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The entire form of the amplitude of three SYM (involving two transverse scalar fields, a gauge field) and 
a potential Cn−1 Ramond–Ramond (RR) form field is found out. We first derive < V C−2 V A0 Vφ0 Vφ0 >

and then start constructing an infinite number of t, s channel bulk singularity structures by means of 
all order α′ corrections to pull-back of brane in an Effective Field Theory (EFT). Due to presence of the 
complete form of S-matrix, several new contact interactions as well as new couplings are explored. It 
is also shown that these couplings can be verified at the level of EFT by either the combinations of 
Myers terms, pull-back, Taylor expanded of scalar fields or the mixed combination of the couplings of 
this paper as well as employed Bianchi identities. For the first time, we also derive the algebraic and the 
complete form of the integrations for some arbitrary combinations of Mandelstam variables and for the 
most general case 

∫
d2z|1 − z|a|z|b(z − z̄)c(z + z̄)3 on upper half plane as well.

© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

D-branes are supposed to be the fundamental objects that do 
exist in type II string theory. Indeed their roles have been enor-
mously appreciating over the last decade, most notably by high 
energy physicists and in particular widely by string theorists [1,2].

To have some sort of understanding the brane’s dynamics, we 
start off addressing various effective actions of these branes. Basi-
cally, in the very stablished Dielectric effect the issue of multiple 
brane’s effective action as well as the appearance of commutator 
of two massless transverse scalar fields (describing oscillations of 
branes) was clarified [3]. We have already applied the direct con-
formal field theory methods and also made use of the mixture of 
Ramond–Ramond (RR)-open string scattering amplitude computa-
tions to actually (up to some convincing field theory contents) gain 
the so called generalized Myers action.

It is worthwhile to point out this action within its all order 
α′ higher derivative corrections have been investigated in [4]. On 
the other hand, already various anomalous D-branes’ couplings 
as well as dissolving branes inside the branes have been verified 
in detail [5]. Given the potential of S-matrix, various new cou-
plings in [6] are revealed and the important point is that these 
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couplings can not be established by all the three standard ways 
of EFT, namely neither Taylor expansion, Myers terms nor pull-
back formalism worked out. Ultimately as physical applications to 
those effective couplings, we first found out the so called N3 phe-
nomenon for particularly M5 branes and some other systems, such 
as M2–M5 and consequently dS solutions as well as realizing the 
growth of the entropy of diverse configurations [7].

The symmetrized action at non-Abelian level was given by [8], 
whereas originally the action for single bosonic brane had been in-
troduced by Leigh in [9]. Almost a decade later the supersymmetric
part of the effective action becomes known [10]. To complete the 
effective actions various people including the author have taken 
a step further and verified within tremendous details the D-brane 
anti D-brane string theory effective actions that are consistent with 
direct string amplitude calculations, while in this context dual-
ity does not seem to be promising any more, given the nature of 
tachyonic systems [11].

Let us elaborate on the fact that the couplings of RR with even 
non-supersymmetric branes at first glimpse investigated by the 
same prospective in [12] as we head off from now on. Further 
explanations about standard EFT couplings as well as almost all 
effective actions can be achieved in [13].

The paper is written as follows. In the next section we try 
to find out all the closed form of the correlators for two trans-
verse scalar fields, one gauge field and a potential RR, C-field 
< V C−2 V A0 Vφ0 Vφ0 > we then continue by just mentioning the 
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final result of the same field contents but in symmetric picture. 
Although recently a method was given in [14], we would like to 
evidently keep considering all the terms including all momenta of 
RR and in particular its momenta within the bulk such as p.ξ1
and p.ξ2 terms inside the S-matrix. Because indeed various cor-
relation functions such as < eip.x(z)∂i xi(x1) > obviously have non-
zero contributions to amplitude. We also clearly take into account 
the Bianchi identities to be able to produce new bulk singularities 
as well as all contact terms that are located in transverse direc-
tions.

For the first time, the explicit form of integrations on upper half 
plane for arbitrary combinations of Mandelstam variables and for 
generic case 

∫
d2z|1 − z|a|z|b(z − z̄)c(z + z̄)3 is achieved. We also 

generate an infinite number of t, s channel bulk singularity struc-
tures by means of all order α′ corrections to pull-back of brane and 
highlight the fact that unlike [15], neither there are u-channel bulk 
nor (t + s + u)-channel bulk singularity structures. Due to presence 
of complete form of the S-matrix of this paper, several new con-
tact interaction couplings will be discovered and those couplings 
can just be verified at the level of Effective Field Theory (EFT) by 
either the combination of Myers terms, pull-back, Taylor expanded 
of scalar fields or the mixed combination of the desired couplings 
as we will point out later on. Notice to the extremely important 
point that by just carrying out direct S-matrix computations apart 
from exploring new couplings with distinguished structures, we 
are also able to precisely fix the coefficients of those new cou-
plings to all orders in α′ .

2. The < C−2 A0φ0φ0 > S-matrix

First of all let us clarify the notation. μ, ν = 0, 1, ..., 9 repre-
senting the whole space–time, world volume indices are b, c =
0, 1, ..., p and eventually the transverse indices can be shown by 
i, j = p +1, ..., 9. In order to actually find out exact and all order α′
contact terms as well as bulk singularity structures of BPS strings, 
one must apply direct CFT techniques to get to the complete form 
of the so called S-matrix elements. In this section we would like to 
investigate the closed and complete form of particular BPS string 
amplitudes, a world volume gauge field and two transverse scalar 
fields in the presence of a potential (p + 1)-form field of C-term 
which is called potential of Ramond–Ramond (RR) in the whole 
space–time. This amplitude can be explored if one does all the 
CFT correlation functions of < C−2 A0φ0φ0 > S-matrix. The inter-
ested reader may find some partial results that have come out 
of the precise and direct string scattering amplitude calculations 
in [16]. Hence, one needs to entirely figure out all the correlators 

〈V (0)
A (x1)V (0)

φ (x2)V (0)
φ (x3)V

(− 3
2 ,− 1

2 )

