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ADHD is characterized by increased intra-individual variability in response times during the performance of
cognitive tasks. However, little is known about developmental changes in intra-individual variability, and how
these changes relate to cognitive performance. Twenty subjects with ADHD aged 7–24 years and 20 age-
matched, typically developing controls participated in an fMRI-scan while they performed a go-no-go task. We
fit an ex-Gaussian distribution on the response distribution to objectively separate extremely slow responses,
related to lapses of attention, from variability on fast responses. We assessed developmental changes in these
intra-individual variability measures, and investigated their relation to no-go performance. Results show that
the ex-Gaussian measures were better predictors of no-go performance than traditional measures of reaction
time. Furthermore, we found between-group differences in the change in ex-Gaussian parameters with age,
and their relation to task performance: subjects with ADHD showed age-related decreases in their variability
on fast responses (sigma), but not in lapses of attention (tau), whereas control subjects showed a decrease in
both measures of variability. For control subjects, but not subjects with ADHD, this age-related reduction in var-
iability was predictive of task performance. This group difference was reflected in neural activation: for typically
developing subjects, the age-related decrease in intra-individual variability on fast responses (sigma) predicted
activity in the dorsal anterior cingulate gyrus (dACG),whereas for subjectswith ADHD, activity in this regionwas
related to improved no-go performance with age, but not to intra-individual variability. These data show that
using more sophisticated measures of intra-individual variability allows the capturing of the dynamics of task
performance and associated neural changes not permitted by more traditional measures.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

ADHD is a common developmental disorder that affects approxi-
mately 5% of all children. An estimated 50% of affected children outgrow
the disorder (Lara et al., 2009; Schweren et al., 2013), suggesting that
development itself may be a factor in the etiology of ADHD. It is becom-
ing increasingly clear that ADHD is heterogeneous, with differences
between affected individuals in cognitive deficits and the underlying
neurobiology (Durston et al., 2011; Sonuga-Barke, 2005a). However,
one surprisingly consistent finding is that individuals with ADHD
showmore intra-individual variability in the timing of responses during
neurocognitive tasks than controls (Alderson et al., 2007; Castellanos
et al., 2005; Klein et al., 2006; Simmonds et al., 2007; Wodka et al.,
2007). Intra-individual variability reflects temporal variation within an
individual3s performance on a cognitive task. This temporal variation
is reflected in the shape of the response time distribution. One approach
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to understand how between-subject differences affect intra-individual
variability is to explicitly investigate their effect on parameters that
describe the response time distribution.

Most often, response time (RT) variability is computed on the basis
of the mean and standard deviations of reaction times across a task,
resulting in a single point estimate of variability across the task. The
use of such RTmeasures assumes that the underlying response distribu-
tion is normal (Gaussian). However recent studies have shown that this
assumption does not hold true in ADHD, due to infrequent extremely
slow responses (in the absence of extremely fast responses) (Buzy
et al., 2009; Epstein et al., 2009; Hervey et al., 2006; Leth-Steensen
et al., 2000). These extremely slow responses have been linked to
attentional lapses, where the subject is momentarily distracted from
performing the task, and to which individuals with ADHD may be
more prone than controls. By separating extremely slow responses
from the distribution of faster responses in the analyses, one is able to
estimate both more accurately. One way to achieve this is to use the
ex-Gaussian distribution model. This distribution is a convolution of
a normal (Gaussian) distribution, with mean mu (μ) and standard
deviation sigma (σ) and an exponential distribution with mean tau
(τ). Tau represents the positive skew in the data, or the variability of
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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slow responses, whereas mu and sigma approach the mean and stan-
dard deviation of the distribution of fast responses.

