note that for everyx∗ ∈ ∂j (x)

we have‖x∗‖X′ � kx . We have also that ifj, g :X → R are locally Lipschitz
functions, then∂(j + g)(x) ⊂ ∂j (x)+ ∂g(x) and∂(tj)(x)= t∂j (x) for all t ∈ R.
Moreover, ifj :X → R is also convex, then the subdifferential ofj in the sense of
convex analysis coincides with the generalized subdifferential introduced above.
Finally, if j is strictly differentiable atx (in particular ifj is continuously Gateaux
differentiable atx), then∂j (x) = {j ′(x)}.

Let us introduce the following spaces, needed in the sequel:

H = L2(Ω),

V = H 1(Ω) = {
v: v ∈ L2(Ω), Dαv ∈ L2(Ω) for 0 � |α| � 1

}
,

V ′ = V ′(Ω) = [
H 1(Ω)

]′
.

It is well-known thatV ⊂ H ⊂ V ′ form an evolution triple. BycVH we will
denote “the continuity constant” for the embeddingV ⊆ H (so also for the
embeddingH ⊆ V ′).

In our evolution case, we will also make use of the following spaces:

H = L2(0, T ;H)= L2((0, T )×Ω),

V = L2(0, T ;V ),

W = {v: v ∈ V, v′ ∈ V ′}.

3. Hyperbolic hemivariational inequality

Let T > 0 be any positive real number and letN � 1. By Ω ⊂ R
N we

will denote any open and bounded set. We consider the following hyperbolic
hemivariational inequality:
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Findu ∈ C([0, T ];V )∩C1([0, T ];H) with u′′ ∈ V ′ andχ ∈H, such that

(HVI )


u′′(t) +Au′(t)+Bu(t) + χ(t) = f (t)

in V ′, for a.a.t ∈ (0, T ),
u(0) = ψ0, u′(0) = ψ1 in Ω,

χ(t, x) ∈ ∂j (u(t, x)) for a.a.(t, x) ∈ (0, T )×Ω,

whereA ∈L(H,V ′),B ∈L(V ,V ′), j :R → R,ψ0,ψ1 :Ω → R andf : (0, T ) →
V ′ are given.

For our existence result, we will need the following assumptions:

H(j ) j :R → R is a locally Lipschitz function, such that
(i) j (ξ) = ∫ ξ

0 β(s) ds, whereβ ∈ L∞
loc(R);

(ii) for every ξ ∈ R there exist limits limζ→ξ± β(ζ );
(iii) for every ξ ∈ R, we have|β(ξ)| � c0(1 + |ξ |r ), with somec0 > 0

and 0� r < 1.
H(A) A :H → V ′ is a linear operator, such that

(i) A is continuous, i.e., there existsαA > 0, such that for allv ∈ H ,
we have‖Av‖V ′ � αA‖v‖H ;

(ii) A|V is nonnegative, i.e., for allv ∈ V , we have〈Av,v〉V ×V ′ � 0.
H(B) B :V → V ′ is a linear operator, such that

(i) B is continuous, i.e., there existsαB > 0, such that for allv ∈ V ,
we have‖Bv‖V ′ � αB‖v‖V ;

(ii) B is coercive, i.e., there existsβB > 0, such that for allv ∈ V , we
have〈Bv,v〉V ′×V � βB‖v‖2

V ;
(iii) B is symmetric, i.e., for allv,w ∈ V , we have〈Bv,w〉V ′×V =

〈Bw,v〉V ′×V .
H(f,ψ) f ∈H, ψ0 ∈ V , ψ1 ∈ H .

Now we can state our main result.

Theorem 3.1. If hypothesesH(j ), H(A), H(B) and H(f,ψ) hold, then(HVI)
admits a solution.

First, for any ε > 0 we consider the following regularized hyperbolic
hemivariational inequality:

Finduε ∈C([0, T ];V ) with u′
ε ∈ W andχε ∈ H, such that

(HVI ε)


u′′
ε (t) +Au′

ε(t)+ εBu′
ε(t) +Buε(t) + χε(t) = f (t),

uε(0) = ψ0, u′
ε(0) = ψ1,

χε(t, x) ∈ ∂j (uε(t, x)).