R R (z, ̄z)〉 as well.1

To do so, one simply separates all the bosonic and fermionic 
correlation functions and starts to explore each of them. For dis-
covering explicitly all two spin operators with different numbers 
of fermion fields or currents, we also employ the so called gener-
alized Wick-like rule, that is, the two point function of fermionic 
operators gets changed with a minus sign.2

Note that all the vertex operators, propagators and on-shell re-
lations are given in section 2 of [15], where the RR vertex operator 
in asymmetric picture was first hinted in [17] and eventually its 
compact form is derived in [18]. In order to simplify all the entire 

1 Having regarded all RR momenta in bulk directions and the fact that winding 
modes are not covered in the whole ten dimensional flat space, one would get to 
know that definitely not all the elements of < V C−2 V A0 Vφ0 Vφ0 > S-matrix can be 
explored from the recent < V C−2 Vφ0 V A0 V A0 > amplitude [15], where the other 
explanations are given in [19,20].

2 xij = xi − x j , and α′ = 2.
analysis of the correlation functions, we would like to write down 
just the compact form of the S-matrix as follows.

AC−2 A0φ0φ0 ∼ Tr (λ1λ2λ3)

∫
dx1dx2dx3dx4dx5(P−/C (n−1)Mp)αβ

× Iξ1aξ2iξ3 j x
−3/4
45

×
(

(x−5/4
45 C−1

αβ )

[
aa

1ai
2a j

3 − ηi j x−2
23 aa

1

]

+ iα′k2baa
1a j

3aib
2 + iα′k1daad

3 (−ηi j x−2
23 + ai

2a j
3)

− α′2k1dk2ba j
3aibad

4 + iα′k3caa
1ai

2a jc
5

− α′2k3ck2baa
1a jcib

6 − α′2k3ck1dai
2a jcad

7

− iα′3k1dk2bk3ca jcibad
8

)
, (1)

where

I = |x12|α′ 2k1.k2 |x13|α′ 2k1.k3 |x14x15| α′ 2
2 k1.p|x23|α′ 2k2.k3 |

× x24x25| α′ 2
2 k2.p|x34x35| α′ 2

2 k3.p|x45| α′ 2
4 p.D.p,

ai
2 = ipi

(
x54

x24x25

)

aa
1 = ika

2

(
x42

x14x12
+ x52

x15x12

)
+ ika

3

(
x43

x14x13
+ x53

x15x13

)
,

a j
3 = ip j

(
x54

x34x35

)
,

aib
2 = 2−1x−1/4

45 (x24x25)
−1(
ibC−1)αβ,

aad
3 = 2−1x−1/4

45 (x14x15)
−1(
adC−1)αβ,

aibad
4 = 2−2x3/4

45 (x14x15x24x25)
−1

{
(
ibadC−1)αβ

+ α′p1
Re[x14x25]

x12x45

}
,

a jc
5 = 2−1x−1/4

45 (x34x35)
−1(
 jcC−1)αβ,

a jcib
6 = 2−2x3/4

45 (x34x35x24x25)
−1

{
(
 jcibC−1)αβ

+ α′p2
Re[x24x35]

x23x45
+ α′ 2 p3

(
Re[x24x35]

x23x45

)2}
,

a jcad
7 = 2−2x3/4

45 (x34x35x14x15)
−1

{
(
 jcadC−1)αβ

+ α′p4
Re[x14x35]

x13x45

}

with the following expressions for the above correlators

p1 =
(
ηdb(
iaC−1)αβ − ηab(
idC−1)αβ

)
,

p2 =
(
ηbc(
 ji C−1)αβ + ηi j(
cbC−1)αβ

)
,

p3 = (C−1)αβ

(
− ηbcηi j

)
,

p4 =
(
ηdc(
 jaC−1)αβ − ηac(
 jdC−1)αβ

)
.

The last fermionic correlation function is
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a jcibad
8 = <: Sα(x4) : Sβ(x5) :: ψdψa(x1) : ψbψ i(x2) : ψcψ j(x3) >

(2)

which does have various terms and can be eventually found as 
follows

a jcibad
8 =

{
(
 jcibadC−1)αβ + α′p5

Re[x14x25]
x12x45

+ α′p6
Re[x14x35]

x13x45

+ α′p7
Re[x24x35]

x23x45

+ α′ 2 p8

(
Re[x14x25]

x12x45

)(
Re[x14x35]

x13x45

)

+ α′ 2 p9

(
Re[x14x25]

x12x45

)(
Re[x24x35]

x23x45

)

+ α′ 2 p10

(
Re[x14x35]

x13x45

)(
Re[x24x35]

x23x45

)

+ α′ 2 p11

(
Re[x24x35]

x23x45

)2

+ α′ 3 p12

(
Re[x24x35]

x23x45

)(
Re[x14x25]

x12x45

)(
Re[x14x35]

x13x45

)}

× 2−3x7/4
45 (x14x15x24x25x34x35)

−1

where

p5 =
(
ηdb(
 jciaC−1)αβ − ηab(
 jcidC−1)αβ

)
,

p6 =
(
ηdc(
 jibaC−1)αβ − ηac(
 jibdC−1)αβ

)
,

p7 =
(
ηbc(
 jiadC−1)αβ + ηi j(
cbadC−1)αβ

)
,

p8 =
(
ηdbηac(
 ji C−1)αβ − ηdcηab(
 ji C−1)αβ

)
,

p9 =
(
ηdbηi j(
caC−1)αβ − ηabηi j(
cdC−1)αβ

)
,

p10 =
(

− ηdcηi j(
baC−1)αβ + ηacηi j(
bdC−1)αβ

)

p11 =
(

− ηbcηi j(
adC−1)αβ

)
,

p12 = (C−1)αβ

(
ηi jηabηdc − ηi jηacηdb

)
. (3)