The shape of the response time distribution is very sensitive to
differences between subjects such as in age and task performance
(Heathcote et al., 1991; Schmiedek et al., 2007; Tse et al., 2010). Dur-
ing childhood and adolescence there is a marked decrease in intra-
individual variability (Li et al., 2009, 2004; MacDonald et al., 2009;
Williams et al., 2007, 2005). The rate at which response variability
decreases over age differs between response variability on fast re-
sponses and slow responses (McAuley et al., 2006; Williams et al.,
2005). This suggests that there may be separable neural mechanisms
that give rise to variability on fast and slow responses. This idea is
supported by studies that have specifically investigated variability in
slow responses, or attentional lapses, as captured by the ex-Gaussian
parameter tau. Attentional lapses have been linked to interference
from the default mode network (DMN), a subset of regions which
show coherent activity, suppression of which appears instrumental in
successful task performance (Christakou et al., 2013; Fassbender et al.,
2009; Liddle et al., 2011; Sonuga-Barke, 2005a; Weissman et al.,
2006). Response variability on fast responses on the other hand, as
captured by sigma, has been associated with inefficiencies in neural
processing related to altered neurotransmitter modulation, and de-
creased whitematter integration between higher order control regions,
and as such is tightly linked to between-subject differences in top down
control functions (Bellgrove et al., 2004; Bunce et al., 2007; MacDonald
et al., 2009; Stuss et al., 2003; West et al., 2002).

In this study we set out to investigate the relation between age-
related changes in intra-individual variability and performance on a
cognitive control task, in subjects with ADHD and typically developing
subjects, aged 7–24 years old. There is evidence that response variability
in ADHDmay be related to an increase in attentional lapses, as captured
by tau (Buzy et al., 2009; Hervey et al., 2006; Leth-Steensen et al., 2000;
Vaurio et al., 2009). At the same time, neuroimaging studies of children
with ADHD have suggested that cortical maturation may be delayed in
ADHD, which might result in increased sigma compared to typically
children (Castellanos et al., 2002; Seidman et al., 2005; Shaw et al.,
2013; Shaw and Rabin, 2009; Tamnes et al., 2012). Given these findings,
we hypothesized that tau and sigma would both show different devel-
opmental trajectories in ADHD. In addition we hypothesized that in
both groups sigma would be stronger predictor of no-go task perfor-
mance than tau. To address the neural underpinnings of any develop-
mental changes, we collected fMRI scans during task performance for
all participants.

2. Materials and methods

2.1. Ethics statement

This study was conducted in agreement with the Declaration of
Helsinki (Edinburgh Amendments). It was conducted in accordance to
the requirements of ICH Good Clinical Practice and the recommenda-
tions of the World Health Organization (WHO). The medical–ethical
review board of the University Medical Center Utrecht approved the
study and its procedures.

2.2. Participants

Twenty-two subjects with ADHD aged 7–24 years, and 22 individual-
ly age-matched typically developing controls participated in this study.
Participants were recruited through the Department of Psychiatry at
the University Medical Center Utrecht in the Netherlands (ADHD) and
through the local community and schools (controls).

Subjects with ADHDwere required to have received a clinical ADHD
diagnosis fromour department and additionally tomeetDSM-IV criteria
for ADHD, as assessed by standardized diagnostic interview (DISC-IV)
(Shaffer et al., 2000) or MINI (for subjects older than 16) (Sheehan
et al., 1998) at the time of the study. Ten subjects with ADHD met the
criteria for ADHD combined type, seven for ADHD inattentive subtype
and five for the hyperactive/ impulsive subtype. Three subjects with
ADHD met the criteria for ODD. Twelve subjects with ADHD were on
stimulant medication; all discontinued medication for at least 24 h
prior to the scan. No subjects with ADHD took additional psychoactive
medication. Inclusion criteria for control subjects included having no
past or current neurological disorder or psychiatric diagnosis, as
confirmed on DISC-IV or MINI, other than a single phobia. Two control
subjects met the criteria for single phobia, as did two subjects with
ADHD. Signed informed consent was obtained from adult subjects and
from parents for subjects aged younger than 18 years. Children and
adolescents signed for assent. IQ was assessed for all participants
using the Wechsler Intelligence Scale for Children, third edition
(WISC-III, ages 7–15 years) or Wechsler Adult Intelligence Scale, third
Edition (WAIS-III, from age 16 years). All participants had a total IQ
score N 75. Sample characteristics are listed in Table 1.