Lemma 3.2. If hypothesesH(j ), H(A), H(B) andH(f,ψ) hold, then for anyε > 0
there exists at least one solutionuε of (HVI ε).
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Proof. This is a consequence of the result of Gasiński (see [11] or [12]). To this
end note that operatorA : (0, T ) × V �→ V ′ defined byA(t, v) = A|V v + εBv is
pseudomonotone (with respect tov-variable), bounded (in a sense that for a.a.
t ∈ (0, T ) and all v ∈ V , we have‖A(t, v)‖V ′ � a1(t) + c1‖v‖V , with some
a1 ∈L2(0, T ), andc1 > 0) and coercive (namely for a.a.t ∈ (0, T ) and allv ∈ V ,
we have〈A(t, v), v〉V ′×V � εβB‖v‖2

V ). Thus, using Theorem 3.1 and Remark 3.3
of [12], we obtain our lemma. ✷

In the next lemma we show an estimate on selections of∂j (u).

Lemma 3.3. If hypothesesH(j ) hold andu ∈ C([0, T ];V ) with u′ ∈ W and
η ∈H are such thatη(t, x) ∈ ∂j (u(t, x)) for almost all(t, x) ∈ (0, T )×Ω , then

‖η‖H � c(1+ ‖u‖H), (2)

with some constantc = c(Ω,T , c0) > 0 not depending onu, η andr.

Proof. Using hypothesis H(j )(iii), we obtain

‖η‖2
H =

T∫
0

‖η(t)‖2
H dt =

T∫
0

∫
Ω

|η(t, x)|2dx dt

�
T∫

0

∫
Ω

4c2
0

(
1+ |u(t, x)|)2

dx dt � 8c2
0

T∫
0

(|Ω | + ‖u(t)‖2
H

)
dt

� 8c2
0

(
T |Ω | + ‖u‖2

H
)
,

so estimate (2) holds withc
def= c02

√
2max{√T |Ω |,1}. ✷

The following lemma gives some estimates on the solutions of(HVI ε).

Lemma 3.4. If hypothesesH(j ), H(A), H(B), H(f,ψ) hold anduε is a solution
of (HVIε), then for anyε ∈ (0,1) we have

max
t∈[0,T ]

(‖uε(t)‖V + ‖u′
ε(t)‖H

) + √
ε‖u′

ε‖V + ‖u′′
ε‖V ′

� c
(
1+ ‖ψ0‖V + ‖ψ1‖H + ‖f ‖H

)
, (3)

wherec = c(Ω,T , c0, αA,αB,βB) > 0 is a constant not depending onε, ψ0, ψ1,
A, B, f , j andr.

Proof. As uε,u′
ε ∈ V , so in particularuε is an absolutely continuous function and

uε(t) =
t∫

0

u′
ε(s) ds +ψ0 for all t ∈ (0, T )
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(see Barbu [3, p. 19, Theorem 2.2]). Thus for anys ∈ (0, T ) we have

‖uε(s)‖2
H � 2T

s∫
0

‖u′
ε(τ )‖2

H dτ + 2‖ψ0‖2
H . (4)

From the equality in(HVIε), taking the duality brackets onu′
ε(s) and

integrating over interval(0, t), for anyt ∈ (0, T ) we obtain

t∫
0

〈
u′′
ε (s), u

′
ε(s)

〉
V ′×V

ds +
t∫

0

〈
Au′

ε(s), u
′
ε(s)

〉
V ′×V

ds

+ ε

t∫
0

〈
Bu′

ε(s), u
′
ε(s)

〉
V ′×V

ds +
t∫

0

〈
Buε(s), u

′
ε(s)

〉
V ′×V

ds

+
t∫

0

〈
χε(s), u

′
ε(s)

〉
V ′×V

ds =
t∫

0

〈
f (s), u′

ε(s)
〉
V ′×V

ds. (5)

We will estimate separately each term in (5). First, we have

t∫
0

〈
u′′
ε (s), u

′
ε(s)

〉
V ′×V

ds = 1

2
‖u′

ε(t)‖2
H − 1

2
‖u′

ε(0)‖2
H

= 1

2
‖u′

ε(t)‖2
H − 1

2
‖ψ1‖2

H

(compare Zeidler [32, pp. 422–423, Proposition 23.23(iv)]). From hypothesis
H(A)(ii), we have

t∫
0

〈
Au′

ε(s), u
′
ε(s)

〉
V ′×V

ds � 0.