Note that we wrote the amplitude in a manifest way so that, 
one is able to explicitly check that the amplitude is invariant un-
der SL(2, R) transformation and volume of conformal killing group 
can be cancelled by fixing three positions of space–time, where 
we choose just to fix all the locations of open strings.3 Thus, one 
needs to integrate out the remaining moduli space which is up-
per half plane and indeed all the integrations related to RR loca-
tion [21]. Note that all the details of integrations are explained in 
Appendix B of [13]. However, in order to explore the integrations 
for p3 of a jcib

6 and p12 of a jcibad
8 , one must find the algebraic so-

lution of the following integrals 
∫

d2z|1 − z|a|z|b(z − z̄)c(z + z̄)3 so 
that all a, b, c are written down in terms of any arbitrary Man-
delstam variables. Once we are dealing with (z + z̄) the result is 

3 x1 = 0, x2 = 1, x3 → ∞.
explored in [21], meanwhile for (z + z̄)2 one derives the entire re-
sult from [13].4 For the first time, one finds the algebraic solution 
for the above integrals for d = 3 as follows:∫

d2z|1 − z|a|z|b(z − z̄)c(z + z̄)3

= (2i)c23π
K1 + K2


(−a
2 )
(−b

2 )
(
(a+b)

2 + c + 5)
(4)

where the functions K1, K2 are

K1 = 
(1 + (a + c)

2
)
(4 + (b + c)

2
)
(−1 − (a + b + c)

2
)

× 
(
1 + c

2
),

K2 = 3

2

(2 + (a + c)

2
)
(3 + (b + c)

2
)
(−2 − (a + b + c)

2
)

× 
(
1 + c

2
). (5)

Having set the solution for the new integrals, one would be able 
to obtain the final result for the S-matrix element in an asymmet-
ric picture as follows

AC−2 A0φ0φ0 = A1 +A2 +A3 +A41 +A42 +A5

A61 +A62 +A63 +A64 +A71 +A72 +A81 +A82

A83 +A84 +A85 +A86 +A87 +A88 +A89 (6)

where

A1 ∼ iTr (P−/C (n−1)Mp)

[
− 2suk2.ξ1 p.ξ2 p.ξ3L1

+ 2tuk3.ξ1 p.ξ2 p.ξ3L1 + 2sk2.ξ1ξ3.ξ2L2(−s − u)(−t − u)

− 2tk3.ξ1ξ3.ξ2L2(−s − u)(−t − u)

]
,

A2 ∼ ik2bξ2i p.ξ3Tr (P−/C (n−1)Mp
ib)L1

{
2usk2.ξ1 − 2utk3.ξ1

}

A3 ∼ ik1dξ1aTr (P−/C (n−1)Mp
ad)

[
− L3

(−s − u)(−t − u)

(−u − 1
2 )

ξ3.ξ2

− p.ξ2 p.ξ3L4

]

A41 ∼ ip.ξ3Tr (P−/C (n−1)Mp
ibad)ξ2iξ1ak2bk1d L4

A42 ∼ ip.ξ3ξ2iTr (P−/C (n−1)Mp
ia)L1

{
tsuξ1a + 2suk2.ξ1k1a

}

A5 ∼ ip.ξ2k3cξ3 jTr (P−/C (n−1)Mp
 jc)L1

{
2suk2.ξ1 − 2tuk3.ξ1

}

A61 ∼ iTr (P−/C (n−1)Mp
 jcib)ξ2iξ3 jk3ck2b L1(−2suk2.ξ1

+ 2tuk3.ξ1)

A62 ∼ iL3Tr (P−/C (n−1)Mp
 ji)ξ2iξ3 j

{
2suk2.ξ1 − 2tuk3.ξ1

}

A63 ∼ iL3Tr (P−/C (n−1)Mp
cb)ξ2.ξ3(−k2bk3c)

{
4sk2.ξ1 − 4tk3.ξ1

}

A64 ∼ −iu(2st − u)ξ2.ξ3Tr (P−/C (n−1)Mp)L2(−2sk2.ξ1 + 2tk3.ξ1)

4 Where definitions are

s = −α′

2
(k1 + k3)2, t = −α′

2
(k1 + k2)2, u = −α′

2
(k2 + k3)2.



290 E. Hatefi / Physics Letters B 761 (2016) 287–295
A71 ∼ ip.ξ2Tr (P−/C (n−1)Mp
 jcad)ξ1aξ3 jk3ck1d L4

A72 ∼ ip.ξ2Tr (P−/C (n−1)Mp
 ja)L1ξ3 j

{
− utsξ1a − 2utk3.ξ1k1a

}

A81 ∼ −iTr (P−/C (n−1)Mp
 jcibad)ξ2iξ1aξ3 jk1dk2bk3c L4

A82 ∼ −isuTr (P−/C (n−1)Mp
 jcia)ξ2iξ3 jk3c L1

{
tξ1a + 2k2.ξ1k1a

}

A83 ∼ −ituTr (P−/C (n−1)Mp
 jiba)ξ3 jξ2ik2b L1

{
− sξ1a

− 2k3.ξ1k1a

}

A84 ∼ −istk1dξ1a L1

{
uξ2iξ3 jTr (P−/C (n−1)Mp
 jiad)

− 2ξ2.ξ3k3ck2bTr (P−/C (n−1)Mp
cbad)

}

A85 ∼ −iTr (P−/C (n−1)Mp
 ji)ξ2iξ3 j L3

{
− 2tuk3.ξ1 + 2suk2.ξ1

}

A86 ∼ −iξ3.ξ2Tr (P−/C (n−1)Mp
ca)L3

{
2tsk3cξ1a + 4sk2.ξ1k3ck1a

}

A87 ∼ −iξ3.ξ2Tr (P−/C (n−1)Mp
ba)L3

{
2tsk2bξ1a + 4tk3.ξ1k2bk1a

}

A88 ∼ iL3Tr (P−/C (n−1)Mp
ad)ξ1ak1d(uξ2.ξ3)

{−2st + u + s + t

(−u − 1
2 )

}

A89 ∼ −iξ2.ξ3L2Tr (P−/C (n−1)Mp)(2sk2.ξ1 − 2tk3.ξ1)

(
tu + s(t +

u + 2tu)