2.3. Go no-go paradigm

All subjects participated in an fMRI-session during which they
performed a parametric go no-go paradigm, as described previously
(Durston et al., 2002a; Durston et al., 2002b; Durston et al., 2006,
2003). The instructions were to press a button in response to visually
presented stimuli as quickly as possible, but to avoid responding to a
rare non-target. The task consisted of 5 runs, which lasted 3 min and
56 s each. Each run contained a total of 57 trials, with 75% go-trials,
resulting in a total of 70 no-go trials, including 20 of each type (with
1, 3, or 5 preceding go trials, representing increasing levels of task-
difficulty) per subject. Previous work with this task has shown that
subjects with and without ADHD make more errors on trials that
are preceded by more go-trials (Durston et al., 2002; Durston et al.,
2002a; Durston et al., 2006, 2003). Foil trials (no-go trials after 2 or 4
go trials) were also included, to prevent subjects learning the pattern.
The order of presentation of the different types of no-go trials was
pseudorandomized. In order to make the task more interesting for chil-
dren, characters from the Pokemon cartoon series were used as stimuli.
Stimulus duration was 500 ms and the interstimulus interval was
3500 ms (total trial length 4000 ms). Stimuli were projected using a
through-projection screen and slide projector. Responses were collected
using an MRI compatible air pressure button box. The fMRI task was
followed by the T1 acquisition, which lasted 10 min, during which sub-
jects watched a DVD of their choice.

2.4. Behavioral data analysis

Behavioral data were analyzed using the SPSS statistical package
(SPSS forMac, release 19, 2011. Chicago: SPSS Inc.).We calculated accu-
racy on go-trials and accuracy on no-go trials as the proportion correct
responses, both across the whole task and for the different parametric
conditions separately, and mean reaction time (RT) for correct re-
sponses on go-trials. The traditional measure of within subject variabil-
ity, the intra-individual coefficient of variation (ICV), was calculated as
the standard deviation of the RT on go trials, divided by the mean RT.
We obtained ex-Gaussian parameters (μ, σ and τ) for each subject by
fitting the ex-Gaussian distribution to the RT data from correct go tri-
als with maximum likelihood estimation, using the Simplex routine
(Nelder et al., 1965) implemented in Matlab (https://github.com/
bramzandbelt/exgauss). To check whether the ex-Gaussian fit was
successful, we inspected the ex-Gaussian Probability Density Function
(PDF), against the RT distribution for each individual subject. We used
the Mahlanobis distance (D2) to identify subjects with extreme outlier
responses on all outcome measures. For each group we calculated the
Pearson correlation between age and all outcome measures. To test
for differences between groups in the relation between age and out-
come variables, we ran a regression analysis using a dummy variable

https://github.com/bramzandbelt/exgauss
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Table 1
Subject characteristics for the 40 subjects included in the fMRI analyses.

NC (n = 20) ADHD (n = 20) P

Gender (M/F) 14/6 17/3 χ2(1,40) = 1.3; p =
Age (years) 15.1 (5.0) 7–24 15.6 (4.4) 8–23 t(38) = 2.9; p = 0.79
TIQ 116.7 (17.1) 84–152 101.6 (14.9) 75–129 t(38) = –.27; p = 0.006⁎

Hand preference (R/L/ambidexter) 20/0/0 18/0/2 χ2(1,40) = 2.1; p = 0.
ADHD subtype (combined/hyperactive/inattentive) 0/0 11/2/7 −

⁎ pb0.05
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for group: this explicitly tests whether the relationship between
response variability measures and no-go accuracy, as described by the
regression slope, differs between groups. To investigate how groups
differed in the relationship between age and task performance we
used stepwise regression to determine the best model for each group
separately.

2.5. fMRI acquisition

Before MRI acquisition all participants participated in a practice
session in a mock MRI-scanner, located in the NICHE Laboratory at the
Department of Psychiatry at the University Medical Center Utrecht.
The purpose of this session was to acquaint subjects with the scanner
environment, the fMRI paradigm and the researchers present during
the fMRI-scan, in order to reduce potential anxiety (Durston et al.,
2009). Only in the case of a successful mock-session did participants
take part in the actualMRI session. Datawere acquired on a 3.0 T Philips
AchievaMR scanner (PhilipsMedical Systems, Best, the Netherlands). A
total of 595 functional images were acquired during the task (5 runs
of 119 images) with 2D EPI-SENSE (TR = 2000 ms, TE = 35 ms, flip
angle = 70°, matrix = 68 × 66, voxel size 3 × 3.5 × 3.5, 35 slices,
FOV 240 × 119 × 240 mm). Following the task, a high-resolution
(0.75 × 0.75 × 0.8 mm) coronal three-dimensional fast-field echo
T1-weighted image was acquired in order to allow for spatial normali-
zation and visualization (TR = 10 ms, TE = 4.6 ms flip angle = 8°,
matrix = 304× 299, FOV 24 cm. 200 slices, FOV 240 × 240 × 116 mm).

