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1. PRELIMINARIES 

1.1. Introduction 

In 1947, Wazewski published a paper [26] containing a result, which 
Conley calls Wazewski’s lemma in [3], which in the version Conley proves 
says roughly that given a subset of phase space which is closed along the 
flow lines, those points which leave the subset eventually can be deformed by 
the flow in finite positive time into those points which leave immediately [cf. 
3, 5, 15, 26, 271. This lemma is exploited by use of the contrapositive; if the 
whole subset cannot be continuously deformed into those points which leave 
immediately, then some point must stay in the subset for all positive time. By 
a clever choice of subset(s), one can prove existence of solutions to boundary 
value problems [cf. 5-7, 16, 17, 3 I]. 

It is the basic aim of this paper and its sequel to develop structures which 
extend in a systematic way the underlying idea of Wazewski’s lemma; i.e., 
what can we discover about the nature of certain distinguished classes of 
orbits from a partial knowledge of how certain distinguished subsets of phase 
space are deformed by the flow. 

The class of orbits on which we focus attention are the isolated invariants 
sets, a notion first mentioned by Ura in [32]. An invariant set is isolated if it 
is the largest invariant set in a closed neighborhood of itself, and such 
neighborhoods are called isolating neighborhoods. 

Subsequently [8], Conley and Easton defined an homology sequence for 
an isolated invariant set ‘of a smooth flow on a manifold by developing the 
notion of an isolating block for an isolated invariant set. A compact 
manifold with corners is an isolating block if the flow is everywhere 
transverse to its boundary [cf. 281. Churchill extended the above ideas to the 
context of continuous flows on a compact metric space [2], and in this 
context, Montgomery [23] defined a local homotopy index for isolated 
invariant sets which is the pointed homotopy type of the quotient space of an 
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isolating block obtained by collapsing the exit set (the points which leave 
immediately in positive time) of an isolating block to the distinguished point. 
Conley in [3] develops the notion of a locally compact Hausdorff local semi- 
flow and extends the definition of homotopy index to include this context by 
use of index pairs for an isolated invariant set (a block and its exit set is a 
special case of an index pair); and it is in this context that the present work 
is written. 

This homotopy index, as well as the sequence developed by Conley and 
Easton, and Churchill, is a local phenomenon because it can be represented 
by an isolating block in an arbitrarily small neighborhood of the invariant 
set (such blocks always exist), and generalizes the Morse index of an isolated 
critical point of a smooth flow on a manifold. The Morse index of an 
isolated critical point is the dimension of the unstable manifold to the point, 
whereas the homotopy index of an isolated critical point is the homotopy 
type of a pointed n-sphere where n is the dimension of the unstable manifold 
to the point. Both the Morse and homotopy indices are stable under small 
perturbations of the flow, but whereas the Morse index of an isolated critical 
point requires for its definition that certain non-degeneracy hypotheses be 
satisfied, the homotopy index of an arbitrary isolated invariant set does not. 

Using the local index as a foundation, the present work develops 
structures (called connected simple systems) giving a more global notion of 
index in that they are stable under continuation along paths in a canonical 
way, and develops these, not only for a single isolated invariant set, but also 
for special finite sequences of inter-related isolated invariant sets. Calling the 
first element in one of these sequences S and the subsequent members 
M , ,..., M,, the Mi (i = l,..., n) are pairwise disjoint compact invariant 
subsets of S called by Conley [3,4] a Morse decomposition for S, a notion 
developed by him generalizing the decomposition of a compact boundaryless 
manifold M arising from the flow of a gradient vectorfield of a Morse 
function on M. For the most part, the present work is concerned only with 
those Morse decompositions with two elements, called a repeller-attractor 
pair for S and hereinafter abbreviated to R-A pair and denoted (A *,A). 
Roughly, a set A is an attractor in S if all positive semi-orbits in S starting 
near A stay near and go towards A ; a set A * is a repeller if it is an attractor 
for the time-reversed flow, and (A *, A) is an R-A pair if A * is the largest 
invariant subset of S disjoint from the attractor A. 

For an R-A pair (A*, A) of S, there exist nested index triples of subsets of 
phase space, N, 3 N, 3 N,, so that the quotient spaces N, /N,, N, IN,, 
N,/N, represent respectively the homotopy indices of S, A *, A ; also the 
inclusion induced sequence 

N, IN3 + N, IN3 -, N, IN, 
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embeds in a long coexact Piippe sequence 

N, P, --) N, lN3 + Nl IN2 ~S(N,/N,)-,S(N,/N,)+ a*+ (1) 

denoted s(N, , N,, N3), where c is called the connection map of the sequence 
and S(.) denotes the reduced suspension functor. The category of all such 
possible sequences together wth the collection of infinite homotopy 
commutative: ladders of homotopy equivalences between them induced by 
inclusions and the flow form a connected simple system, called the 
connection index of the R-A pair. The global nature of this index is 
expressed by the fact that to every path (S(t),A *(t),A(t)) is associated in a 
functorial way an infinite homotopy commutative ladder between the long 
coexact sequences W,P)~ WQ N,(O)) and GWh W), N,(l)) 
associated to the ends of the path. As the space of isolated invariant sets 
embeds in the space of R-A pairs by mapping an invariant set S to 
(S, S, 0), the restriction of the structure of the connection index to the image 
of this embedding defines for each isolated invariant set a connected simple 
system, which Conley calls the Morse index of the isolated invariant set and 
for which he gives a direct construction in [3]. Many of the properties of the 
connection index are direct analogues for properties of the Morse index as 
stated (but not all proved) by Conley in [3]. 

Whenever an isolated invariant set is the disjoint union of a repeller and 
an attractor, the connection map of the sequence (1) above is null- 
homotopic, and there exists a splitting map 

of the sequence. The existence of the splitting map is used much the same 
way and geometrically is interpreted much the same way as Wazewski’s 
lemma. Given a path in the repeller-attractor space for which the invariant 
sets at the ends are the disjoint union of the repeller and the attractor there 
exists a diagram 

N,W/N,(O) = N,(WN,(O) 
I I 

N,(l)/N,(l) +!= N,(lYN,(l) 

relating the splitting maps at the ends where the vertical arrows are given by 
the continuation of the connection index along the path. This diagram need 
not be commutative. However, the splitting maps are natural relative to the 
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continuation of the connection index along paths in the appropriate sense: if 
at every point of the path the invariant set is the disjoint union of the repeller 
and the attractor, then the diagram of (2) is commutative. Hence, if the 
splitting maps are defined at the ends of a path, but diagram (2) does not 
commute, then for some point on the path the isolated invariant set is not the 
disjoint union of the repeller and the attractor; whence there is an orbit 
connecting the repeller to the attractor. 

Of course one way of showing that the diagram does not commute is to 
examine what the splitting maps do on homology. An appropriate choice of 
arc, disk, or more generally, singular chain in phase space will represent non- 
trivial homology, say a, in N,(O)/N,(O), the homotopy index of the repeller 
at the initial point of the path. The diagram (2) affords two ways of mapping 
a into the homology of N,( l)/N,( 1 ), the homotopy index of the ambient 
isolated invariant set at the end of the path. Call the image of a by the high 
road ,~;a, and its image by the low road ,uU; a. Diagram (2) does not 
commute when &a -pi a # 0. Moreover this non-zero difference in 
homology classes is very closely related to what one looks for geometrically 
when one tries to employ a “shooting” method in differential equations. 

At present, all applications of the structures described above are to 
fast-slow systems of differential equations, i.e., to first-order systems of 
differential equations where the independent variable is thought of as time 
and where the dependent variables divide into at least two classes with the 
variables in each class having velocities of the same order of magnitude, but 
the velocities of variables in distinct classes having sharply different orders 
of magnitude with the difference in magnitude governed by a (small) 
parameter E. Application of these structures depends heavily on the 
particular equation under study, and no applications will be presented here, 
but will be presented in [21, 221. However, we presently give a brief gestalt 
of how the structures are used in the two applications of [21, 221. 