Next, hypothesis H(B)(ii) implies

ε

t∫
0

〈
Bu′

ε(s), u
′
ε(s)

〉
V ′×V

ds � εβB

t∫
0

‖u′
ε(s)‖2

V ds.

Using the differentiation formula (see Zeidler [32, p. 881, Proof of Theo-
rem 32.E(III)]) and hypotheses H(B)(i) and (ii), we obtain

t∫
0

〈
Buε(s), u

′
ε(s)

〉
V ′×V

ds = 1

2

t∫
0

d

ds

〈
Buε(s), uε(s)

〉
V ′×V

ds
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= 1

2

〈
Buε(t), uε(t)

〉
V ′×V

− 1

2

〈
Buε(0), uε(0)

〉
V ′×V

� βB

2
‖uε(t)‖2

V − αB

2
‖ψ0‖2

V .

Next, using hypothesis H(j )(iii), the Young inequality, estimate (4) and the
continuity of the embeddingV ⊂ H , for all t ∈ (0, T ) we have

t∫
0

〈
χε(s), u

′
ε(s)

〉
V ′×V

ds =
t∫

0

(
χ(s), u′

ε(s)
)
H
ds

� −
t∫

0

‖χ(s)‖H ‖u′
ε(s)‖H ds

� −1

2

t∫
0

‖u′
ε(s)‖2

H ds − 1

2

t∫
0

∫
Ω

c2
0

(
1+ |uε(s, x)|

)2
dx ds

� −1

2

t∫
0

‖u′
ε(s)‖2

H ds − c2
0

t∫
0

(|Ω | + ‖uε(s)‖2
H

)
ds

� −1

2

t∫
0

‖u′
ε(s)‖2

H ds − c2
0T |Ω |

− c2
0

t∫
0

(
2T

s∫
0

‖u′
ε(τ )‖2

H dτ + 2‖ψ0‖2
H

)
ds

� −1

2

t∫
0

‖u′
ε(s)‖2

H ds − 2T c2
0

t∫
0

s∫
0

‖u′
ε(τ )‖2

H dτ ds

− T c2
0

(|Ω | + 2cVH‖ψ0‖2
V

)
.

Finally, from the Young inequality, for allt ∈ (0, T ) we have

t∫
0

〈
f (s), u′

ε(s)
〉
V ′×V

ds �
t∫

0

(
f (s), u′

ε(s)
)
H
ds

�
t∫

0

‖f (s)‖H ‖u′
ε(s)‖H ds
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� 1

2

t∫
0

‖u′
ε(s)‖2

H ds + 1

2

t∫
0

‖f (s)‖2
H ds

� 1

2

t∫
0

‖u′
ε(s)‖2

H ds + 1

2
‖f ‖2

H.

Putting all the above estimates into (5), for allt ∈ (0, T ) we obtain

1

2
‖u′

ε(t)‖2
H + βB

2
‖uε(t)‖2

V + εβB

t∫
0

‖u′
ε(s)‖2

V ds

� c1 + c2‖ψ0‖2
V + 1

2
‖ψ1‖2

H + 1

2
‖f ‖2

H

+
t∫

0

‖u′
ε(s)‖2

H ds + 2T c2
0

t∫
0

s∫
0

‖u′
ε(τ )‖2

H dτ ds,

with c1
def= T c2

0|Ω | andc2
def= 2T cVHc2

0 + αB/2. Thus, for allt ∈ (0, T ) we have

1

2
‖u′

ε(t)‖2
H + βB

2
‖uε(t)‖2

V + εβB

t∫
0

‖u′
ε(s)‖2

V

� c3
(
1+ ‖ψ0‖2

V + ‖ψ1‖2
H + ‖f ‖2

H
)

+ c4

t∫
0

‖u′
ε(s)‖2

H ds + c4

t∫
0

s∫
0

‖u′
ε(τ )‖2

H dτ ds, (6)

wherec3
def= max{1/2, c1, c2} andc4

def= max{1,2T c2
0}. Now, using the generaliza-

tion of the Gronwall–Bellman inequality (see Pachpatte [21, p. 758, Theorem 1]),
for all t ∈ (0, T ) we obtain