2.6. fMRI image preprocessing

FMRI-data were preprocessed using SPM5 (Wellcome Dept of
Cognitive Neurology, http://www.fil.ion.ucl.ac.uk) Preprocessing
consisted of the following steps: (1) rigid body correction for inter-
frame head motion within and across runs, unwarping of the images
to remove any residual variance caused by (task-related) movement.
Estimatedmovement parameters were individually inspected to ensure
that movement did not exceed 3mm or the size of one voxel. None of
the 40 subjects included in the final analysis had more than 3 mm
motion. (2) Co-registration of functional and anatomical images.
(3) Segmentation of anatomical scans into gray and white matter,
and (4) normalization of both anatomical and functional scans to
Montreal Neurological Institute (MNI) template, using the segmen-
tation parameters obtained in step 3. We chose to normalize to one
common template across the age range, as studies have shown that
this is a feasible approach for the age range included in this study
(Burgund et al., 2002; Kang et al., 2003). Following normalization, all
images were visually inspected to check whether normalization had
been successful. (6) Spatial smoothing using a 6-mm full-width at
half-maximumGaussian kernel. For each subject, average scan–scan ro-
tation and translation from the realignment parameterswere calculated
to evaluate potential age effects on subject motion.

2.7.1. fMRI data analysis: Independent Component Analysis (ICA)
In this study we used Independent Component Analysis (ICA) to

analyze our data. ICA decomposes functional imaging data into spatially
independent, but temporally coherent brain networks, each with their
own time course (Calhoun et al., 2006, 2009, 2002; McKeown et al.,
1998). ICA has several advantages over GLMmethods: 1) Decomposing
the brain into networks greatly reduces the number of multiple com-
parisons, and because of this ICA is more sensitive than GLM analysis
which is performed on each voxel separately (Congdon et al., 2010;
McKeown et al., 2003) 2) The networks identified by ICA can occur con-
currently within the same voxel: one voxel can be involved in multiple
(temporally) different responses. For this reason, ICA can detect activity
that might be hidden in traditional GLM analysis (Beldzik et al., 2013;
Xu et al., 2013) (Beldzik et al., 2013; Xu et al., 2013). 3) Lastly, ICA
circumvents a common problem in developmental imaging, which is
that group differences in task performance can affect the estimation of
the fMRI results, either through reduced power as a result of fewer
correct trials, or through group differences in the strategy applied to
solve a task. Because ICA is model free, and thus independent of task per-
formance, its results are components that are present across all subjects.

ICA analysis consisted of three steps. First, individual and group fMRI
data were decomposed into spatially and temporally independent and
coherent networks. Second, we identified networks that were related
to the task. Third, we investigated how inter-individual differences in
response variability were reflected in inter-individual differences in
network activation. These steps are described in detail below.

2.7.2. ICA network identification
Wewanted tominimize the effects of subjectmotion and other arti-

facts by using ICA to identify and remove artifacts from the data. To this
end, ICA analysis was run for each subject individually, before entering
the group ICA (GICA). For each subject, components were estimated
using the Infomax algorithm (Bell and Sejnowski, 1995) available in
the Group ICA of fMRI toolbox (GIFT, http://icatb.sourceforge.net,
version 2.e) implemented in Matlab. This estimation was repeated 20
times in Icasso (http://cis.hut.fi/projects/ica/icasso) to get an estimate
of reliability (Himberg et al., 2004). All components had a cluster quality
index greater than .8, indicating a highly stable ICA decomposition. The
average dimensionality of the data was estimated by the modified
minimum description length (MDL) algorithm criteria (Li et al., 2007)
to account for correlated samples. This was followed by back recon-
struction (GICA 3) where each individual3s functional networks were
reconstructed from the raw data using the ICA mixing matrix, resulting
in subject-specific maps and time series. Each participant3s components
were then scaled to reflect percent signal change. At the individual sub-
ject level, a systematic process was used to identify components to be
retained for analysis: (1) each spatial map was inspected for the pres-
ence of obvious artifacts (e.g., edges, ventricles, scanner artifacts);
(2) the temporal association of each subject3s components with their
movement parameters was used to exclude components reflecting sig-
nal variation due to motion. Components were discarded if the partial
correlation between component and motion parameters, corrected for
correlationwith task events, exceeded p≤ 0.001 (corrected formultiple
comparisons). All components that were determined to be artifacts
according to these two criteria were removed from the raw data, and
modified data were then written and re-analyzed at group level.

