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Statefinder diagnostic is a useful method which can differ one dark energy model from each others. In
this Letter, we apply this method to a holographic dark energy model from Ricci scalar curvature, called
the Ricci dark energy model (RDE). We plot the evolutionary trajectories of this model in the statefinder
parameter-planes, and it is found that the parameter of this model plays a significant role from the
statefinder viewpoint. In a very special case, the statefinder diagnostic fails to discriminate LCDM and
RDE models, thus we apply a new diagnostic called the Om diagnostic proposed recently to this model
in this case in Appendix A and it works well.

© 2008 Elsevier B.V. Open access under CC BY license.
1. Introduction

The accelerating cosmic expansion first inferred from the ob-
servations of distant type Ia supernovae [1] has strongly confirmed
by some other independent observations, such as the cosmic mi-
crowave background radiation (CMBR) [2] and Sloan Digital Sky
Survey (SDSS) [3]. An exotic form of negative pressure matter
called dark energy is used to explain this acceleration. The sim-
plest candidate of dark energy is the cosmological constant Λ,
whose energy density remains constant with time ρΛ = Λ/8πG
and whose equation of motion is also fixed, wΛ = PΛ/ρΛ = −1
(PΛ is the pressure) during the evolution of the universe. The
cosmological model that consists of a mixture of the cosmologi-
cal constant and cold dark matter is called LCDM model, which
provides an excellent explanation for the acceleration of the uni-
verse phenomenon and other existing observational data. However,
as is well know, this model faces two difficulties, namely, the ‘fine-
tuning’ problem and the ‘cosmic coincidence’ problem. The former
also states: Why the cosmological constant observed today is so
much smaller than the Planck scale, while the latter states: Since
the energy densities of dark energy and dark matter scale so dif-
ferently during the expansion of the universe, why they are at
the same order today? To alleviate or even solve these two prob-
lems, many dynamic dark energy models were proposed such as
the quintessence model rely on a scalar field minimally interact-
ing with Einstein gravity. Here ‘dynamic’ means the equation of
state of the dark energy is no longer a constant but slightly evolves
with time. Despite considerable works on understanding the dark
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energy have been done, the nature of dark energy and its cosmo-
logical origin are still enigmatic at present.

On the other hand, the problem of discriminating different dark
energy models is now emergent. In order to solve this problem,
a sensitive and robust diagnostic for dark energy is a must. The
statefinder parameter pair {r, s} introduced by Sahni et al. [4] and
Alam et al. [5] is proven to be useful tools for this purpose. The
statefinder probes the expansion dynamics of the universe through
high derivatives of the scale factor ä and

...
a and is a natural next

step beyond the Hubble parameter H ≡ ȧ/a and the deceleration
parameter q which depends upon ä. The statefinder pair {r, s} is
defined as

r ≡
...
a

aH3
, s ≡ r − 1

3(q − 1/2)
. (1)

The statefinder pair is a ‘geometrical’ diagnostic in the sense that
it is constructed from a space–time metric directly, and it is more
universal than ‘physical’ variables which depends upon properties
of physical fields describing dark energy, because physical vari-
ables are, of course, model-dependent. Usually one can plot the
trajectories in the r–s plane corresponding to different dark en-
ergy models to see the qualitatively different behaviors of them.
The spatially flat LCDM scenario corresponds to a fixed point
{r, s} = {1,0} in this diagram. Departure of a given dark energy
model from this fixed point provides a good way of establish-
ing the “distance” of this model from LCDM. As demonstrated in
Refs. [4–6] the statefinder can successfully differentiate between
a wide variety of dark energy models including the cosmological
constant, quintessence, the Chaplygin gas, braneworld models and
interacting dark energy models.