Both applications assume that there is a path in the repeller-attractor 
space associated to the fast systems (E = 0 in a stretched time scale) of the 
fast-slow systems with the splitting maps defined at either end, but with 
diagram (2) not commuting by virtue of the existence of an homology class 
a as above with ,&a -,ui a # 0. In the technique developed in [22], the path 
in the repeller-attractor space of the fast systems corresponds to the varying 
of an external parameter of the fast-slow system, and under appropriate 
hypotheses, a topological perturbation argument shows that there is a 
corresponding path in the repeller-attractor space of the full fast-slow 
system for E small enough and that the splitting maps are defined at either 
end of the path, but the corresponding diagram (2) does not commute. In the 
technique presented in [21], the path in the repeller-attractor space of the 
fast systems corresponds to varying the slow variable along an orbit of the 
slow system. Here thinking of a as its representative singular chain, under 
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appropriate hypotheses, a perturbation argument establishes that a sub-arc, 
sub-disk, or, more generally, sub-chain of a is carried by the flow to a 
singular chain which represents the non-zero homology &a - ,ui a which in 
fact represents homology in N2( l)/N,( I), the index of the attractor at the end 
of the path. Thus, for example, with the above hypotheses, an appropriate 
arc near the repeller of the fast systems has a sub-arc carried by the full flow 
to an arc near the attractor of the fast systems. The idea is that the starting 
arc should consist of points satisfying the left end boundary conditions with 
a sub-arc carried to an arc which is topologically transverse to the right end 
boundary conditions; a point of intersection followed backwards in time 
gives existence of a solution to the boundary value problem on the finite 
interval. 

In this paper it is shown that for any repeller-attractor pair (A *, A) of an 
isolated invariant set S there exists a triple of spaces N, 1 N2 1 Nj so that 
N, /N, , N, /N2, and N2/N3 are index spaces for S, A *, and A respectively, 
and that the sequence of inclusion induced maps N,/N, --t N,/N, + N,/N, is 
coexact and can be embedded in the long coexact Piippe sequence (1) which 
is functorial relative to the Morse indices 4(S), J(A*), &4), this allows 
for the new definition of a connected simple system j(S; A*, A) associated 
to each repeller-attractor pair in an isolated invariant set S with long 
coexact sequences as objects and infinite homotopy commutative ladders as 
morphisms. Along the way generalizations of the above are indicated for 
Morse decompositions. Finally, when S = A* U A, each long coexact 
sequence of $(S; A*, A) has a natural (relative to the morphisms of 
$(S; A *, A)) flow induced splitting which can be exploited as indicated 
above. The sequel to this paper [20] describes the space of Morse decom- 
positions and in particular the space of R-A pairs and describes how 
f(S; A*, A) continues along paths; in particular a functor $ is constructed 
from the fundamental groupoid of the space of R-A pairs into an 
appropriate category of which /(S; A*, A) is an object. 

The existence of the triple N, 3 N, 3 N, is stated in [3, Theorem III. 7.21 
without proof. Also, the standard proof of the Piippe sequence is outlined 
there but does not in general apply to the sequence N, /NJ + N, /N, --f N, /N, 
because N,/N, is not in general a strong deformation retract of a closed 
neighborhood of itself in N,/N,; the way around this technicality is noted in 
Section 3. The functoriality of the sequence relative to the Morse indices is 
new as is the existence of the splitting. Finally [3, Theorem III.7.2.C] is 
stated without proof; a proof is given here as Proposition 3.3. 

The results of this paper and its sequel were part of the author’s Ph.D. 
dissertation done under the direction of C. Conley. The development of the 
structures in this paper and its sequel was motivated by the desire (which 
saw fruition in [21, 221) to show existence of certain “transisition solutions” 
to singular perturbation problems where existence is motivated by the 
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changing geometrical structure of orbits in phase space as a parameter is 
varied, as discussed above. These problems, which arose from two reac- 
tion-diffusion equations, were first shown to the author and C. Conley by P. 
Fife who discusses these any many related equations in [ 14, 33-353. 

1.2. Notation 

The basic mathematical notation is standard with the following possible 
exception: R, R ‘, and R- denote respectively the real numbers, the non- 
negative reals, and the non-positive reals; for a, b E R, ]a, b[ denotes the 
open interval from a to b, [a, b] the corresponding closed interval, and [a, b[ 
and ]a, b] denote the half-open intervals, open on the right and left respec- 
tively; for A and 3 sets, their set theoretic difference is A \B = (x: x E A and 
X&B). 

We use cl,(A), int,(A), and a,(A) to denote the closure, interior, and 
boundary respectively of a subset A of a topological space X. Other 
topological notation, if not noted otherwise below, follows that of [24]. All 
homotopies unless explicitly described otherwise are considered in the 
category of topological spaces with base point and base point preserving 
maps. Thus for two maps f and g mapping a pointed space X to another 
pointed space Y, f N g means there is a homotopy from f to g which maps 
base point to base point throughout the deformation. Also we use the 
notation r and 9* to denote the categories of topological spaces and 
topological spaces with base point, resp., and use 25 and Z’9-* to denote 
the corresponding homotopy categories. When spaces X’ and X” are 
functorially produced from the same object, X’ N X” means that X’ and X” 
are naturally equivalent in 37 r *, .Z9-, or Z9-* as appropriate from 
context. 

For a pointed space X, we define the reduced cone on X, C”X, by 
C*X = X A (1, 1) as an object of 9’“; i.e., we are using 1 as base point for I 
so that the usual geometrical picture of a cone corresponds with the 
definition, If we forget the base point of X, CX denotes the unreduced cone 
defined as the quotient space XX I/X x { 1) as an object of .97 With the 
above definitions of cones, for a morphism f in r(resp. y*), C, (resp. CT) 
denotes the usual mapping cone, but when f is an inclusion from A into X, 
the usual XV CA (resp. XV C*A) is used instead. 

Finally, throughout r is a fixed topological space which admits a 
continuous flow which will be denoted as a right action of the additive group 
of real numbers on E each y E r is moved to y - t for each t E R. r need not 
be Hausdorff, but we assume r contains a non-empty open subset r, which 
is Hausdorff in the inherited topology. The motivation for this context is 
given in [3]. 



HOMOTOPY INVARIANTS OF AN R-A PAIR. I 7 

1.3. Some Remarks on Background Definitions and Results, and 
Descrepancies in Notation between [3] and [ 191. 

The reader is referred to [ 191 for definitions of the following: a local flow 
(or semi-flow) @ c r,, an invariant, positively invariant, negatively 
invariant, or relatively positively invariant subset of r, the w and w* limit 
sets of a subset of r, an isolated invariant set, an isolating neighborhood, an 
index pair, an index space, a connected simple system considered as a 
category, the Morse index of an isolated invariant set viewed as a category 
with index spaces as objects and certain homotopy classes of maps as 
morphisms, and the exit and entrance time maps u ] N and u* 1 N defined on 
N into [0, co] for any N CT which is compact or has an upper semi- 
continuous decomposition by compact sets. Most of these definitions are 
given or have prototypes given in [3], and a discussion of the discrepancies 
between [3] and [ 191 follows. 

Note that what in [ 191 is called a local semi-flow, in [3] is called a local 
flow, and what in [ 191 is called a local flow, in [3] is called a two-sided 
local flow. In this paper, we shall follow the usage of [ 191 in this regard. 
Unless stated explicitly to the contrary, we assume that all local (semi-) 
flows @ c TO are locally compact. 

It is observed in [ 191 that if 0 #A c Y c r, with Y compact and 
positively invariant, then in general w(A) is not a subset of Y since, due to 
the non-Hausdorffness of J’, Y is not generally a closed subset of r. This fact 
was overlooked in [3], but does not affect the validity of any of the results 
given there since in all cases the set of real interest is cu(A) n r,, , as is the 
case in [ 191 and this paper. Consequently, to simplify notation, we use o(A) 
as a gloss for o(A) fI r, whenever A c Y c r,, as above, unless stated 
explicitly to the contrary. In particular, this differs from the notation of [ 191 
where w(A)nZ E o(A; Z) whenever Z or a subset of Z is compact, 
Hausdorff, positively invariant and contains A; however, we shall revert to 
the notation of [ 191 whenever clarity demands. Note that if A above is 
connected, then w(A) n Z is connected even if Z is not connected because 
semi-orbits emanating from A and their closures relative to Z are all 
connected and must lie in the component of Z which contains A. 

Analogously, w*(A) will be used as a gloss for o*(A) f7 r,. Whenever 
A c Y c r,, with Y compact and negatively invariant, again, there is the 
analogous reversion to the notation of [ 191 whenever clarity demands, and 
the analogous remark about connectivity holds for w*-limit sets. 

We refer the reader to [ 191 for a discussion of the apparent discrepancies 
and their resolution between the definitions of [3] and [ 191 for the objects 
and morphisms of the Morse index of an isolated invariant set when viewed 
as a category. We will follow the notation and usage of [ 191 in this matter; 
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in particular, note the definition of a general inclusion induced map between 
index spaces given there. 