For the group analysis, one group ICA was run on data from all 40
participants, after two outliers and their individually matched controls
were removed. Components were estimated using the Infomax algo-
rithm, repeated 20 times in Icasso. All components had a cluster quality
index greater than .8, indicating a highly stable ICA decomposition.

http://www.fil.ion.ucl.ac.uk
http://icatb.sourceforge.net
http://cis.hut.fi/projects/ica/icasso


Table 2
Task performance for the 40 subjects included in the fMRI analyses.

NC (n = 20) ADHD (n = 20) P

Mean RT go
trials (ms)

616.5 (77.1)
458–764

632.4 (66.7)
455–743

0.47

sdRT go trials (ms) 139.1 (59)
72.3–328.6

139.6 (74.2)
74.3–336.4

0.98

Accuracy no-go
trials

0.88 (0.1) 0.6-1 0.84 (0.12)
0.46-1

0.32

Accuracy no-go
1/3/5 trials

.88 (.1)/.88
(.14)/86 (.1)

.9 (.12)/.82
(.15)/.82 (.15)

0.83/0.12/0.28

Accuracy go trials 0.99 (0.02) 0.94-1 0.99 (0.03) 0.9-1 0.44
ICV 0.23 (0.08) 0.1–0.5 0.22 (0.1) 0.1–0.6 0.79
Mu 504.8 (57) 376–599 527 (53) 397–595 0.21
Sigma 67.2 (17.8) 35–110 62.7 (13.4) 43–94 0.38
Tau 101.9 (41.7) 47–198 100.6 (38.9) 57–214 0.92
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Subject-specific spatialmaps and temporal componentswere estimated
using GICA3. Time-series were Z-scaled. The spatial overlap between
the back reconstructed components (the spatial maps) and a priory
probability maps as provided in SPM5was calculated, using multiple
regression. Components that showed a spatial overlap greater than
r2 ≥ 0.025 with white matter or CSF were discarded. Coding for subject
status (ADHD vs. controls) was done after the ICA analysis.

2.7.3. Identification of task related networks
We were interested in those components involved in the task. For

each subject, we regressed the back-reconstructed component time
courses onto the task model. This approach is analogous to standard
GLM fMRI, except that component time courses rather than voxel time
courses are used. So, the beta values from this regression represent the
degree to which the component was modulated by the task event. Com-
ponentswith a significant betaweight with either go or no-go events fol-
lowing a T-test were selected (p ≤ 0.05 Bonferroni corrected). We then
ran an ANOVA on the beta weights to investigate whether any of those
components were more closely related to movement than task events
(p ≤ 0.05 Bonferroni corrected). As we were also interested in Default
Mode intrusions (i.e., attentional lapses),we further selected components
that had a spatial overlap greater than r2 ≥ 0.025 with two templates for
the DMN (vDMN and dDMN) from a spatial atlas (Shirer et al., 2012).

2.7.4. Relation between groupmembership and activation within networks
We then investigated how between subject differences were related

to the recruitment of the selected networks. To investigate age related
differences within each group, both groups were split into a younger
and an older group (median split at 15 years).We included group status
(younger ADHD, older ADHD, younger controls and older controls), ex-
Gaussian measures (mu, sigma and tau), and task performance (no-go
accuracy) as predictors, as well the interaction terms between group
and performance measures. This categorical operationalization of age
allowed us to formally compare the neural activity related to the inter-
action between age and behavioral measures, both within and between
groups. This is important given that the effect of agemay differ between
the groups, and this would have been obscured if age had been en-
tered as a dimensional (continuous) variable. An additional analysis
including age as a continuous analysis was also run. As ADHD sub-
jects discontinued any stimulant medication 24 h before the MRI, med-
ication withdrawal effects may have affected any age-related findings
within this group. Therefore we tested whether the older and younger
ADHD groups differed in the number of subjects that discontinued
medication, as well as for main and interaction effects of medication
on the outcome variables.We used amultivariatemodel selection strat-
egy as implemented in theMANCOVAN toolbox in GIFT (see Allen et al.,
2011). This analysis is analogous to a standard ANOVA F-test, and per-
forms backwards model selection by testing whether each predictor
(group,measures of task performance) explains variability in themulti-
variate fMRI results, using a multivariate analysis of covariance. The
multivariate selection process is important to select covariates that
show an overall effect within networks, but the multivariate output is
difficult to interpret. Therefore the toolbox runs a standard univariate
analysis of variance (ANOVA) on the reduced model, to test for specific
covariate effects. During the univariate analysis the relationship be-
tween predictors and variables is calculated as the partial correlation
coefficient, adjusted for correlation between predictors. Outcome
measures are spatial maps (SMs), indicating activity within compo-
nents that is thus uniquely related to predictors. Before entering
the MANCOVAN these spatial maps were thresholded to select voxels
most representative for the component. Thresholding was based on
the distribution of voxelwise T-statistics with cutoff t N μ+ 4σ. This se-
lects voxelswith T-values thatfit a normal-gamma–gammadistribution
(NGG), as opposed to a normal distribution that is characteristic of noise
(Allen et al., 2011). The univariate results were corrected using False
Discovery Rate (FDR, Genovese et al., 2002).
3. Results