)
(7)

with the definition for the functions L1, L2, L3, L4 as follows

L1 = (2)−2(t+s+u)π

× 
(−u)
(−s)
(−t)
(−t − s − u + 1
2 )


(−u − t + 1)
(−t − s + 1)
(−s − u + 1)

L2 = (2)−2(t+s+u+1)π

× 
(−u)
(−s)
(−t)
(−t − s − u − 1
2 )


(−u − t + 1)
(−t − s + 1)
(−s − u + 1)

L3 = (2)−2(t+s+u)−1π

× 
(−u + 1
2 )
(−s + 1

2 )
(−t + 1
2 )
(−t − s − u)


(−u − t + 1)
(−t − s + 1)
(−s − u + 1)
,

L4 = (2)−2(t+s+u)+1π

× 
(−u + 1
2 )
(−s + 1

2 )
(−t + 1
2 )
(−t − s − u + 1)


(−u − t + 1)
(−t − s + 1)
(−s − u + 1)
.

(8)

Let’s elaborate on the details. In fact the sum of the 3rd term 
of A1, 1st term of A64 and the 1st term of A89 is zero as well 
as the sum of the 4th term of A1, 2nd term of A64 and the 2nd 
term of A89. This obviously means that the last two terms of A1, 
the entire A64 and the whole A89 have no contribution to the 
asymmetric S-matrix at all.

Note that A62 is precisely cancelled with the entire terms in-
side A85, this also clarifies that A62, A85 will not contribute to 
our physical asymmetric amplitude either. On the other hand, if 
we just consider the RR in terms of its field strength we get to 
obtain the following [4]
A<C−1 A−1φ0φ0> = A1 +A2 +A3 +A4 +A5 +A6 +A7

+A8 +A9 +A10 (9)

where

A1 ∼ −2−1/2ξ1aξ2iξ3 j

[
k3ck2bTr (P− /H (n)Mp
 jciba)

− k2b p jTr (P− /H (n)Mp
iba) − k3c piTr (P− /H (n)Mp
 jca)

+ pi p jTr (P− /H (n)Mpγ
a)

]
4(−s − t − u)L3,

A2 ∼ 2−1/2
{

− 2ξ1.k2k3cξ3 jξ2iTr (P− /H (n)Mp
 jci)

}
(us)L1

A3 ∼ 2−1/2
{
ξ1aξ2iξ3 jTr (P− /H (n)Mp
 jia)

}
(−ust)L1

A4 ∼ 2−1/2
{

2k3.ξ1k2bξ3 jξ2iTr (P− /H (n)Mp
 jib)

}
(ut)L1

A5 ∼ 2−1/2
{

2ξ3.ξ2k2bk3cξ1aTr (P− /H (n)Mp
cba)

}
(st)L1

A6 ∼ 21/2(us)L1

{
p jξ1.k2ξ2iξ3 jTr (P− /H (n)Mpγ

i)

}

A7 ∼ −2−1/2(ut)L1

{
2k3.ξ1 piξ3 jξ2iTr (P− /H (n)Mpγ

j)

}

A8 ∼ 21/2L3

{
2k2.ξ1k3cTr (P− /H (n)Mpγ

c)(−sξ2.ξ3)

}
.

A9 ∼ 21/2L3

{
2k3.ξ1k2bTr (P− /H (n)Mpγ

b)(−tξ2.ξ3)

}

A10 ∼ 21/2L3

{
ξ1aTr (P− /H (n)Mpγ

a)(tsξ3.ξ2)

}
(10)

While the other symmetric amplitude has already been found 
in [6] to be

A<C−1 A0φ−1φ0> = A1 +A2 +A3 +A4 +A5 +A6 (11)

where

A1 ∼ 2−1/2ξ1aξ2iξ3 j p jTr (P− /H (n)Mpγ
i)

[
− 2ka

3(ut)

+ 2ka
2(us)

]
L1

A2 ∼ 2−1/2k3c

{
− 2k2.ξ1ξ2iξ3 j(us)L1Tr (P− /H (n)Mp
 jci)

+ 2k3.ξ1ξ2iξ3 j(ut)L1Tr (P− /H (n)Mp
 jci)

+ 4tξ2.ξ3k3.ξ1L3Tr (P− /H (n)Mpγ
c)

− 4sξ2.ξ3k2.ξ1L3Tr (P− /H (n)Mpγ
c)

}

A3 ∼ 2−1/2k1bξ1aξ2iξ3 j4(−u − s − t)L3

(
Tr (P− /H (n)Mp
iab)p j

− k3cTr (P− /H (n)Mp
 jciab)

)

A4 ∼ 2−1/2(ut)L1

{
− sξ1aξ2iξ3 jTr (P− /H (n)Mp
 jia)

− 2k3.ξ1k1bξ2iξ3 jTr (P− /H (n)Mp
 jib)

}
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A5 ∼ 21/2(st)L1ξ2.ξ3ξ1ak1bk3cTr (P− /H (n)Mp
cab)

A6 ∼ 21/2ξ3.ξ2

(
tsTr (P− /H (n)Mpγ

a)ξ1a

+ 2tk3.ξ1Tr (P− /H (n)Mpγ
b)k1b

)
L3 (12)

where the functions L1, L2 are given in (8). In the next section we 
are going to compare within details all the singularity structures 
of asymmetric with symmetric analysis and then start producing 
an infinite number of t, s-channel bulk singularity structures in an 
EFT as well.

3. Singularity comparisons

In this section we are going to provide precise analysis of all 
singularity structures involving even bulk singularities that are 
about to be found in this paper. To do so, we first try to regenerate 
singularities that have been already derived in symmetric analysis.