Exit and entrance time maps are not defined in [3] although they were 
defined by Churchill [2] and Easton [ 131 for isolating blocks. In the context 
mentioned above, in [ 191, o 1 N and u* 1 N are shown to be upper semi- 
continuous and it follows that sets N c r, which are compact or have upper 
semi-continuous decompositions by compact sets are closed along orbits in 
the same sense that Wazewski sets are; cf. [3, Chap. II, definition 2.2, 
condition (a)]. Recent work of Rybakowski [33-351 suggests that upper 
semi-continuity of exit and entrance time maps and being closed along orbits 
are the important properties to focus on rather than versions of compactness, 
although these may serve as a means to show these properties. 

The reader is referred to [3] for the definitions of attractor, repeller, 
Morse set, and Morse decomposition of a compact Hausdorff invariant set in 
r as used in this paper. The reader is also referred to [3] for the precise 
definition of the duality between repellers and attractors relative to a 
compact Hausdorff invariant set S cr. Note that in [3], if A is an attractor 
in S and A* its dual repeller, Conley refers to the attractor-repeller pair 
(A,A *) where as indicated by the Introduction we shall use the reverse 
ordering and refer to repeller-attractor pairs.It may amuse the reader to note 
that Conley had originally intended to use the ordering “repeller-attractor” 
in [3], and this author had originally intended to use the reverse ordering in 
[ 181, but subsequent to a conversation over lunch one day both of us, 
unbeknownst to each other and to our mutual chagrin, decided in favor of 
the other’s ordering. Conley’s argument which convinced this author to use 
R-A pairs is that orbits travel from the repeller to the attractor so that 
repeller should come before attractor in the ordering. 

In keeping with the above choice of ordering, for an R-A pair (A *, A) of 
S, denote the set of connecting orbits from: A* to A in S by C(A*, A); i.e., 
C(A*,A)-S\(A*uA). 

In conformity with the choice of ordering “repeller-attractor” and because 
it simplifies the indexing in several of the proofs given here and in [20], we 
have chosen when describing Morse decompositions to refer to a descending 
sequence of attractors, S = A, 3 A, 3 . . . 2 A, = 0 with Morse sets in the 
decomposition given by Mi = Ai-, n A;, i = l,..., n. In particular, 
corresponding to a sequence S =A,, xA, I>A, = 0 is the Morse decom- 
position given by M, = A *, M, = A so that as just remarked the order of the 
subscripts conforms with the order “repeller-attractor.” In [3] the sequence 
of attractors is indexed in the reverse ordering so that the Morse sets also 
have the reverse ordering. 

Finally, note the following trivial observation which shall be used below 
without further comment. If A, and A, are attractors relative to S and 
A, c A,, then A, is an attractor relative to A, and the dual repeller of A, in 
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A i is A c n A i where A F is the dual in S. The converse is also true (3, II, 
5.3.D], but requires the following lemma (1.4) for which we have 
considerable other uses. The following lemma is a slight variant of one 
appearing in [3]. The interested reader can easily supply the modifications to 
the proof, or alternatively, consult [ 181 for a detailed proof. 

1.4. LEMMA [cf. 3, II. 5.l.D]. Suppose (i) YcT,, is compact and 
positively invariant, (ii) JV is a compact Y-neighborhood such that for 
y E 3,X there exists t, > 0 so that y . -t, @JK Let A be the maximal 
invariant set contained in X, and set J’“+ = {y E JV: y . R + CM). Then 
M+ is a compact positively invariant Y-neighborhood of A. 

Remark. If Y is invariant, it follows that Xt is an attractor 
neighborhood with attractor A. 

2. INDEX TRIPLES FOR REPELLER-ATTRACTOR PAIRS 

The existence of an index triple for an R-A pair in an isolated invariant 
set S is proved in Proposition 2.4 below. To outline the proof, first an index 
pair (N,, N3) for S is chosen relative to some isolating neighborhood N; the 
technical Lemma 2.1 shows that those portions of the forward and backward 
asymptotic sets of N asymptotic respectively to the repeller and attractor are 
closed and disjoint, and hence can be separated; in particular, from 
Proposition 2.2 it follows that there is an isolating neighborhood of the 
attractor whose backward asymptotic set is precisely that portion of the 
backward asymptotic set of N asymptotic to the attractor, and an application 
of the results of [3, Chap. 3, Sect. 41 guarantees a compact, relatively 
positively invariant N-neighborhood N, of this portion of the backward 
asymptotic set. The triple (N, , N,, N,) is an index triple for the R-A pair as 
defined in Definition 2.5; roughly, (N,, N,), (N,, N,), (N,, N,) are index 
pairs for the attractor, S, and the repeller respectively. An index triple is 
illustrated in Fig. 1 for a saddle connection between two hyperbolic critical 
points for a flow in the plane. 

In what follows, S is an isolated invariant set relative to a local semi-flow 
@ c r,,, and N is an isolating @-neighborhood of S. Appeals to dualization 
in the proofs of Lemma 2.1 and Proposition 2.2 below are legitimate because 
the local semi-flow property of # is not called upon. 

2.1. LEMMA. Let (A *, A) be an R-A pair in S. Define 

&f(A*,A)= {YEA+(N):~(~)cA*}, 

d,(A*,A)= (YEA-(N):w*(y)cA}, 
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FIG. 1. An index triple for a saddle connection between hyperbolic critical points as 
constructed in Proposition 2.4. N, is the union of the lightly and heavily dotted regions, N, is 
the heavily dotted region, and N, is the union of the three lined regions. 

d;(A*,A)= {YEA-(N):o*(y)cA*}, 

d;(A*,A)E {yEA+(N):w(y)cA}. 

Then 

(a) s’: and &‘; are compact and disjoint; 
(b) if S = A* U A, then xf ; and zf: are compact and disjoint; 
(c) (a’; ud;)n (d; ud;)= C(A*,A). 

Proof: In proving (a) first, it will be shown that &: is compact; by 
“dualizing” the argument, i.e., reversing the flow and interchanging the roles 
played by A* and A, it then follows that _,P; is compact. 

Choose M* and A4 to be disjoint @-isolating neighborhoods of A* and A 
respectively, both @-interior to N. To simplify notation set Y = A +(N). 
Because a,(M f7 Y) c alp M, it follows that for each y E &(Mf? Y) there 
exists t, > 0 so that y . -t, @ Mn Y since either y 6Z A I so a fortiori 
r@A-(MnY) or yEA- whence yES\(A*UA)=C(A*,A)=C so 
that w*(r) cA* by [3, II, 5.1.A]. Thus by Lemma 1.4, setting 
A= (Mn y>+, we have that M is a compact positively invariant Y- 
neighborhood of A which is @-interior to N and disjoint from M*. As 
A ‘(N) is compact, the compactness of yc4: follows immediately from the 
following sublemma. 

SUBLEMMA. ~8’: is Y-open and &‘f = Y\&: . 
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Suppose v E ,,P: . Then o(v) cA c in&L so that for some t, > 0, 
q . t, E int,.L. Because Y is positively invariant, the flow restricted to 
Y x R ’ is a continuous map into Y; hence for some Y-neighborhood V of q; 
V . t, CM. As M is positively invariant with maximal invariant set A, it 
follows that each point of V has its w-limit set contained in A showing _pP: 
is Y-open. 

Next, clearly ~4: c Y\,d: . To show the reverse inclusion, because y E Y 
implies w(y) c S = A * U C U A, it suffices to show (i) m-limit sets of points 
of Y do not intersect C and (ii) w-limit sets of points of Y which intersect A 
necessarily are contained in A. Now if y E Y and some q E C n w(v), then, 
as in the proof of openness of ,Fg:, each point of some Y-neighborhood V of 
11 has m-limit set contained in A; this is impossible since y . t, E V for some 
t, > 0 forcing r E w(y) c A. Thus (i) holds. Because A* and A are disjoint 
sets separated in S and because w-limit sets of singletons are connected, (ii) 
follows from (i), completing the proof of the sublemma. 

To finish the proof of (a), if y E ,xZ: n ,E?‘;, then 

yEA+(N)nA-(N)\C=S\C=A*uA; 

whence y E A * n J&‘; or y E A n L&‘: which are both impossible since the 
invariance of A * and A implies that in the first case 0 # o*(y) c A * n A 
and in the second 0 # w(y) c A * n A, but A * and A are disjoint. Thus .JZZ : 
and ~2; are disjoint. 

For (b) assume S = A* U A. However then, as A* and A are disjoint and 
closed relative to S, they are also both open relative to S, and it follows that 
(A, A*) is an R-A pair relative to S-A serves as its own repeller 
neighborhood and A* as its own attractor neighborhood relative to S. The 
conclusion of (b) then follows by applying (a) to this R-A pair since 

&‘;(A,A*)=.xf:(A*,A) and .iP;(A,A*)=&‘;(A*,A). 