3.1. Traditional measures of task performance

Both groupswere equally able to perform the task across all levels of
difficulty, as indexed by their performance: mean accuracy on go-trials
was 99% (sd = 0.02) in the control group and 99% (sd = 0.03) in the
ADHD group (t38 = .72, p = .44); mean no-go accuracy (proportion
correct) was 88% for control subjects and 84% for subjects with ADHD
(t38 = .21, p = 0.32). Response time on go-trials did not differ be-
tween groups (mRT; t38 = .9, p = 0.47; sdRT t38 = .8, p = .98),
and neither did within-subject variation (ICV; t38 = 1.3, p = .79)
(Table 2). Groups did not differ in the effect of age on traditional
measures of task performance: for both groups both RT measures
(mean and sd) decreased with age, and no-go accuracy increased.
Within the ADHD group, there were no effects of ADHD subtype on
task performance.

3.2. Ex-Gaussian measures of task performance

Overall, the ex-Gaussianmeasures of task performance did not differ
between groups (mu t38 = 1.3, p = .21; sigma t38 = .9, p = .38; tau,
t38 = .1, p = .92). However, there was a between-group difference in
the relationship these measures had with age: for controls, both the
variability related to extremely slow responses (tau) and variability on
fast responses (sigma) decreased with age (r = –.45; p b 0.05, and
r= –.55; p b 0.01 respectively). For subjectswith ADHD, tauwas not re-
lated to age, but mu (mean response time) and sigma decreased with
age (r = –.58; p b 0.01 and r = .5; p b 0.03 respectively) (Table S1).

From the stepwise regression, the single best predictor of no-go
performance for controls was sigma (F19 (11) p b 0.005). As such,
controls with lower variability in reaction time on faster responses
had better no-go performance. For subjects with ADHD, there was
no predictor for overall no-go performance. The best predictor of
performance on easier no-go trials (following one go-trial) was average
response time (mu), where higher average response time predicted
better performance on no-go trials. Age best predicted performance
on more difficult no-go trials (following 5 go-trials) for subjects with
ADHD (Table 3).

Importantly, in both groups the ex-Gaussian parameters were a
much better predictor of no-go performance than the mean and
standard deviation of the reaction times, as was reflected by the ex-
plained variance (R2 = .1 vs. R2 = .43 respectively for NC; R2 = .18 vs.
R2 = .28 for the ADHD group; see Fig. 1).

There were more subjects who discontinued medication in
the younger ADHD group than in the older group (7 and 3 respec-
tively; χ2 (1, N= 20)= 5.05, p= 0.025). Howevermedication status
did not mediate any of the effects of age on either the ex-Gaussian
parameters or no-go performance within the ADHD group, and was
therefore not included in further analyses.



Table 3
Results of stepwise regression, using backwards selection to select the variables with best predictive value for no-go performance for each group (criterion F-probability b0.1). Results are
given for eachno-go condition (no-go1/3/5: no-go trials precededby1.3 or 5 go trials respectively) separately from the total, since the occurrenceof extremely slow responses captured by
tau is influenced by the number of preceding trials.