In order to produce all infinite t-channel poles of symmetric 
result, one needs to start adding up the first term of A61 with the 
second term of A82 and apply momentum conservation along the 
brane to obtain

2isuk2.ξ1L1Tr (P−/C (n−1)Mp
 jcid)ξ2iξ3 jk3c(p + k3)d (13)

obviously the 2nd term in above equation has no contribution to 
S-matrix, because it is symmetric under interchanging k3c , k3d but 
also is antisymmetric as it involves ε tensor so the result for the 
2nd term is zero, meanwhile its first term (p/C = /H ) does gen-
erate A2 of (9) (which is the fifth term of S-matrix elements in 
symmetric picture). One can do the same procedure, namely by 
adding the 2nd terms of A83, A61 and using momentum conser-
vation, we gain all infinite s-channel poles or A4 of (9) as follows

−2ituk3.ξ1L1Tr (P−/C (n−1)Mp
 jibd)ξ2iξ3 jk2b(p + k2)d (14)

Note that, making use of momentum conservation and
(p/C = /H ), one reveals that the 2nd term of A84 exactly constructs 
all infinite u-channel poles or A5 of (9) as well.

Indeed for this particular < C−2 A0φ0φ0 > S-matrix, we have 
evidently shown that there are no u-channel Bulk singularity 
structures at all. The physical explanation for this is as follows. 
Suppose, we take into account the following rule in effective field 
theory side,

A = V a
α(C p−3, A1, A)Gab

αβ(A)V b
β(A, φ2, φ3), (15)

we then may clarify that the vertex of V a
α(C p−3, A1, A) must be 

derived from Chern–Simons coupling as (2πα′)2
∫
�p+1

C p−3 ∧ F ∧ F

and in fact all (p + 1) indices have been considered and there are 
no leftover indices to be compensated by transverse directions (we 
have no external scalar field for this part of the sub field theory 
amplitude), which is why we no longer have any u-channel bulk 
singularity structures.

All u-channel gauge field poles can be written as

μp(2πα′)22k2bk3c pdξ2.ξ3
1

(p − 3)!u εa0···ap−4cbadCa0···ap−4ξ1a

×
∞∑

n=−1

bn

(
α′

2

)n+1

(s + t)n+1 (16)

Considering (15), taking the fixed scalar fields’s kinetic
term in the action (it receives no correction at all) as

T p
(2πα′)2

Tr (Daφi Daφi), one finds out the V b(A, φ2, φ3) and gauge 
2 β
field propagator.5 By taking the higher derivative corrections to 
Chern–Simons coupling as follows

i(2πα′)2μp

∫
dp+1σ

∞∑
n=−1

bn(α
′)n+1

× C p−3 ∧ Da0 · · · Dan F ∧ Da0 · · · Dan F (18)

we would be able to exactly generate the extension of the 
V a

α(C p−3, A1, A) vertex operator to all order α′ as below

V a
α(C p−3, A1, A) = (2πα′)2μp

(p − 3)! εa0···ap−1a

× Ca0···ap−4ξ1ap−3kap−2 pap−1

∞∑
n=−1

bn(t + s)n+1

(19)

where k = (k2 + k3) is employed and it now becomes clear that if 
we substitute (19) and (17) into field theory amplitude, then all 
order u-channel singularities of string amplitude in (16) can be 
explored in EFT as well.

Adding the 1st term of A63 with the 2nd term of A86 and ap-
plying momentum conservation, one explores

4isk2.ξ1ξ3.ξ2L3Tr (P−/C (n−1)Mp
cd)k3c(p + k3)d (20)

where the second term in above equation has no contribution to 
S-matrix, while its first term does generate precisely A8 of sym-
metric result in (9) (of course with a different sign, which is over 
all factor at the end).

Having added up the 2nd terms of A87, A63, we were able to 
obtain the following term

4itk3.ξ1ξ3.ξ2L3Tr (P−/C (n−1)Mp
bd)k2b(p + k2)d (21)

which is exactly A9 of symmetric result of (9) (with a different 
sign).

Eventually if we add up all the first terms of A3, A86, A87 with 
the entire A88, we derive

−2itsξ1aξ3.ξ2L3Tr (P−/C (n−1)Mp
da)(k1 + k2 + k3)d (22)

Now using momentum conservation and (p/C = /H ), one is able 
to regenerate precisely A10 of symmetric result of (9). Thus all the 
infinite (t + s +u) channel poles have also been reconstructed. Note 
to the following important point.

Indeed here for this particular < C−2 A0φ0φ0 > S-matrix (unlike 
< C−2φ0 A0 A0 > S-matrix), we have clearly shown that there is 
not even one (t + s + u)-channel Bulk singularity structure. The 
physical explanation for that is as follows. Suppose, we consider 
the following rule in effective field theory side,

A = V a
α(C p−1, A)Gab

αβ(A)V b
β(A, A1, φ2, φ3)

then one observes that the vertex of V a
α(C p−1, A) must be derived 

from Chern–Simons coupling as (2πα′) 
∫
�p+1

C p−1 ∧ F and in fact 
all (p + 1) indices have been taken into account and there are no 
leftover indices to be compensated by transverse directions either, 
that is why we have no (t + s + u)-channel bulk singularity struc-
tures any more. It is worth noting that the universal conjecture of 

5

V b
β (A, φ2, φ3) = i(2πα′)2 T pξ2.ξ3(k2 − k3)bTr (λ2λ3λβ)

Gab
αβ(A) = −i

(2πα′)2 T p

δabδαβ

k2
. (17)
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all order α′ corrections in [22] has played the significant role in 
matching all Supersymmetric Yang–Mills couplings at both string 
and EFT levels.

Now if we consider two gauge field two scalar couplings to 
all order in α′ (appeared in [19]) and construct V b

β(A, A1, φ2, φ3), 
then we will be able to precisely generate all infinite gauge field 
of (t + s + u) channels. These poles have already been constructed 
out in [4], where we advise the reader to explore them directly in 
section four of [4]. Furthermore, for the same reasons, one imme-
diately expects not to have u-channel Bulk singularities either.

Considering the 1st term of A2 of asymmetric amplitude and 
the 2nd term of A42, applying momentum conservation and taking 
(p/C = /H ), not only we obtain the A6 of symmetric result in (9)

−2isuL1k2.ξ1 p.ξ3ξ2iTr (P−/C (n−1)Mp
id)(p + k3)d (23)

but also we generate a new kind of bulk pole. Indeed the 2nd 
term in (23) is related to an infinite number of t-channel extra 
bulk poles, which will be taken care of.