Finally to prove (c) note that the left-hand side of the equality is the union 
of the four sets L&: n J/: and d 7 n .d: (the four possible choices of plus 
and minus signs) and that d: n ~2: = 0 by the sublemma and its dual 
statement and that ~8’: n &; = 0 by (a). On the other hand, 
C(A*, A) c J; n ~2: by [3, II, 5.1.A], and the reverse inclusion holds 
because M’; n xZ’: c A -(N) n A ’ (N)\(A* U A) since A * and A contain 
both the w and o* limit sets of each of their points. 1 

2.2 PROPOSITION. Let N be an isolating neighborhood for S and suppose 
(A *, A) is an R-A pair of S. Let M be a closed N-neighborhood of A disjoint 
from A*. Then M is an isolating neighborhood of A. Furthermore, if U is N- 
open and A c U c M, then N\U is an isolating neighborhood of A *. 
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Proof: As N isolates S, N is a @-neighborhood of A; hence M is a @- 
neighborhood of A since A c int,(M) n int,(N) = int,(M). 

Suppose B is invariant and B c M. Then B c N, and since N isolates S, 
BcS=A*uC(A*,A)uA. As Mis disjoint from A*, BcC(A*,A)UA. 
However, if yEC(A*,A), then whoa*; but if YEB, then 
w*(y) ccl,(B) c M, for B invariant implies cl(B) invariant and since M is 
@-closed, cl,(B) c M. Thus B c A; whence A is the maximal invariant set in 
M. This and the conclusion of the preceding paragraph show that M isolates 
A. 

The second statement of the proposition follows from the first by 
dualizing; i.e., since A * and M are disjoint closed sets in N, A * c N\M c 
N\U which yields that N\U is a closed N-neighborhood of A* disjoint from 
A. Setting M* = N\U, it follows that M* satisfies the hypothesis for the first 
statement of the proposition relative to the time-reversed flow, hence that M* 
isolates A* for the reverse flow, hence for the original flow. 1 

2.3. PROPOSITION. Let (A*, A) be a repeller-attractor pair relative to S. 
Then there are subsets, N, , N,, N, closed and positively invariant relative to 
N, satisfying: 

(i) (N,, N2) is an (isolating) index pair for S relative to N, 

(ii) (N,, N, n N,) is an (isolating) index pair for A relative to N, ; 

(iii) for each N-open U, if A c U c N,, then (N,\U, (N, U N3)\U) is 
an (isolating) index pair for A * relative to N\U. Note that as N, is an N- 
neighborhood of A, there always exists such a U. 

Proof Choose (N,, Nj) to be an (isolating) index pair for S relative to 
N with N, an N-neighborhood of A-(N). To choose N,, first choose M to be 
a closed N-neighborhood of &; which is N-interior to N, and disjoint from 
J/: which can be done because N is a normal space containing the disjoint 
N-closed sets L&‘: and &; with the latter in the N-interior of N,. Because 
A* c J/:, M is disjoint from A*. By Proposition 2.2, M is a @-isolating 
neighborhood of A, and it is then clear that A -(M) = d; . Note that by the 
choice of M, for some r-open W, &‘; c Wn N = int,(M). By [3, III, 
4.1.C] choose N, c W to be an M-neighborhood of &; which is closed and 
positively invariant relative to M. 

Then N, is an N-neighborhood of &‘; which is closed and positively 
invariant relative to N. For certainly N2 is N-closed and it is an N- 
neighborhood of &; as J&‘; c int,(N,) n int,(M) = int,(N,). To see the 
relative positive invariance, let y E N2 and note that u ( N*(y) <u (M(y) < 
u ] N(y) by the containment relation that ,holds between N2, M, and N. Now 
if o 1 N*(y) < o ) N(y), then as N2 is N-interior to M it follows that the orbit 
segment Y . [O, CJ I N2(y)I can be extended in the forward time direction and 
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still lie in M which is impossible since N, is positively invariant relative to 
M. 

Claim (N,, N, n M) is an index pair for A relative to M; it follows that 
(N,, N3 n N2) is an index pair for A relative to N,. For certainly both 
elements of the pair are compact, and the relative positive invariance 
property holds with respect to M since it does with respect to N. That the 
isolating property is satisfied follows easily from the facts that (N,, N,) has 
the property for S 3 A and that A is both N-interior to N, and @-interior to 
N so @-interior to N,. Finally, the exit property holds because as seen above 
0 WAY), 0 Ids and CJ IN(Y) are all equal for y E N,, and N, c N, and 
(N,, N3) has the exit property relative to N. 

To show (iii) of the proposition, suppose U is N-open and A c U c N,. By 
Proposition 2.2, N\U is a @-isolating neighborhood of A *. It is also trivial 
to verify that N,\U and (N, U N3)\U are compact and positively invariant 
relative to N\U. The proposed index pair has the isolating property because 
(N,, N3) does for S and because A* is disjoint from N, and cl,(U). It 
remains to show that the exit property is satisfied. Accordingly, suppose 
y E N,\U and suppose u 1 N\U(y) is finite. There are two cases to consider: 
(i) u 1 N\U(y) = u 1 N(y), (ii) u 1 N\U(y) < u 1 N(y). Set t’ = u 1 N\U(y). In the 
first case, because (N,, N3) has the exit property it follows that 
y. t’ E N,\U. In the second case, it follows that for some sequence of 
positive numbers ei decreasing to zero y . (t’ + ei) E U, hence y . t’ E N,\U 
as U is N-interior to N, and N, is N-closed. Thus in either case 
y . t’ E (N, U N3)\U which shows that the exit property is satisfied. 1 

2.4. PROPOSITION. Given an isolating neighborhood N with maximal 
invariant set S and closed subsets N,, N,, N3 of N, positively invariant 
relative to N satisfying 

(i) (N,, N3) is an (isolating) index pair for the invariant set S; 
(ii) N, is an isolating neighborhood and (N2, N, n NJ) is an index 

pair relative to N, for the maximal invariant set A of N,; 
(iii) For some N-open U, with A c UC N,, N\U is an isolating 

neighborhood and (N, \ U, (N2 U N,)\U) is an index pair relative to N\U for 
the maximal invariant set A’ of N\U. 

Then (A ‘, A) is a repeller-attractor pair of S. 

ProoJ Since N2 is positively invariant relative to N and isolates A, it 
follows immediately that w(S n NJ = A which shows that A is an attractor. 
Let A* be the dual repeller of A in S, 

A*= {YES:O.I(~)~A=@}. 

It must be shown that A’ = A*. Now if y E Un S, then it follows that 
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w(y) c A; hence A* c N\U. As A * is invariant and since N\U isolates A’, 
it follows that A * c A’. On the other hand, if y E S\A *, then o(y) c A. As 
A’ is disjoint from A and as w(A’) = A’, it follows that A’ c A*. 1 

2.5. DEFINITION. Let N be an isolating neighborhood with maximal 
invariant set S and suppose (N, , N,, N,) is an ordered triple of closed 
subsets of N, positively invariant relative to N, satisfying properties (i), (ii j, 
and (iii) of the previous proposition. Then (N,, N,, N3) is called an 
(isolating) index triple for the repeller-attractor pair (A*, A) of S. If 
N, I N, 3 N,, it is called a nested (isolating) index triple. For nested 
(isolating) triples, it will be assumed that N = N, , unless explicitly stated 
otherwise. 

Remark. For the same reasons given in [ 19, Sect. 41 when @ is only a 
local semi-flow (Ni , N:, N3) and (N: , N:, N;‘) need not be index triples 
because N{ and Ni may fail to be neighborhoods of S and A. The remedy is 
also the same and the precise formulation is safely left to the reader. 

Proposition 2.5 above and the results of Section 3 to follow could be 
stated and proved to include non-isolating triples for local semi-flows, but we 
shall not bother. 

2.6. PROPOSITION. Let S be an isolated invariant set with isolating 
neighborhood N, and let (N,, N,, N3) be an index triple for the R-A pair 
(A*, A) of S. Define 

(NI,N;,NS)E(N,,N,n(N,UN,),N,nN,). 

Then (N; , N;, Ni) is a nested index triple for (A *, A) relative to N. (Hence 
also relative to N; if N; isolates S), and 

(0 NIINj =N,IN), 
(ii) N; /N; = N, /(Nz U NJ), 

(iii) there is an inclusion induced homotopy equivalence 
N;/N; + N, /N, which is a homeomorphism if N, 3 N, . 