One can plot the current locations of the parameters r and s
corresponding to different models in statefinder parameter dia-
grams by theoretical calculating in these models. And on the other
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hand it can also be extracted from experiment data such as the
SNAP (SuperNovae Acceleration Probe) data, with which combined
the statefinder parameters can serve as a versatile and powerful
diagnostic of dark energy in the future. In this Letter, we apply the
statefinder diagnostic to the Ricci dark energy model (RDE). It is
found that the evolution behavior of the statefinder parameters in
this model is much like that in quiessence models, but in a very
special case the statefinder diagnostic fails. In Section 2, we will
briefly review RDE model, and apply the diagnostic to it in Sec-
tion 3. In the last section we will give some conclusions. In the
case of that the statefinder diagnostic fails, we apply a new diag-
nostic called the Om diagnostic proposed recently to RDE model in
Appendix A.

2. Briefly review on RDE

Holographic principle [7] regards black holes as the maximally
entropic objects of a given region and postulates that the maxi-
mum entropy inside this region behaves non-extensively, growing
only as its surface area. Hence the number of independent degrees
of freedom is bounded by the surface area in Planck units, so an
effective field theory with UV cutoff Λ in a box of size L is not self
consistent, if it does not satisfy the Bekenstein entropy bound [8]
(LΛ)3 � SBH = π L2M2

pl, where M−2
pl ≡ G is the Planck mass and

SBH is the entropy of a black hole of radius L which acts as an
IR cutoff. Cohen et al. [9] suggested that the total energy in a re-
gion of size L should not exceed the mass of a black hole of the
same size, namely L3Λ4 � LM2

p . Therefore the maximum entropy

is S3/4
BH . Under this assumption, Li [10] proposed the holographic

dark energy as follows

ρΛ = 3c2M2
p L−2, (2)

where c2 is a dimensionless constant. Since the holographic dark
energy with Hubble horizon as its IR cutoff does not give an accel-
erating universe [11], Li suggested to use the future event horizon
instead of Hubble horizon and particle horizon, then this model
gives an accelerating universe and is consistent with current ob-
servation [10,12]. For the recent works on holographic dark energy,
see Refs. [13–15].

Recently, Gao et al. [16] have proposed a holographic dark en-
ergy model in which the future event horizon is replaced by the
inverse of the Ricci scalar curvature, and they call this model the
Ricci dark energy model (RDE). This model does not only avoid
the causality problem and is phenomenologically viable, but also
solve the coincidence problem of dark energy. The Ricci curvature
of FRW universe is given by

R = −6

(
Ḣ + 2H2 + k

a2

)
, (3)

where dot denotes a derivative with respect to time t and k is
the spatial curvature. They introduced a holographic dark energy
proportional to the Ricci scalar

ρX = 3α

8πG

(
Ḣ + 2H2 + k

a2

)
∝ R, (4)

where the dimensionless coefficient α will be determined by ob-
servations and they call this model the Ricci dark energy model.
Solving the Friedmann equation they find the result

8πG

3H2
0

ρX = α

2 − α
Ωm0e−3x + f0e−(4− 2

α )x, (5)

where Ωm0 ≡ 8πGρm0/3H2
0, x = ln a and f0 is an integration

constant. Substituting the expression of ρX into the conservation
equation of energy,

p X = −ρX − 1 dρX (6)

3 dx
we get the pressure of dark energy

p X = − 3H2
0

8πG

(
2

3α
− 1

3

)
f0e−(4− 2

α )x. (7)

Taking the observation values of parameters they find the α �
0.46 and f0 � 0.65 [16]. The evolution of the equation of state
w X ≡ p X/ρX of dark energy is the following. At high redshifts the
value of w X is closed to zero, namely the dark energy behaves
like the cold dark matter, and nowadays w X approaches −1 as re-
quired and in the future the dark energy will be phantom. The
energy density of RDE during big bang nucleosynthesis (BBN) is
so much smaller than that of other components of the universe
(ΩX |1 MeV < 10−6 � 0.1 when α < 1), so it does not affect BBN
procedure. Further more this model can avoid the age problem and
the causality problem. In next section we will study RDE model
from the statefinder diagnostic viewpoint.