Predictors in control group p value R2 Predictors in ADHD group p value R2

No-go 1 Sigma F19 (9.5) p b 0.006 0.35 Mu F19 (5.9) p b 0.025 0.25
No-go 3 − n.s. − n.s.
No-go 5 Sigma and tau F19 (−8.5) p b 0.003 0.5 Age F19 (6) p b 0.025 0.25
No-go overall Sigma F19 (11) p b 0.005 0.37 − n.s
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3.3.1. Selection of networks
For individual subjects, an average of 36 components were estimat-

edwith ICA. On average, eight components were excluded following in-
spection for artifacts (e.g., edges, ventricles, scanner artifacts). These
cleaned data were the basis for the group ICA. Translation and rotation
parameters did not differ between groups (translation T38(.2) p N .86,
rotation (T38 = .13) P N .9) and were not affected by age (translation
r= .19, p= N 0.24; rotation r= .11, p= N 0.5), suggesting that motion
correction did not introduce any artificial age effects.

Over the whole group, 34 components were estimated. Ten compo-
nents showed a significant spatial overlap with white matter or CSF
and were discarded. Eight components had a significant relation (beta
value) with go or no-go events in the temporal regression, indicating
that their time-courses showed high synchrony with the task events.
Of those components, one was more closely related to the movement
parameters than the task events (ANOVA) and was therefore excluded.
One component was added as it had a significant spatial correlation
with the DMN template, resulting in a set of eight components that
Fig. 1. Groups differ in the relationship between no-go accuracy and response times. This
difference is better described by the ex- Gaussian parameters mu, sigma and tau that de-
scribe the response time distribution, than the standard RT model, as shown in panel A,
which shows explained variance (R2) for each set of predictors. Panel B shows the Pearson
correlation between RT measures and no-go accuracy separately for each group.
were carried forward to the MANCOVA analysis. Fig. 2 shows an over-
view of all selected components.

3.3.2. Between-subject task performance and network activity
In line with the behavioral results, group status by itself (when age

was not considered) did not predict activity within the selected net-
works. Between-subject differences in no-go accuracy, ex-Gaussian
measures or standard RT measures did not predict activation within
the selected networks, nor did the interaction between group and
these task measures.

However, groups differed in activation related to the effect of age on
task performance: for the control group, a decrease in sigma with age,
reflecting lower response variability on fast responses in older partici-
pants, was related to increased activity in dorsal ACG. In ADHD, in-
creased activity in this same region was related to a decrease in the
accuracy on no-go trials, but not to sigma (Fig. 3). Fig. 4 shows the
changes in neural activity in this region of dACG related to sigma for
both groups. Tau was not related to changes in neural activity within
or between groups.

In the analysis including age as a continuousmeasure, there were no
interactive effects of age and group on brain activity, see Fig. S1.

4. Discussion

In this study we investigated ex-Gaussian measures of response
variability, representing both on-task variability in performance
(sigma) and attentional lapses (tau).We set out to study developmental
differences in these measures and their relationship to task perfor-
mance between subjects with ADHD and typically developing subjects.
We found that the ex-Gaussian measures of intra-individual response
variability were better predictors of task performance than standard
RT measures: the proportion of variance explained by these measures
was two to four times as great as the proportion explained by traditional
measures. Furthermore, variability on fast responses was differentially
related to task performance and activity in the dorsal anterior cingulate
gyrus (dACG) in each group.

The ex-Gaussian parameters of intra-individual variabilitywere able
to capture a developmental difference between the ADHD group and
the control group that was not reflected in the more traditional mea-
sures of reaction time (mean and sd). Moreover, these developmental
differences were differentially related to task performance in each
group: controls showed a steady decrease in response variability
(both sigma and tau) with age, which predicted no-go accuracy. Sub-
jects with ADHD, on the other hand, showed a reduction in the variabil-
ity of quick responses (sigma) over age, but not of attentional lapses
(tau), and neither of these measures was predictive of no-go accuracy.

In this study, subjects were individually matched for age, and there
were no between-group differences in task performance or response
variability. Therefore, this result suggests that within each group, for
subjects of similar age, successful task performance may be mediated
through different neural processes.We investigated these neural under-
pinnings using fMRI: we divided the groups into two age groups (based
on a median split at 15 years). Results showed that the difference in
interaction between sigma and task performance within each group
was related to a differential pattern of activation in dorsal anterior



Fig. 2. T-maps of the ICA components entered in the MANCOVAN analysis. Thresholded at T N 6 (red) and T b –6 (green).
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cingulate gyrus (dACG): for younger subjects, there was no difference
between subjects with ADHD and controls in the relationship between
activity in this region and sigma. However, for older subjects, there
was a clear difference: older control subjects had increased dACG activ-
ity, related to the reduction in response variability (sigma), whereas
older subjects with ADHD showed no such relationship.