Proof: The straightforward check that (N; , N;, N;) is an index triple for 
(A*, A) is omitted. Also (i) and (ii) are obvious; (iii) follows since 

N, n (N, u N3)/N, n N, ‘1: N, n N/N, n N, n N, 

and since (N, n N, , N, n N, n N3) c (N, , N, n N2) with equality holding if 
N, II N,. The inclusion induced map 

N,nN,/N,nN,nN,-NJN, 

is a homotopy equivalence since it is in the simple system for A. m 
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2.7. PROPOSITION. Let S be an isolated invariant set with isolating @- 
neighborhood N, and let S= A,xA, I... 3 A,, =0 be a sequence of 
attractors in S with Morse decomposition {M, ,.,,, M,}, n > 2. Then there 
exist n+l sets, N,IN,~... xN,,+,, compact and positively invariant 
relative to N so that Ni is an isolating @-neighborhood of Ai-, and 
lNi, Ni+lT N,,,) is an index triple for the R-A pair (Mi, Ai) of AI-,, 
i = l,..., n. 

ProoJ The proof is by induction and for n = 2 follows from 
Proposition 2.3 and 2.6. Assume the proposition true for a sequence of 
attractors of length k > 2, and suppose that 

is a sequence of attractors of length k + 1. Set Af = Ai, 0 < i < k, and set 
A; = 0. By induction there are k + 1 sets N; 3 N; 3 .a. I Ni,, compact 
and positively invariant relative to N so that N; @-isolates Al-, and 
(N;, N;, 1, N;,,) is an index triple for the R-A pair (MI, Al) of A(- 1, 
i = l,..., k. Set Ni=N; for I<i<k and set Nk+2=NL+,. Then as Nk @- 
isolates Ai-, =A,-, and as (NL, NL,,) = (Nk, Nk+*) is an index pair for A, 
with 

A + (NJ c Nk = intNk(Nk), 

applying the proof of Proposition 2.4 yields Nk+, so that (Nk, Nk+, , Nk+ Z) 
is an (isolating) index triple for (Mk, A,J, and by Proposition 2.6 (as already 
N, 3 Nkiz) it can be assumed that Nk I Nk+ 1 I Nk+2. Because it is clear 
that (MI, AI) = (Mi, Ai) for i = l,..., k, this completes the proof. 1 

3. THE LONG COEXACT SEQUENCE OF AN INDEX TRIPLE 

The reader is referred to [25] for the definition of a coexact sequence of 
maps of topological spaces with base point. 

The following lemma provides a suffkient condition for h(X, A) to be 
isomorphic to h(X/A) h w ere (X, A) is a topological pair and h is any 
reduced (co)homology theory. The condition is similar yet distinct from a 
condition given by Young [29] for an inclusion A c X to be a cofibration 
[cf. 24, p. 571, and provides the technical means to construct a Piippe 
sequence from an index triple. 

3.1. LEMMA. Let (X, A) be a topological pair with A closed in X. 
Suppose there exists a continuous deformation D: X x I + X (so D(x, 0) = x 
for each x E X) and a closed neighborhood U of A so that D 1 U X I is a 
weak deformation retraction of U into A (i.e., D(U x I) c U, D(A X I) c A, 

505/46/i-2 
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and D(UX (I})cA); and suppose also that there exists q: X + [0, 11, a 
continuous map, with A c rp-‘(I) and X\U c p-‘(O). Then the composition 
X U CA -PO X U CA/CA Y X/A is a homotopy equivalence in 2Y where p0 
is the quotient map. If in addition D preserves a base point a, E A (i.e., 
D(a,, t) = a,, for each t E I) then the composition X U C*A -+po X U 
C*A/C*A N X/A is an equivalence in 29-*. 

ProoJ Define @E ((x,t)EXxZ:O<t<~(x)} and Z-XX (0)U 
UXZ. Since yl(A)=l, Ax{l}cAxZc@, and since X\Ucrp-‘(0) 
@ c Z. It follows that there is a sequence of inclusions (X x 0 U A x I, 
A x (l})-+‘(@,A x {l})-+j(Z,A x {l))-+k (XxZ,A x (1)) and hence a 
sequence of inclusion induced embeddings on the quotients X U CA -+I 
@/Ax{l}~Z/Ax{l}-+“XxZ/Ax{l} such thatjoi=Tand koj=rii 
where i and #r are the embeddings induced by the inclusions 
(Xx{O}UAxZ, Ax{l})+‘(Z,AxZ) and (@,Ax{l})+“(XXZ, 
A x { 1 }), resp. Now the inclusions I and m are weak deformation retracts. 
For define H: (Z, A x { 1 }) x I+ (Z, A x { 1 }) by H(x, s, t) = (D(x, t), s) and 
K:(XxZ,Ax {l})xZ-(XxZ,Ax {l}) by K(x,s,t)=(x,(l-t)s+ 
tsrp(x)). Now clearly H is continuous as a map into XX Z (it is the 
restriction of a map defined on X x Z x Z into Xx Z) with image in Z X Z by 
the hypothesis on D, and hence is continuous as a map into Z X I. Also, 
clearly K is continuous, and it is straightforward to check that H and K are 
the required weak deformation retractions of the pairs. It follows that there 
areinducedmaps~:(Z/A~{1})~Z~Z/A~{1}and~:(XxZ/A~{l))X 
Z + X x Z/A x { 1 } which show that i and ti are weak deformation retracts. 
Thus i and fi are homotopy equivalences, whence from [ 19, 
Proposition 2.141 it follows that XV CA is homotopy equivalent to 
XXI/AX {l}. However, X/A=XX {l}/Ax (1) and XX {l}/AX (1) is a 
strong deformation retract of X x Z/A x { 1 } where the deformation is given 
by .?([x, s], t) = [x, (1 - t) s + t]. Thus XV CA - X/A. If D preserves a base 
point a,, E A, replace A x { 1 } by {a,} x Z U A x ( 1) in the definitions of I, j, 
k, i, j, &, and 1 The deformations H, Z? and 7 are then base point preserving 
homotopies and this gives XV C*A -X/A as pointed spaces. To get that the 
homotopy equivalence is given (in the unpointed case) by XV CA + 
XV CA/CA 2: X x {0)/A x {0} consider the commutative diagram 

XuCA 
n=Pojoi 

P XXI/A x (l}:Xx {l}/Ax 11) 

PO 
I 

\~ 
p’I r /I 

XV CA/CA g X x {0)/A x {0} sXxZ/A XI& (XXI/A x {l})/(A XI/A X {l]) 

Here F= fop;’ where 7 is the retraction [x, t] -+ [x, 11. Now n’ is a 
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homotopy equivalence as J/(x, s, t) = (x, (1 - t) s) induces a strong defor- 
mation retraction of X x I/A x I to X x {0)/A x {O). Also the composition 
&z’: X x {O}/A x {O} +X x { 1 }/A x { 1) coincides with the natural 
homeomorphism, X x {0)/A x (0) N X X { 1 }/A x { 1 }. It follows that ? is an 
equivalence; hence p1 is as r is, and this yields that p0 is an equivalence as fi 
and bn’a are. The analogous argument yields the pointed case. I 

COROLLARY. Let (X, A) and (Y, B) be topological pairs with A and B 
closed in X and Y resp. Suppose D’:XXI-+X and D’:YXZ+Y are 
continuous deformations, U and V are closed neighborhoods of A and B 
resp., and q: X -+ [0, l] and v: Y+ [0, l] are continuous maps such that the 
quintuples (X, U, A, Dx, q), (Y, V, B, D ‘, w) satisfy the hypothesis of the 
lemma. Then XX YUC(XX BUA X Y)-XX Y/XX BUA x Y and if 
Dx and Dy preserve base points a,, E A and b, E B, resp. Then X X YU 
C*(X x B U A x Y) - X X Y/X X B U A x Y as pointed spaces, and in both 
cases the equivalence is given by the quotient map. 

Proof: Define x:XxY+[O,l] by x=(1-yl)~++~l and define 
Dxxy:Xx YXI+XX Y by Dxxy=(Dx,Dy). Then Dxxy is a defor- 
mation of XX Y and a weak deformation retraction of the open 
X~VULJXYintotheclosedXxBUA~Yand~playstheroleofcpin 
the lemma relative to these two sets. I 

For an index triple (N,, N,, N3) with N, 2 N, there is an inclusion 
induced sequence 

If the triple is nested, this reduces to 

N, IN, + N, IN, -+ N, IN, 3 (2) 

and we shall occasionally abuse notation and write (2) when (1) should be 
written but the meaning is clear from context. This abuse is not serious in 
view of Proposition 2.6 above. Below we will show that sequence (2) embeds 
in a functorial long coexact sequence, and via Proposition 2.6 so too does 
(1). This sequence is useful in determining whether or not 

c(A*,A)=S\A*UAflZI. 