3. Statefinder diagnostic for RDE

The statefinder parameters can be expressed in terms of the
total energy density ρ and the total pressure p in the universe as
follows:

r = 1 + 9(ρ + p)

2ρ

ṗ

ρ̇
, s = (ρ + p)

p

ṗ

ρ̇
. (8)

The deceleration parameter q ≡ −ä/(aH2) can be also expressed in
terms of ρ and p

q = 1

2

(
1 + 3p

ρ

)
. (9)

Assuming the universe is well described by a two component fluid
consisting of non-relativistic matter (CDM + baryons) with negligi-
ble pressure, i.e. pm � ρm and dark energy, namely, ρ = ρm + ρX ,
and p ≈ p X , we obtain the statefinder parameters for RDE model
as follows,

r = 1 −
(

1

α2

)
(2 − α)(2α − 1) f0e−(4− 2

α )x

2
2−α Ωm0e−3x + f0e−(4− 2

α )x
,

s = 2

3

(
2 − 1

α

)
, (10)

and the deceleration parameter

q = 1

2

(
1 −

(
1

α

)
(2 − α) f0e−(4− 2

α )x

2
2−α Ωm0e−3x + f0e−(4− 2

α )x

)
. (11)

From Eq. (10), one can see that s = 0, r = 1 if α = 0.5 and no
matter what value f0 is, and this point in the r–s plane is the very
fixed point corresponding to LCDM model. Thus, the statefinder
diagnostic fails to discriminate between the LCDM and RDE model
in this case. If α < 0.5, then the trajectory will lying in the region
r > 1, s < 0.

As an example, we plot the statefinder diagrams in the r–s
plane and r–q plane as a complementarity with α = 0.46 and
f0 = 0.65 obtained in Ref. [16] in Figs. 1 and 2.

In Fig. 1, LCDM scenario corresponds to a fixed point s = 0,
r = 1, and the SCDM (standard cold matter) scenario corresponds
to the point s = 1, r = 1. For RDE model, the trajectory is a vertical
segment, i.e. s is a constant during the evolution of the universe,
while r monotonically increases from 1 to 1−(2−α)(2α−1)/α2 ≈
1.58. The location of today’s point is s = −0.12, r = 1.38, thus the
‘distance’ from RDE model to LCDM model can be easily identified
in this diagram. The trajectories for the so-called ‘quintessence’
model (w is a constant) are also vertical segments, but in that
model, r decreases monotonically from 1 to 1+9w(1+ w)/2 while
s remains constant at 1 + w [4,5].
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Fig. 1. Evolution trajectory in the statefinder r–s plane for RDE with α = 0.46 and
f0 = 0.65.

Fig. 2. Evolution trajectory in the statefinder r–q plane for RDE with α = 0.46 and
f0 = 0.65. The solid line represents the RDE model, and the dashed line the LCDM
as comparison. The location of today’s point is (−0.59,1.38).

In fact, the statefinder diagnostic can also discriminate between
other dark energy models effectively. For example, the trajectories
for the Chaplygin gas and the quintessence (inverse power low)
models are similar to arcs of a parabola (downward and upward)
lying in the regions s < 0, r > 1 and s > 0, r < 1 respectively. For
holographic dark energy model with the future event horizon as
IR cutoff, commences its evolution from the point s = 2/3, r = 1,
through an arc segment, and ends it at LCDM fixed point in the
future [6]. Therefore, the distinctive trajectories corresponding to
various dark energy scenario in the r–s plane demonstrate quite
strikingly the contrasting behaviors of dark energy models.

In Fig. 2, we clearly see that both LCDM scenario and RDE
model commence evolving from the same point in the past q =
0.5, r = 1, which corresponds to a matter dominated SCDM uni-
verse. However, in LCDM model the trajectory will end their evo-
lution at the point q = −1, r = 1 which corresponds to a steady
state cosmology (SS), i.e. the de Sitter expansion, while that in
RDE model does not. In Ref. [6], the trajectory in holographic
dark energy model with the future event horizon (HDE) has the
same starting point and the same ending point as that in LCDM
model. Thus, RDE model is also different from HDE model from
the statefinder viewpoint.
If α > 0.5, the sign of s becomes positive and r < 1 if α is also
smaller than 2, but the value of r will lager than 1 if α > 2, see
Eq. (10). Thus, the determining of the value of α is a key point to
the feature of RDE model and we hope the future high precision
experiments may provide sufficiently large amount of precise data
to be capable of determining the value of α.