‖u′
ε(t)‖2

H � c5
(
1+ ‖ψ0‖2

V + ‖ψ1‖2
H + ‖f ‖2

H
)
, (7)

wherec5
def= 2c3

(
1+ 2T c4e

T (2c4+1)
)
; so

‖u′
ε(t)‖H � c6

(
1+ ‖ψ0‖V + ‖ψ1‖H + ‖f ‖H

)
, (8)

wherec6
def= √

c5, and also

‖u′
ε‖2

H � c7
(
1+ ‖ψ0‖2

V + ‖ψ1‖2
H + ‖f ‖2

H
)
, (9)

wherec7
def= T c5. Applying (7) to (6), we obtain

‖uε(t)‖2
V � c8

(
1+ ‖ψ0‖2

V + ‖ψ1‖2
H + ‖f ‖2

H
)

(10)
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and

ε‖u′
ε‖2

V � c8
(
1+ ‖ψ0‖2

V + ‖ψ1‖2
H + ‖f ‖2

H
)
, (11)

wherec8
def= (2/βB)(c3 + T c4c5(T /2+ 1)). Hence

‖uε(t)‖V � c9
(
1+ ‖ψ0‖V + ‖ψ1‖H + ‖f ‖H

)
(12)

and
√
ε‖u′

ε‖V � c9
(
1+ ‖ψ0‖V + ‖ψ1‖H + ‖f ‖H

)
, (13)

wherec9
def= √

c8. Using Lemma 3.3, continuity of the embeddingV ⊂ H and
estimate (10), for anyε > 0 we have

‖χε‖2
H � 2c2(1+ ‖uε‖2

H
)
� 2c2

(
1+ (

cVH
)2

T∫
0

‖uε(t)‖2
V dt

)
� c10

(
1+ ‖ψ0‖2

V + ‖ψ1‖2
H + ‖f ‖2

H
)
,

wherec10
def= 2c2 max{1, T (cVH )2c8}.

Finally, using the equation in(HVI ε), hypothesis H(A)(i), continuity of the
embeddingH ⊂ V ′, inequalities (9)–(11) and the last inequality, for allε ∈ (0,1)
we can estimate‖u′′

ε‖V ′ as

‖u′′
ε‖2

V ′ =
T∫

0

‖u′′
ε (t)‖2

V ′ dt

� 5

T∫
0

∥∥A(t,u′
ε(t))

∥∥2
V ′ dt

+ 5ε2

T∫
0

∥∥B(u′
ε(t))

∥∥2
V ′ dt + 5

T∫
0

∥∥B(uε(t))∥∥2
V ′ dt

+ 5

T∫
0

‖χε(t)‖2
V ′ dt + 5

T∫
0

‖f (t)‖2
V ′ dt

� 5αA

T∫
0

‖u′
ε(t)‖2

H dt

+ 5ε2α2
B

T∫
0

‖u′
ε(t)‖2

V dt + 5α2
B

T∫
0

‖uε(t)‖2
V dt



L. Gasiński, M. Smołka / J. Math. Anal. Appl. 270 (2002) 150–164 159

+ 5
(
cVH

)2
T∫

0

‖χε(t)‖2
H dt + 5

(
cVH

)2
T∫

0

‖f (t)‖2
H dt

� 5α2
A‖u′

ε‖2
H + 5εα2

B‖u′
ε‖2

V + 5α2
B

T∫
0

‖uε(t)‖2
V dt

+ 5
(
cVH

)2‖χε‖2
H + 5

(
cVH

)2‖f ‖2
H

� c11
(
1+ ‖ψ0‖2

V + ‖ψ1‖2
H + ‖f ‖2

H
)
,

wherec11
def= 5

(
α2
Ac7 + α2

Bc8(1+ T )+ (cVH )2(c10 + 1)
)
; so

‖u′′
ε‖V ′ � c12

(
1+ ‖ψ0‖V + ‖ψ1‖H + ‖f ‖H

)
, (14)

with c12 = √
c11.

Finally, from (8) and (12)–(14), we obtain (3), withc
def= c6 + 2c9 + c12. ✷

Now we are in the position to prove our main result.