It follows easily from [ 19, Proposition 2.91 that for each t > 0, 
(N,,Nz,N;‘), (N:,N:,N,), and (N: , NG, N;‘) are index triples whenever 
(N, , N,, N3) is, and for the same repeller attractor pair. However, even if 
(N,, N,, N3) is nested, the above three need not be although M, 3 M,, 
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where (M,, M,, M3) is any one of the three triples derived from 
(N, , N,, N3). Hence, there is an inclusion induced commutative diagram 

where M; 2 M; 1 M; is derived from (M, , M,, M3) as in Proposition 2.6, 
and it is principally in regard to the triples (M,, M,, M3) that the 
substitution of (2) for (1) occurs. The above diagram renders this harmless. 

In connection with the long coexact sequence to be developed below, we 
shall be interested in diagrams of the form 

N2 IN, - N,IN, - N,IN, 
h, I hs I h,. I 

M*IM, - M,IM, - M, IM, 

where (N, , N,, N3) and (M, , M, , M3) are (nested) triples relative to N and 
M respectively for an R-A pair (A *, A) of S, where h, , h,, and h,, are 
morphisms in Y(A), 9(S), and $(A *) respectively. Note that it is an abuse 
of notation to say that h,, is a morphism of 9(A *) because strictly speaking 
N,IN, and M,/M, are not objects of Y(,4 *). However, we shall say this 
anway as a gloss for the statement that there is a (homotopy) commutative 
diagram 

hi* 

I i 
h,* 

M,\ VIM,\ V = MI IMz 

where A c V c M,, A c U c Nz and V and U are open relative to M and N 
respectively so that (N,\ U, N2\ U) and (Ml\ V, M,\ V) are index pairs for A * 
relative to N\U and M\V respectively, and where hJ,, is a morphism in 
9(A*). In this regard it is useful to note that for each t > 0, there is an 
inclusion induced homeomorphism 

-the inclusion from left to right is obvious; that the induced map is onto 
follows from the positive invariance of N, relative to N,. 
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3.2. THEOREM. Let N be an isolating neighborhood for S and suppose 
that (N,, N,, N3) is a nested index triple for the R-A pair (A*, A) of S 
relative to N. Then there is a functorial long coexact sequence 

N2 IN, -!--+ N,/N,-, ’ N, IN2 - S(N, /NJ = S(N, /N3) 

2 s(N,/N,) So P(N,p,) . . . (3) 

where S(.) is reduced suspension functor, S(X) = X A S’, and c is the com- 
posite 

N,/N, = (N,/N,)/(N,/N,) = N,IN, U C*(N,/N,)/C*W,/Nd 

2 N,/N, u C*(N,/N,) 2 N,IN, u C*W,/N,)/(N,/N,) 

= C*(N,/N,W,/N,) 'y W,/NJ 

with pO and k being the indicated quotient maps and pi’ a homotopy inverse 
for p,,. The composite c is called the connection map of the triple. 

In particular, (3) is natural with respect to 4(A), 9(S) and Y(A*); i.e., 
tf fi, 2 flz 2 #, is another index triple for the R-A pair (A*, A j of S, then 
there is a homotopy commutative infinite ladder 

N2 IN3 L N,/N, -f--+ N, IN, 2 S(N,/N,) 2 S(N, /N3) 2 

where each of the first three vertical arrows on the left is the unique 
morphism in #(A), 9(S), or #(A*) respectively between the indicated 
objects and where each of the remaining vertical arrows is the appropriate 
suspension of one of these. 

In particular some connection map is essential if, and only if, every 
connection map is essential. 

3.3. COROLLARY. If some connection map is essential then S #A* VA. 

Proof. Suppose S = A* U A. Since A * n A = 0, it follows that there are 
index pairs NT I NC and N, 3 N, for A* and A respectively with 
N~nN,=~.HencesettingM,=N,*UN,,M,=N~UN,,M,=N,*UN,, 
M, 2 M, =3 M, is a nested index triple for the R-A pair (A*, A) of S. 
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Moreover, M, /M3 = NF/Nc V N, /N2, M, /M2 = NT/N,*, and M, /M, = 
N, /N2 so that 

and 

M,/M3 u C*(M,/M,) = NT/N; V C*(N,/N,) 

Thus the map k in the definition of c is the quotient map 

N:/N,* V C*(N,/N,) + NT/NT V C*(N,/N,)/Nf/N: V N, IN,. 

Let H be a base point preserving homotopy from the identity map of 
NT/N? V C*(N,/N,) which fixes Nt/Nc and contracts C*(N,/N,) to its 
vertex. Then k is homotopic to k o H, which is clearly a constant map; hence 
c is inessential. I 

The following lemma is needed for the Proof of Theorem 3.2, and the 
notation is that of Theorem 3.2. 

3.4. LEMMA. The quotient map 

~0: N,/N, u C*(N,/N,) -, N,/N, U C*(N,/N,)/C*(NJN,) 

is a homotopy equivalence of pointed spaces. 

ProoJ By Lemma 3.1 it sufftces to show that there is a closed N,/N,- 
neighborhood, Q, of N, IN,, a base point preserving deformation D of N, /N3 
such that D ] Q x Z is a weak deformation retraction of Q into N,/N,, and a 
continuous function q: N, /N, -+ [0, l] with N2/N3 co-‘(l) and N1/N3\Q c 

rp-‘(0). 
The candidate for the neighborhood is N;‘/N3 for some t > 0, where 

N;‘={yEN,:W, O<t’<t and y.[O,t’]cN, and Y.t’EN,}. It is 
immediate that N;‘/N, is a closed neighborhood of N2/N3 if it can be shown 
that N;’ is a closed neighborhood of N, since N, 3 N3. Assuming this for 
the moment, let f ‘: N, /N, x Z + N, /N3 be defined as in [ 19, Proposition 3.11 
((N, , NJ) is an index pair for S). Then ft is a base point preserving defor- 
mation of N, /N, such that the restriction of ff to N;‘/N, is a weak defor- 
mation retraction into N2/N3; and since N1/N3 is a normal space (being 
compact and Hausdorf), Urysohn’s lemma assures the existence of a 
continuous q: N,/N, -+ [0, l] with N,/N, c o-‘(l) and N,/N,\N;‘/N, c 
v, - ‘(0). 

To finish showing that p0 is an equivalence it remains to show that for 
some t > 0, N;’ is an N,-neighborhood of N,. Unfortunately, it does not 
follow immediately from [ 19, Proposition 2.9(2)] that N;’ is a closed N,- 
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neighborhood of N2 since (N, , N,) is not an index pair for A * (N, does not 
isolate A*). However, by the definition of an index triple there exists U, N,- 
open, with A c U c N, so that (N,\U, N,\U) is an index pair for A* relative 
to N,\U. By [ 19, Proposition 2.9(2)], a c > 0 can be chosen so that 
(N,\U) -* is a closed N,\U-neighborhood of N2\U. Choosing such a t > 0, 
observe that N;‘\U = (N,\u)-‘: if y E (N2\CJ)-*, for some t’, 0 < t’ < t and 
y. [O,t’]cN,\UcN, and y.t’EN,\UcN, whence yEN;‘\U, and on 
the other hand, if y E N;‘\U, then y E N,\U and for some t’, 0 < t’ < t and 
y . [0, t’] c N, and y. t’ EN, whence if y 4 [0, t’] c N,\U it follows 
immediately that y E (N2\Ij)-‘, and if not, taking t” = u 1 N,\U(y), by the 
exit property of the index pair (N,\U, N,\U), it follows that 0 < t” < t’ ,< t 
andy.[O,r”]cN,\Uandy.t”EN,\UwhenceyE(N,\U)-’. 

Then for some N,-open V, 

N,\Uc Vn N,\Uc (N2\U)-’ = N;‘\U; 

whence N, c VU U c N;’ (recall U c N2 c N;‘) which shows that N;’ is 
an N,-neighborhood of N,, and it is closed since 

U c cl,(U) c N, c N,‘, 

and since N;‘\U is closed being equal to (N*\U)-‘, this latter being closed 
by [ 19, Proposition 2.91 so that 

cl(N;‘) c N;‘\Uu cl(U) c N;‘, 

which completes showing that p,, is an equivalence. I 

Proof of 3.2. It is a standard result of homotopy theory ([24, VII] or 
[25, II]) that given a map f: (X,x0) 4 (Y, y,) there is a functorial long 
coexact sequence in .F* 

SW xf Yf c; 2 sxz sys(i! S(Cy$!=+ px- . ..) (5) 

where k’ is the composite 

c; 1 q/u Gs c*x/x s sx. 