Finally, by adding the 2nd terms of A5 and A72 and making 
use of momentum conservation, we produce the following terms

2iutk3.ξ1 p.ξ2L1ξ3 jTr (P−/C (n−1)Mp
 jc)(p + k2)c (24)

where the first term in (24) does produce A7 of symmetric result 
in (9), while the 2nd term in (24) is exactly an infinite number of 
s-channel extra bulk poles for which remain to be explored. Notice 
that the first terms of A5, A1, also the second terms of A2, A1
of asymmetric S-matrix (6) do generate an infinite number of bulk 
t, s-channel singularities accordingly, where we consider them in 
the next sections as well.

4. All order t, s-channel bulk singularity structures

As we have explicitly shown in the previous section, we could 
precisely produce all the singularities of (9) by using some (but 
definitely not all) of the singularities of asymmetric S-matrix. In-
deed unlike the previous section, here not all the indices of Wess–
Zumino action can be covered by world volume indices and in 
fact due to presence of external scalar field states as well as all 
non-zero p.ξ1, p.ξ2 terms, one expects to have bulk t, s channel 
singularities as well, for which we discuss from now on.

All infinite massless scalar t, s channel singularities (not Bulk 
t, s-channel singularities) have already been generated in sec-
tion 4.1 of [4] but the aim of this section is to find out all order 
t, s channel Bulk singularity structures.

Performing careful comparisons of all singularities in both sym-
metric and antisymmetric amplitudes, as well as extracting all 
the related traces, one would be able to write down all order 
t-channel Bulk singularity structures that do exist just in asym-
metric S-matrix (6) as follows:

2iusk2.ξ1ξ2iξ3 j
16L1

(p + 1)!
{
εa0...ap

(
− pi p jCa0...ap

)

+ k3cε
a0...ap−1c

(
piC ja0...ap−1 − p jCia0...ap−1

)}
(25)

and also all order s-channel bulk singularities as follows

2iutk3.ξ1ξ2iξ3 j
16L1

(p + 1)!
{
εa0...ap

(
pi p jCa0...ap

)

+ k2bε
a0...ap−1b

(
piC ja0...ap−1 − p jCia0...ap−1

)}
(26)

Note that all infinite t, s channel bulk singularities of (25)
and (26), are needed as we are going to produce them in an EFT 
by introducing various couplings as follows.
Here we just produce all the infinite t-channel bulk singulari-
ties of (25) and then according to symmetries and by exchanging 
the scalar fields’s momenta k2 ↔ k3 and interchanging the scalar 
fields polarizations ξ2 ↔ ξ3 one also will be able to explore all the 
infinite s-channel bulk singularities in an EFT as well.

Let us apply usL1 expansion to (25) to generate all infinite 
t-channel Bulk singularity singularities as follows

2ik2.ξ1
16π2μp

(p + 1)!
∞∑

n=−1

bn
1

t
(u + s)n+1Tr (λ1λ2λ3)

×
{(

− εa0...ap p.ξ2 p.ξ3Ca0...ap

)

+ k3cε
a0...ap−1cξ2iξ3 j

(
pi C ja0...ap−1 − p jCia0...ap−1

)}
(27)

First we would like to reconstruct the bulk poles that are men-
tioned in the first two lines of (27), where we need to actually 
consider the following sub-amplitude in an effective field theory

A = V i
α(C p+1, φ3, φ)Gij

αβ(φ)V j
β(φ, A1, φ2), (28)

V j
β(φ, A1, φ2) must be re-constructed by means of the stan-

dard scalar fields’s kinetic term in DBI action that has no cor-
rection and has already been fixed in the effective action as 
(2πα′)2

2 Tr (Daφ
i Daφi) and the other vertices are

V j
β(φ, A1, φ2) = −2i(2πα′)2T pk2.ξ1ξ

j
2 Tr (λ1λ2λβ)

Gij
αβ(φ) = −i

(2πα′)2T p

δi jδαβ

k2
, (29)

so that k2 = −(k2 + k1)
2 = t is replaced in the propagator.

To explore the vertex of V i
α(C p+1, φ3, φ) at leading order, 

one needs to keep in mind the following vertex
μp(2πα′)2

2(p+1)!
∫

dp+1σεa0···ap Tr (φ jφi)∂i∂ j Ca0···ap to be able to extract 
the vertex of an on-shell scalar and an off-shell scalar field as well 
as the potential C-term as follows

V i
α(C p+1, φ3, φ) = μp(2πα′)2

(p + 1)! pi p.ξ3ε
a0···ap Ca0···ap Tr (λ3λα)

(30)

Substituting (30) and (29) into (28), we find out the first 
t-channel bulk singularity of string amplitude. The propagator is 
fixed and there is no correction to V j

β(φ, A1, φ2), given the fact 
that it is obtained from kinetic term, therefore we conclude that 
there is no way of producing all the other bulk t-channel singular-
ities, except one inserts all order α′ higher derivative corrections 
to the following coupling

μp(2πα′)2

2(p + 1)!
∫

dp+1σεa0···ap

∞∑
n=−1

bn(α
′)n

×
(

Tr (Da1 ...Danφ
i Da1 ...Danφ j)

)
∂i∂ jCa0···ap (31)

to actually derive the all order extended vertex operator of 
V i

α(C p+1, φ3, φ) as below

V i
α(C p+1, φ3, φ)

= μp(2πα′)2

(p + 1)! Tr (λ3λα)εa0···ap

∞∑
n=−1

bn(k3.k)n+1 p.ξ3 piCa0···ap

(32)
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where 
∑∞

n=−1 bn(k3.k)n+1 = ∑∞
n=−1 bn(s + u)n+1 should be used. 

Now if one inserts (32) into (28) and keeps fixed (29) then all 
order t-channel bulk singularities in the EFT are found out to be

∞∑
n=−1

bn
1

t
(u + s)n+1 16π2μp

(p + 1)! 2k2.ξ1ε
a0···ap Ca0···ap p.ξ2 p.ξ3 (33)

which are precisely all the t-channel bulk poles of the string am-
plitude that appeared in the first two lines of (27), so we could 
regenerate them in an EFT as promised.