Proof of Theorem 3.1. From Lemma 3.4, it follows that for anyε ∈ (0,1), we
have

max
t∈[0,T ]

(‖uε(t)‖V + ‖u′
ε(t)‖H

) + ‖u′′
ε‖V ′ � c13,

with some constantc13 > 0 not depending onε ∈ (0,1). Thus, we can choose a
sequence{εn}n�1 ⊂ (0,1), such thatεn ↘ 0 and

uεn → u weakly∗ in L∞(0, T ;V ), (15)

u′
εn

→ u weakly∗ in L∞(0, T ;H), (16)

u′′
εn

→ u weakly inV ′. (17)

But in factu = u′ andu = u′′.
It is easy to see that(HVI ε) is equivalent to the following problem:
Finduε ∈C([0, T ];V ) with u′

ε ∈ W andχε ∈ H, such that

(HVI ′ε)

u′′
ε + Âu′

ε + εB̂u′
ε + B̂uε + χε = f in V ′,

uε(0) = ψ0, u′
ε(0) = ψ1 in Ω,

χε(t, x) ∈ ∂j (uε(t, x)) for a.a.(t, x) ∈ (0, T )×Ω,

whereÂ :H → V ′ and B̂ :V → V ′ are the Nemytskii operators corresponding
to the operatorsA andB, respectively. Our aim now is to “pass to the limit” in
(HVI ′

ε).
As Â andB̂ are linear and bounded operators, from (15) and (16) we have
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Âu′
εn

→ Âu′ weakly inV ′, (18)

B̂uεn → B̂u weakly inV ′. (19)

Next, from Lemma 3.4 we see that the sequence{√εnu
′
εn

}n�1 remains bounded
in V ; hence

εnu
′
εn

→ 0 in V .

But using hypothesis H(B)(i), we have that‖εnB̂u′
εn

‖V ′ � αB‖εnu′
εn

‖V ; thus in
fact

εnB̂u′
εn

→ 0 in V ′. (20)

From (15), (16) and the compactness of the embeddingW ⊂H we obtain

uεn → u in H,

and, in particular, possibly passing to a subsequence,

uεn(t, x)→ u(t, x) for a.a.(t, x) ∈ (0, T )×Ω. (21)

Using convergence (15), Lemma 3.3 and extracting a new subsequence if
necessary, we obtain

χεn → χ weakly inH, (22)

with someχ ∈ H; hence also

χεn → χ weakly inL1((0, T )×Ω). (23)

Now, because of (17)–(20) and (22), we can “pass to the limit” in the equation in
(HVI ′ε) and obtain

u′′ + Âu′ + B̂u+ χ = f in V ′. (24)

Since for alln � 1 we have thatχεn(t, x) ∈ ∂j (uεn(t, x)) for almost all(t, x) ∈
(0, T ) × Ω , thus, using convergences (21) and (23) and applying Theorem 7.2.2
on p. 273 of Aubin and Frankowska [2] (recall that∂j is a lower semicontinuous
multifunction with convex and closed values), we get

χ(t, x) ∈ ∂j (u(t, x)) for a.a.(t, x) ∈ (0, T )×Ω. (25)

Finally, from (15) and (16) we have thatuεn → u weakly in H 1(0, T ;H),
hence also weakly inC([0, T ];H). Analogously, from (16) and (17) we have
that u′

εn
→ u′ weakly in H 1(0, T ;V ′), hence also weakly inC([0, T ];V ′). In

particular, we have that

uεn(0) → u(0) weakly inH,

u′
εn
(0) → u′(0) weakly inV ′. (26)

To end our proof it remains to show that

u ∈ C([0, T ];V )∩C1([0, T ];H). (27)
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For this purpose let us recall the definition of the following function space
introduced in the book of Lions and Magenes [15]:

Cs([0, T ];X)
def= {

u ∈ L∞(0, T ;X):

〈u∗, u(·)〉X′×X is continuous∀u∗ ∈ X′}. (28)

Of course, one has

C([0, T ];X)⊂ Cs([0, T ];X).