It is also well known (and is usually left as an exercise) that if the mapfis 
a cofibration; i.e., is (essentially) an inclusion of a closed subspace which 
has the homotopy extension property with respect to every space; then 
sequence (5) leads to a functorial long coexact sequence in fly* 

xf Y5 Y/x-f,s~~sY~s(y/x)~s*x~ . . . (6) 
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where p is the quotient map and c is the composite 

with p;’ any homotopy inverse of the quotient p,, : C,? + C,?/C*X, and the 
entire purpose of assuming that the inclusion f is a cotibration is to 
guarantee that p. is indeed a homotopy equivalence [cf. 15, Sections 
18.9-18.12; 24, VII, Exercises Al-A3]. 

Hence the existence and coexactness of sequence (3) follows from this 
exercise when applied to the inclusion of the closed subspace 
I: N, /N, + N, /Nj using Lemma 3.4 and the natural identification 
(N, /N3 >/ Wz /Nj I= N, /Nz. 

Because the construction of sequence (6) is functorial and, in particular, 
because the connecting map c is a natural transformation, to show that there 
is an infinite homotopy commutative ladder as described by (4) it suffices to 
show that there is a homotopy commutative diagram 

N2 IN3 - N, IN3 - N, IN, 
h, 1 hs I h,. I 

(7) 

iv* /& - 4 Ifi3 - iq /Iv, 

where h, , h,, h,, are morphisms in 9(A), J(S), and f(A *) respectively, 
and where the horizontal rows are the initial segments of sequences (3) 
corresponding to the two nested index triples (N, , N2, N3) and (fli , flZ, fi2) 
for the R-A pair (A *,A) of S. For two such triples, set Mi = Nin Ni, 
i = 1,2, 3. It is then easy to check that M, =) M, =) M, is a nested index 
triple for (A *, A). There is then a commutative diagram of inclusions 

N* IN3 - N,IN, - N,IN, 
I I I 

M, lM3 - Ml lM3 - M, IM, 
I I 1 

372 I& - .$/Iv* - iv,/& 
with all arrows being functorially inclusion induced. Because each vertical 
arrow represents a morphism in a connected simple system, there is thus a 
commutative diagram (7) above in ZY* with each vertical arrow being the 
unique morphism in >(A), 4(S), or 9(A *) respectively, between its 
domain and range. i 
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Remark. There are, in fact, representatives h, , h,, h,, in 4(A), 4(S), 
.@(A *) respectively that make diagram (7) above commutative pointwise, 
not just up to homotopy, but the proof is much more difficult and quite 
laborious. As we have no need for this fact we shall not prove it. 

3.5. DEFINITION OF THE CONNECTION INDEX. f(S,A*,A). If S is a @- 
isolated invariant set for a local semi-flow # CT,, and (A *,A) is an R-A 
pair of S, define f(S; A *, A) to be the category whose objects are long 
coexact sequences as in (3) of Theorem 3.2 for nested index triples 
N, 2 N, 1 N, and whose morphisms are infinite ladders as in (4) of 
Theorem 3.2. Because 9(A), .#(A*), and Y(S) are connected simple 
systems, it is immediate that J?(S; A*, A) is too. 

Remark. For a Morse Decomposition {M, , M, ,..., M,} corresponding to 
a sequence of attractors S = A, I A, 3 ..a 3 A,, = 0, with the notation of 
2.7, there is a sequence of inclusions 

* cN,lN,+, cN,-~/N,+, c ..a cN,INn+, ~N,lNrz+,, 

where (Ni , Ni + i, N, + i) is a nested index triple for the R-A pair (Mi, Ai) of 
Aip 1, i = l,..., n. The appropriate connected simple system X(S; M, ,..., M,) 
to construct here is probably the spectral (co)homology sequence of the 
above space filtration of N, /N3. The E’ terms then correspond to the indices 
of the Mi, N,/N,+ i. 

4. THE SPLITTING CLASS ,B FOR y(S; A*,A) 

Before giving the formal development of the definition of the splitting class 
we indicate the geometric motivation for the definition. Consider a pair of 
hyperbolic critical ponts (A*, A) for a flow in the plane as sketched in 
Fig. 2, which as the notation suggests form an R-A pair in the isolated 
invariant set S = A * U A. 

Assume there exists a connected isolating block N, (the flow is transverse 
to the boundary) for S as schematically indicated in Fig. 2 which is the 
union of two “squares” B, and B, which are isolating blocks for A* and A 
respectively [cf. 13; 211. As drawn the two vertical components of the 
boundary of B, comprise its exit set, and the horizontal components of the 
boundary of B, comprise its exit set. Also B, and B, intersect in the right- 
hand component of the exit set of B, (which is the left-hand component of 
the entrance set of B2), and note that the exit set of N, consists of the left- 
hand vertical component of the exit set of B, together with the exit set of B,. 
Setting N2 equal to the union of B, and the left-hand component of the exit 
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FIG. 2. A schematic of the splitting map on homology. 

set of B, and setting N, equal to the exit set of N, , note that N, 3 N2 2 N, is 
an index triple for (A *, A). 

Now any arc a in B, which has each endpoint in a different component of 
the exit set of B, represents the generating class of the l-dimensional 
homology of N, /N2, the index of A *, which has the homotopy type of S’. 
Note that one such representing arc is that portion of the local unstable 
manifold of A * relative to N, (in Lemma 2.1 this was designated &’ ;) 
which lies in B,. Note too that the local unstable manifold of A * relative to 
N, represents non-trivial homology in N,/N,, the index of S which has the 
homotopy type of S’ V S’, a figure eight. The idea of the splitting map is 
that arcs (more generally singular chains) which represent the same 
homology in Nr/Nz as does ,pP; n II, get carried by the flow in finite time 
into an arc which represents the same homology in N,/N, as does _pP;. The 
next proposition gives the technical necessary and sufficient condition 
actually needed to define the splitting map. The idea roughly is that given an 
arc in B, representing non-zero homology in N,/N2, perhaps this arc 
intersects the local stable manifold of A relative to N, (this was designated 
J@‘: in Lemma 2.1), in which case following the arc for finite time under the 
action of the flow does not give the appropriate homology class in N,/N, ; 
however, if first the arc is followed for a long enough time stopping those 
points which hit the boundary of B,, and if from this image are excised all 
those points in the exit set of B, which lie outside a neighborhood of J; 
which is disjoint frop -pP:, then the remainder is carried by the flow in finite 
time into an arc which represents the same homology in N, /N3 as does ~8’ ;. 

4.1. PROPOSITION. Let S be a @-isolated invariant set and (N, , N2, N3) 
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a nested index triple for the R-A pair (A *, A) of S. Then S = A * U A if, and 
only if, (*) for each N,-open U with A c U c N,, there exists T > 0 so that 
for each t > T, 

(N,\U)‘n N,\Uc N;’ 

hence for t > T there is an inclusion induced map 

ProoJ: First sufftciency of condition (*) is shown. Suppose 
g#C(A*,A)=S\(A*uA); choose YE C(A*,A); and suppose 
A c U c N,, U N,-open. Because w(y) c A and N, isolates A, for some 
t>O, y.tEN,, and set 

Because yoES, y,,.R-cN,; a n d as U c int,,(N,) and as N2 is positively 
invariant relative to N,, it follows that y,, . R- c N,\U; whence for each 
t > 0, 

However, for each t > 0, N,\N;’ is a #-neighborhood of A, and since 
w(y) c A and N;’ is positively invariant relative to N,, it follows that 
y. 6? N; ‘; thus (N,\ 17)’ n N,\ U d N;‘. 