4. Conclusions

In this Letter, we have apply the statefinder diagnostic to the
Ricci dark energy model, and plot the trajectories in the r–s and
r–q planes in the case of α = 0.46 and f0 = 0.65. Here we have
used the values of α and f0 that founded in Ref. [16], but other
values are also possible. Different values of α will determine dif-
ferent evolutions of the statefinder parameters, so the determining
of α from more precise data provided by future experiments will
be needed. In a very special case that α = 0.5, the statefinder pair
{r, s} fails to discriminate LCDM model and RDE model, because
they give the same fixed point r = 1, s = 0 in the r–s diagram. The
difference of these two models is the evolution of the equation of
state w , which is a constant that equals −1 in the former and a
time-dependent variable in the latter. Recently, a new diagnostics
called the Om diagnostic of dark energy is proposed in Ref. [17]. In
Appendix A, we will apply this diagnostic to RDE model in the case
of α = 0.5 in order to differentiate LCDM model and RDE model.
The result indicates that this new diagnostic really works well for
this purpose.

Although we have showed these two diagnostics of DE can dif-
fer RDE and LCDM in an ideal case, the observational uncertainties
should be considered also. According to the estimations of param-
eters 〈r〉 and 〈s〉, which defined as

〈r〉 = 1

1000

1000∑
i=1

ri, 〈s〉 = 1

1000

1000∑
i=1

si, (12)

where 1000 stands for numbers of data sets from SNAP [4,5], we
can ruled out a number of tracker and quiessence model with con-
stant equation of state w � −0.9 at the 3σ level if the value of
Ωm0 is known exactly. However, according to the current obser-
vations it is not good enough to determine Ωm0 as discussed in
Ref. [17]. Thus, for the statefinder diagnostic, it is very important
to determine the value of Ωm0 and the values of parameters of the
model by the future observations and in our case it is the value of
α in RDE.

The new diagnostic Om can be determined independent of
the value of Ωm0, then it is better than the statefinder diagnos-
tic. However, it could only distinguish between DE models at 1σ
level [17], and it is consistent with LCDM model without exclud-
ing dynamic DE models like phantom, quintessence, RDE, etc., by
using the current data. Thus, further high precision data are highly
needed.
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Appendix A

The definition of the Om diagnostic is [17]

Om(x) ≡ h2(x) − 1
−3x

, (A.1)

e − 1
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Fig. 3. The Om diagnostic for RDE with α = 0.5, Ωm0 = 0.27 as well as f0 = 0.5,
0.65 and 0.8, respectively.

where h(x) ≡ H(x)/H0. For dark energy with a constant dark en-
ergy equation of state w = const in the spatially flat universe,

h2(x) = Ωm0e−3x + (1 − Ωm0)e−3(1+w)x. (A.2)

Consequently,

Om(x) = Ωm0 + (1 − Ωm0)
e−3(1+w)x − 1

e−3x − 1
, (A.3)

from where we get

Om(x) = Ωm0 (A.4)

in the LCDM model. Authors in Ref. [17] conclude that: Om(x) −
Ωm0 = 0, if and only if dark energy is a cosmological constant.

From Eq. (8) in [16], we get

h2(x) = 2

2 − α
Ωm0e−3x + f0e−(4− 2

α )x (A.5)

in RDE model, then the Om diagnostic for it is

Om(x) =
2

2−α Ωm0e−3x + f0e−(4− 2
α )x − 1

e−3x − 1
. (A.6)

As an example, we take α = 0.5 and Ωm0 = 0.27 to plot the evolu-
tions of Om(x) corresponding to f0 = 0.5, 0.65 and 0.8 in Fig. 3.

Thus, one can easily find the difference between the LCDM
model and RDE model from Fig. 3. Especially the difference is
much larger near present, i.e. x ∼ 0. Here f0 plays a important
role to determine the evolution of Om, so f0 value is also hoped
to be determined from future precise data as α.
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