Eventually we would like to produce the rest of the t-channel 
bulk poles as follows

2ik2.ξ1
16π2μp

(p + 1)!
∞∑

n=−1

bn
1

t
(u + s)n+1Tr (λ1λ2λ3)k3cε

a0...ap−1c

× ξ2iξ3 j

(
pi C ja0...ap−1 − p jCia0...ap−1

)
(34)

where the same field theory amplitude (28) is needed. Note that 
due to (−p j Cia0...ap−1) term in string amplitude, one might think 
that we just need to employ one scalar field from Taylor expansion 
and the other external scalar field from Pull-Back of brane in an 
EFT but as we can see from string amplitude we need to produce 
the other term (pi C ja0...ap−1) in an EFT as well, so that the proper 
combination of terms in EFT is needed.

Suppose both external scalar fields come from pull-back of 
brane as

(2πα′)2μp

2

∫
dp+1σ

1

(p − 1)!ε
a0···ap Tr

(
Da0φ

i Da1φ
j
)

Cija2···ap

(35)

More significantly, consider the following Bianchi identity

εa0···ap

(
− pap (p + 1)Hij

a0···ap−1 − p j Hi
a0···ap

+ pi H j
a0···ap

)

= dH p+2 = 0 (36)

extract the momentum of RR to make it just in terms of the po-
tential of RR as below

pa0ε
a0···ap

(
− pap p(p + 1)Cija1···ap−1 − p jCia1···ap + piC ja1···ap

)

= 0 (37)

Now if we extract the vertex of an on-shell scalar, an off-shell 
scalar field and a potential C-field from (35) and bear in mind 
the fact that the covariant derivative Da0 can act just on C-field 
(also taking integration by parts), expecting to obtain the following 
vertex operator

V iα(C p+1, φ3, φ)

= μp(2πα′)2 p(p + 1)

(p + 1)! Tr (λ3λα)εa0···ap Ci ja1···ap−1k3a0 ppap ξ3 j

(38)

Indeed we now can use (37) to be able to replace in (38)
pap p(p + 1)Cija1···ap−1 in terms of (−p j Cia1···ap + pi C ja1···ap ). By do-
ing so and taking into account (29), replacing (37) inside (38) as 
well as holding (28), we are able to construct out just the first 
t-channel bulk singularity structure of (34) in an EFT.

Given the previous clarifications and in order to regenerate an 
infinite number of t-channel bulk singularity structures in EFT, one 
has to apply the correct higher derivative corrections to pull-back 
as follows
(2πα′)2μp

2

∫
dp+1σ

1

(p − 1)!ε
a0···ap

×
∞∑

n=−1

bn(α
′)nTr

(
Da0 Da1 ...Danφ

i Da1 Da1 ...Danφ j
)

Cija2···ap

(39)

so that the all order extension of the above vertex operator would 
be gained as follows

V iα(C p+1, φ3, φ) = Tr (λ3λα)
μp(2πα′)2

(p − 1)! εa0···ap

×
∞∑

n=−1

bn(s + u)n+1Cija1···ap−1k3a0 ppap ξ3 j

(40)

Once more the contributions of (29), replacement (37) inside 
(40) as well as the sub field theory amplitude (28), are taken. Hav-
ing carried it out, we would be able to precisely produce all order 
t-channel bulk singularity structures of (34) in an effective field 
theory as well.

This ends our goal of producing an infinite number of t, s-
channel bulk singularity structures of BPS branes. It is worth men-
tioning that, there is another way of producing t, s-channel bulk 
poles in such a way that one needs to relate combination of cer-
tain terms in the effective actions of BPS branes, let’s devote the 
rest of this section to it.

Consider the action where an scalar comes from Taylor expan-
sion and the other scalar comes from pull-back as follows

(2πα′)2μp

∫
dp+1σ

1

(p)!ε
a0···ap Tr

(
φ j Da0φ

i
)

∂ jCia1···ap (41)

and add (35) with (41) as well as the terms that have the same 
order in α′ such as Myers terms

i

4
(2πα′)2μp

∫
dp+1σ

1

(p − 1)!ε
a0···ap Tr

(
Fa0a1 [φ j, φi]

)
Cija2···ap ,

(42)

so that after having taken into account the integrations by parts, 
we would have left with the desired action as

(2πα′)2μp

∫
dp+1σ

1

p!ε
a0···ap Tr

(
Da0φ

jφi
)

piC ja1···ap (43)

One may use (43) to extract V i
α(C p+1, φ3, φ) as

V i
α(C p+1, φ3, φ) = μp(2πα′)2

p! Tr (λ3λα)εa0···ap piC ja1···ap k3a0ξ3 j

(44)

Furthermore, we might consider the other term so that this 
turn φi comes from pull-back and φ j comes from Taylor expan-
sion as follows

−(2πα′)2μp

∫
dp+1σ

1

p!ε
a0···ap Tr

(
Da0φ

iφ j
)

p jCia1···ap (45)

keeping in mind (45) and extracting the rest of the terms, 
V i

α(C p+1, φ3, φ) vertex is got to be

V i
α(C p+1, φ3, φ)

= −μp(2πα′)2

Tr (λ3λα)εa0···ap p jCia1···ap (k3 + p)a0ξ3 j (46)

p!
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Now we may want to add (44) with (46) and use the Bianchi 
identity pa0ε

a0···ap = 0 to produce the leading order of the ver-
tex operator in an EFT so that the first t-channel bulk singularity 
structure of (34) is produced. We could apply the correct higher 
derivative corrections to (43) and (45) such as

μp(2πα′)2

p!
∫

dp+1σεa0···ap

×
∞∑

n=−1

bn(α
′)nTr

(
Da0 Da1 ...Danφ

j Da1 ...Danφi
)

piC ja1···ap

(47)

to indeed get to all order t, s-channel bulk poles in an EFT. Finally, 
let us turn to all contact interactions as well.