Moreover, ifX andY are two Banach spaces,X being reflexive, with the dense
embeddingX ⊂ Y , from [15, p. 297, Lemma 8.1] we know that

Cs([0, T ];Y )∩L∞(0, T ;X) = Cs([0, T ];X). (29)

In our case, due to (15)–(17) we have that

u ∈C([0, T ];H)∩L∞(0, T ;V ),

u′ ∈C([0, T ];V ′)∩L∞(0, T ;H);
hence, from (29) we obtain

u ∈Cs([0, T ];V ), (30)

u′ ∈Cs([0, T ];H). (31)

Next, using the same argument as in the proof of Lemma 3.4 (see (5) and the
sequel), for anyt ∈ [0, T ] we can prove the following energy equality

‖u′(t)‖2
H + 〈

Bu(t), u(t)
〉
V ′×V

= ‖ψ1‖2
H + 〈Bψ0,ψ0〉V ′×V + 2

t∫
0

〈
f (s)−Au′(s)− χ(s), u′(s)

〉
V ′×V

ds.

This shows that the function

E : [0, T ] � t �→ ‖u′(t)‖2
H + 〈

Bu(t), u(t)
〉
V ′×V

∈ R

is continuous.
Taketn, t ∈ [0, T ] such thattn → t and put

δn = ∥∥u′(tn)− u′(t)
∥∥2
H

+ 〈
Bu(tn) −Bu(t), u(tn)− u(t)

〉
V ′×V

= E(tn)+E(t) − 2
〈
Bu(t), u(tn)

〉
V ′×V

− 2
(
u′(tn), u′(t)

)
H
.

Thanks to (30), (31) and the continuity ofE we have that

δn → 2E(t)− 2
〈
Bu(t), u(t)

〉
V ′×V

− 2‖u′(t)‖2
H = 0,

which, together with the inequality

δn �
∥∥u′(tn)− u′(t)

∥∥2
H

+ βB
∥∥u(tn)− u(t)

∥∥2
V
,
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gives us (27). Now, from (24)–(27) we obtain thatu is a solution of the following
problem:

Findu ∈ C([0, T ];V ) ∩C1([0, T ];H) with u′′ ∈ V ′ andχ ∈ H, such that

(HVI ′)

u′′ + Âu′ + B̂u+ χ = f in V ′,
u(0) = ψ0, u′(0) = ψ1 in Ω,

χ(t, x) ∈ ∂j (u(t, x)) for a.a.(t, x) ∈ (0, T )×Ω ,

and in particularu is a solution of (HVI). ✷
.

4. Applications and examples

As mentioned in the introduction the classical model for our considerations
was the sine-Gordon equation

(SGE)

{
u′′ + αu′ −∆u+ γ sinu = f in Ω × R,
u(0)= ψ0, u′(0)= ψ1 in Ω .

Of course, as|sinu| � 1 the assumptions of Theorem 3.1 are satisfied ifα � 0.
This is a “single-valued” case wherej (u) = −cosu and∂j (u) = {sinu}.

In the sequel we present some examples of “dampings”, which are admissible
in our framework. First let us consider a slight generalization of the one used in
the sine-Gordon equation; namely

Av = av, with a ∈L∞(Ω), a � 0 a.e.

In this case (HVI) has the form

∂2u

∂t2
+ a(x)

∂u

∂t
+Bu + ∂j (u) � f.

The above “damping” operators mapH into itself. The next two have values in
V ′. This time takea ∈ W1,∞(Ω;R

N) and consider

A1v =
N∑
i=1

∂

∂xi

(
ai(x)v

)
, A2v =

N∑
i=1

ai(x)
∂v

∂xi
.

It means this time (HVI) has the form

∂2u

∂t2
+

N∑
i=1

∂

∂xi

(
ai(x)

∂u

∂t

)
+Bu+ ∂j (u) � f

or, respectively,

∂2u

∂t2
+

N∑
i=1

ai(x)
∂2u

∂t∂xi
+Bu + ∂j (u) � f.
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The nonnegativity condition forA1 yields{
diva � 0 inΩ ,
(a,n) � 0 on∂Ω ,

wheren is the outer normal to the boundary ofΩ . In the caseV = H 1
0 (Ω) we

could drop the second inequality. Similarly,A2 is nonnegative provided that{
diva = 0 inΩ ,
(a,n) = 0 on∂Ω .

This time, if we tookV = H 1
0 (Ω) we would need only the inequality

diva � 0 a.e. inΩ.
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