Conversely, suppose S = A * U A and U is N, - open with A c U c N,. 
Using the notation of Lemma 2.1 (N, is the isolating neighborhood), M’; , 
JJ:, &;, and J: are closed relative to N, and (J$; u d:) n 
(d;u~:)=o, and since N, isolates A and is positively invariant relative 
to N, , also A + (NJ = N, n _oP: . Then by normality of N, , choose disjoint 
N, - open sets VI .,&; and V* I &‘; satisfying 

and without loss of generality also assume that &‘t n clN,( v)\U = 0, for if 
not replace Y by V\K where K E cl,,(V) n Ji \U. Then by the sublemma 
of Lemma 2.1, A-(N,) c V* U V, and it follows that (T* 1 N,\(V* U V) is 
bounded; i.e.; for some To > 0, t > To implies y e [-t, 0] ck N, for each 
y E N,\( V* U V); hence t > To implies N: c V* U V. Also, 

cl,,(V*U V)nN,\UcN,\A+(N,) 

for 

cl,,(y*)nA’(N,)ccl,,(Y*)n;1P:nN,ccl(y*)n~: =0 
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and 

CIN,(V)nA+(N2)nN,\u=N,n~: nd,,(V)\Ucd: ncl,,(v)\u=0; 

it follows that 

(3 / cl,,( v* u v) n N,\u 

is bounded. Therefore, for some T, > 0, t > T, implies y . [0, t] ti N, for each 
YE d,,(v*u V)nN,\U; whence by the exit property for index pairs, 
t > T, implies that 

d(v*u v)nN,\ucfv;f. 

Set T=max{T,,,T,}; then t>T implies N;nN,\iJcN;‘, and as 
(N,\u)’ c Ni , t > T, implies (N,\U)’ n N,\Uc N;‘, showing that (*) 
holds; that there is an inclusion induced map is then immediate. 1 

4.2. DEFINITION AND PROPOSITION. Let S be an isolated invariant set 
relative to @, let (N,, N2, N3) be a nested index triple for the R-A pair 
(A *, A) of S, and let U be N,-open with A c U c N,. 

For each t E R+ such that there is an inclusion induced map 

W,\U)‘IN,\U-, N,IK’, 
define ,q, U : N, /N2 + N,/N, to be the composition 

N, IN2 = N,\ UIN,\U 3 (N,\ U)‘/N,\U-t N, IN;’ -f+ N; /N3 -; N, /N3. 

Then, 

(1) If for some t E R+, pt,” is defined, then for each s > t, ,us,” is 
defined, and for each N,-open V with A c Vc N,, for some t’ E R+, Pt,,y is 
defined. 

(2) If S, t E R+ and pr,u and ius,” are both defined then iut,u is 
homotopic to ,B~,~. 

(3) Ifkcl is defined and A c V c N2, V N,-open, and ,us,” is defined 
then pul.U is homotopic to P~,~; 

(4) where p: N,/N, + N1/N2 is the inclusion induced map, if ,u~,~ is 
defined, then p o rut,” is homotopic to 1N,,N2; hence &U is a splitting of the 
coexact sequence 
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Proof. Suppose pl,a is defined and s > t. Then by the preceding 
proposition, (N,\U)’ n N,\U c N;‘, and because s > t, 

whence the preceding proposition implies that ps,” is defined. Also if 
A c Vc N,, V N,-open then it follows immediately from the preceding 
proposition that for some t’ E R’, ,u~,,~ is defined. This shows (1). 

Suppose P,,, and iut,a are both defined, and for definiteness assume s > t. 
Consider the diagram 

N,\UIN,\U L (N,\U)‘IN,\U - N,/N;‘A N: /N, - N, IN, 

(N,\WINz\U- N, IN? - w IN, 

where the vertical arrows are all inclusion induced. Then Triangle I is 
homotopy commutative because all the arrows are maps of the connected 
simple system Y(A*) and because there is a unique homotopy class in 
Y(A *) from N,\U/N,\U to (N,\U)‘/N,\U. Similarly Square III and 
Triangle IV are homotopy commutative as the arrows in these diagrams are 
maps of the connected simple system 4(S). Finally, because all the arrows 
in Square II are induced by functorial inclusions, it follows that Square II is 
commutative. Then an easy diagram chase shows that the two paths on the 
perimeter of the diagram from N,\U/N,\U to N,/N3 are the same up to 
homotopy. Hence pt,“, the top row, is homotopic to ,u~,~, the lower path, 
showing that (2) holds. 

Suppose ,ut,” is defined and also suppose A c V c N2, V N,-open, and ,us,” 
is defined. Then A c U c V c N2 and Un V is N,-open. By (1) choose r 
large enough to that ,u,,“, ,u~,~, and ,u,,“~~ are defined, and setting 
W = un V, consider the diagram 

N,\U/N,\U f; (N,\ u)‘/N,\ u - N,/N;’ 

where the unlabeled arrows are inclusion induced. Square I is homotopy 
commutative because all the arrows are maps for the simple system 9(A*), 
and Triangle II is commutative because all the arrows in it are induced by 
functorial inclusions; hence the diagram is homotopy commutative and it 
follows immediately that ,u~,~ - ,u,,~~~. Similarly JL,,,,” - ,u,,” so that 
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P r.u - pr,,, by transitivity; then by (2) it follows that ,u~,~ - ,u~,~ showing that 
(3) holds. 

Suppose cl,,” is defined, and let e: N,\UIN,\U N N1/N2 be the excision 
induced homeomorphism. To show that p 0 ,B,,, is homotopic to lN,,NI, it 
clearly suffkes to show that e-’ o p o ,u,,, o e is homotopic to lN,,U,NZ,U. As 
e -I o p o pul,” o e is given by the composition 

N,\UIN,\UA (N,\U)‘/N,\U: N,/N;‘$ N:/N, ; N,/N, 

-f+ N, IN, 2 N,\ U/N,\ U, 

calling this composition rp, it is clear that for each y E N,\U either 

(0 PM = b . 24 or 
(ii) (PM = k\Ul; 

however, the end map of the deformation, 

f :‘: N,\UIN,\U+ N,\U/N,\U, 

is defined by f f’[y] = [y . 2t] if y E (N,\u)\(N,\u)-” and f :‘[y] = [N2\U] 
otherwise, and the deformation f 2t provides a homotopy from 1N,,U,N2,U to 
fit. Hence it suffkes to show that u, =f it. 

Accordingly, if y E (N,\IY)\(N,\U)-~‘, then 

Y . LO, 2tl= Wl\v)\W,\u) = N,\N2 = N,\N, 

and it follows easily from this that o[y] = [y . 2t] # [N*\U]; whereas if 
y E (N,\U) n (N2\qe2’, then for some s, 0 < s < 2t and ye [0, s] c N,\U 
and y . s E N,\U, and if 0 < s < t, then ?: [y] = [N,\U] so that 
vbl = [N,\Ul adi is a factor of 9. On the other hand if t < s < 2t, either 
ye t E N;’ or y . t 6Z N;‘, and if it is, then I&[y] = [N;‘] whence it follows 
that drl = [N2\Uly and if it is not, then y . [0,2t] c N,\N3, but as 
y . s E N,\U c N2 and as N, is positively invariant relative to N, , it follows 
that y . 2t E N,, hence that 

and in this case too o[y] = [N2\U], which completes showing that v, 
coincides with f ft. I 

4.3. DEFINITION OF THE SPLITTING CLASS. With the notation as in the 
previous subsection, if for some t > 0, and for some N,-open U, A c U c N, 
and 

i+,u : N, IN2 -, N, lN, 
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is defined, then define ,u E IN,/?/,, N,/N,] to be the homotopy class of ~l~,~. 
By the previous proposition, the definition is independent of U and t within 
the restrictions that U is N,-open, A c U c N2, and t > 0 is large enough 
depending upon U. ,U will be called the splitting class of the sequence 
N,lN,+N,IN~+N,INz. 

4.4. PROPOSITION. Let (A*,A) be an R-A pair in S=A*UA, and 
suppose N, 3 N2 3 N3 and M, 3 M2 3 M3 are index triples for (A *, A). 
Then there is a homotopy commutative diagram 

where pN and pM are the splitting classes for 

N, IN, -+ N, INI + N, IN, 

and 

respectively, and where h, and h, are respectively morphisms of 9(S) and 
Y(A). Hence ,u is natural relative to $(S; A*, A). 

Proof: By the uniqueness of the morphisms between two objects in the 
connected simple system and since all are homotopy equivalences, by taking 
intersections Mi n Ni (i = 1,2, 3), we may assume Mj c Ni (i = 1, 2, 3), and 
hence the diagram upon expansion is given by 

N,/N, N N,\U/N,\U --$ (N,\u)‘IN,\u -+ N, IN;' -+ %I4 -+ N,/N, 

M,/M, N M,\U/M,\U+ (M,\u)‘/M,\U-r M1IM;‘+M:lM3 -‘M,/M, 

where U is @-open and A c U c M, c N, and t > 0 is large enough so that 
,u$ and p:,, are both defined. As, all the vertical arrows can be assumed to 
be induced by functorial inclusions, it is trivial to verify that the diagram is 
commutative. I 
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