5. All order α′ contact interaction analysis

Let us construct the complete and all order contact terms of 
this S-matrix. If we start to add all the first terms of A82, A83, 
A84 of asymmetric amplitude in (6) we then derive

isutTr (P−/C (n−1)Mp
 jiba)ξ2iξ3 jξ1a(k3 + k2 + k1)b L1 (48)

where by using momentum conservation along the brane, the 
above terms exactly produce A3 of symmetric amplitude in (9).

Considering the 1st terms A42, A72 and extracting the trace, 
one finds out the following terms

−iustL1ξ1aξ2iξ3 j
16

(p + 1)!ε
a0...ap−1(pi C ja0...ap−1 − p jCia0...ap−1)

(49)

where we consider these new terms later on.
Note that A81 precisely does produce the 1st term of A1 of 

symmetric result of (9). On the other hand, using momentum con-
servation, A71 can be written down as

ip.ξ2Tr (P−/C (n−1)Mp
 jcad)ξ1aξ3 jk3c L4(−p − k3 − k2)d (50)

where using the anti symmetric property of ε , one reveals that the 
2nd term in (50) has no contribution. Making use of (p/C = /H ), 
the 1st term of (50) generates the 3rd term of A1 of symmetric 
amplitude in (9) (which is contact interaction term), while the last 
term in (50) is an extra contact interaction that we take it into 
account in a moment. Likewise, the same analysis holds for A41 as 
follows

ip.ξ3Tr (P−/C (n−1)Mp
ibad)ξ1aξ2ik2b L4(−p − k2 − k3)d (51)

where the 1st term in (51) does reconstruct the 2nd term of A1
of symmetric amplitude in (9) (its second term has zero contribu-
tion), meanwhile the last term in (51) is an extra contact interac-
tion that we regard it in the next sections as well.

Ultimately, the 2nd term A3 of asymmetric amplitude in (6) is 
written down as

−ip.ξ3 p.ξ2Tr (P−/C (n−1)Mp
ad)ξ1a L4(−p − k2 − k3)d (52)

indeed the first term in above equation regenerates the 4th contact 
term A1 of symmetric amplitude in (9).

Hence, we are able to produce all the contact interactions of 
(9) by using the elements of asymmetric S-matrix. However, the 
last two terms of (52) are extra contact terms in asymmetric 
S-matrix (6) and we claim their contribution is needed to our ac-
tual S-matrix as we demonstrate it right now.

Let us just end this section by adding all the extra contact in-
teractions, extracting all the traces and using the antisymmetric 
property of ε tensor to be able to essentially obtain the following 
new contact terms to all orders

iξ1aξ2iξ3 j
16

(p − 1)!
{

L4

(
(k2 + k3)d pi p jεa0...ap−2adCa0...ap−2

+ k3dk2bε
a0...ap−3bad(pi C ja0...ap−3 − p jCia0...ap−3)

)

− ustL1
1

p(p + 1)
εa0...ap−1a

(
piC ja0...ap−1 − p jCia0...ap−1

)}
(53)

The first term in (53) is symmetric under interchanging both 
scalar fields and is needed in the string theory amplitude as it can 
be explored by means of Taylor expansions of the Effective field 
theory couplings, whereas its infinite higher derivative corrections 
can also be explored by applying appropriate higher derivative cor-
rections to either Wess–Zumino or Chern–Simons couplings. As the 
method for extracting all order α′ corrections to BPS contact in-
teractions has been comprehensively explained in section five of 
[4] and [6] accordingly. Note also, as we explained earlier on, by 
combining the couplings of (43) and (45) and inserting the cor-
rect higher derivative corrections to them, one immediately starts 
to generate all order α′ corrections to all new BPS contact terms 
that have been released in (53).

Notice that, since we have found all these terms by direct 
S-matrix analysis, one assured that the coefficients of the correc-
tions are also exact and have no ambiguity any more. Ultimately, it 
is worth to point out that several new couplings within new struc-
tures have also been explored in section 9 of [6].

By explicit computations, it was also revealed that in an effec-
tive field theory, most of the super gravity field contents in the 
actions should be various functions of SYM. Because it is evidently 
realized that either Taylor expanded of transverse scalar fields (for 
the background fields) or some combinations of pull-back, Taylor 
expansion employed and this has been first regarded in the so 
called Dielectric effect [3].

One may have some hopes in figuring out the importance of 
the above new couplings, results for the S-matrices to construct 
not only future research areas in theoretical high energy physics, 
most notably in D-branes area but also in discovering new sort 
of Myers terms as well as constructing higher point functions or 
mathematical results (symmetries) behind the scattering ampli-
tude prospectives. We intend to investigate and go through some 
of unanswered open questions in near future.

6. Conclusion

In this paper we started exploring the complete form of the 
S-matrix of two transverse scalar fields, a gauge field and a po-
tential RR form-field in type IIA, IIB superstring theory, namely 
among other contents, we have derived even the terms that explic-
itly carry p.ξ1 and p.ξ2 elements in the string amplitude. For the 
last part of the S-matrix we needed to find out the explicit form 
of integrations on upper half plane for arbitrary combinations of 
Mandelstam variables including the terms that do clearly involve ∫

d2z|1 − z|a|z|b(z − z̄)c(z + z̄)3, where this was derived.
We also generated an infinite number of t, s channel bulk sin-

gularity structures by means of all order α′ corrections to pull-back 
of brane and highlighted the fact that unlike [15], neither there 
are u-channel bulk nor (t + s + u)-channel bulk singularity struc-
tures. Due to presence of the complete form of S-matrix, several 
new contact interaction couplings in (53) have been discovered, 
whereas these terms can be verified at the level of effective field 
theory by either the combinations of Myers terms, pull-back, Tay-
lor expanded of scalar fields or the mixed combination of the 
couplings of (43) and (45). Given the method that is explained 
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in section five of [4] and [6], one is able to constantly apply the 
higher derivative corrections on contact terms and immediately ex-
plores their generalization to all orders in α′ .
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