Therefore, these results suggest that in typically developing subjects,
and specifically in the adolescents (15–24 years old), improvements in
cognitive control with age are linked to both a reduction of response
Fig. 3. Activity related to sigma and task performance on the no-go 5 conditionwith increasing a
in the dACG with decreasing sigma over age in the control group, p b 0.05 (FDR corrected). P
accuracy over age p b 0.05 (FDR corrected).
variability, and active involvement of the dorsal ACG. In ADHD, a similar
improvement in task performancewith agewas related to greater activ-
ity in dorsal ACG, but this was not related to a reduction in response
variability.

These findings are consistent with previous work on the role of the
dACG in various functions including conflict monitoring (Botvinick
et al., 2004; Carter, 1998) error monitoring (Gehring and Fencsik,
2001; Gehring and Knight, 2000; Holroyd et al., 1998; Lorist et al.,
2005), response selection (Awh and Gehring, 1999; Milham et al.,
ge in control subjects (panel 1) and ADHD subjects (panel 2). Panel 1: increased activation
anel 2: results for the ADHD group, showing activation related to improved no-go 5 task



Fig. 4. dACG region is uniquely sensitive to developmental changes in variability on quick responses (sigma) in the control group, but not in subjects with ADHD: the plot shows
Spearman3s correlations between sigma and signal intensity in the dACG region for younger subjects (age 7–15 years) and older subjects (15–24 years), for both control subjects and sub-
jectswith ADHD. The graph shows data from a5mmsphere at (0, 20, 29)within the significant cluster visible in top panel. For the purposes of visualization, correlation values are absolute.

138 J. van Belle et al. / NeuroImage: Clinical 7 (2015) 132–141
2001; Paus et al., 1993; Paus, 2001) and top down control more gener-
ally, as part of a larger frontoparietal control network (Chambers et al.,
2009; Corbetta and Shulman, 2002; Kerns et al., 2004; Petersen and
Laprell, 1999; Posner et al., 1997). The ACG is relatively late to mature
compared to other brain regions, with a protracted development con-
tinuing into early adulthood (Gogtay et al., 2004; Sowell et al., 2003,
2001), which is characterized by an increase in connectivity with near-
by prefrontal regions (Kelly et al., 2009). Functionally, the development
of ACG is associated with improvements in motor and cognitive control
during childhood and adolescence (Davidson et al., 2006; Ridderinkhof
and Van Der Molen, 1997; Rueda et al., 2005, 2004).

As for the behavioral development of cognitive control, there is evi-
dence that developmental improvements in this ability are not always
reflected by improved accuracy, but are sometimes more evident in de-
creases in reaction time and variability of RT, perhaps reflecting a more
efficient speed/accuracy trade-off (Bellgrove et al., 2004; Davidson et al.,
2006; Luna et al., 2010; Simmonds et al., 2007). These findings support
the notion that greater activity in dACG in our older controls, associated
with reduced response variability during the go no-go task, may reflect
increased top down control in order to maintain task performance.

In ADHD, decreased dACG activity has consistently been linked to
deficits in cognitive control: in fact, hypoactivation in ACG is one of
the most common findings in neuroimaging studies of ADHD (Bush,
2011; Dickstein et al., 2006). ADHDhas also been suggested to represent
a delay in neuralmaturation (e.g., Shawet al., 2011). Furthermore, other
studies have suggested that lower response variability in ADHDmay be
associated with prefrontal compensatory activation (Suskauer et al.,
2008). As such, ACG has been implicated in both developmental im-
provements in cognitive control and related to deficits in cognitive con-
trol in ADHD. Taken together with our findings, these data suggest that
the developmental trajectory of ACG activity and its relation to success-
ful cognitive control may differ between subjects with ADHD and typi-
cally developing controls.

We hypothesized that we would find developmental differences
between subjects with ADHD and typically developing controls in
terms of attentional lapses (tau). Attentional lapses (reflected by tau)
were present in both groups; however, they persisted over age in
ADHD, whereas the number of attentional lapses decreased with age
for typically developing controls. Increased numbers of attentional
lapses have been suggested to be a marker of ADHD, in keeping with
the idea of increased numbers of DMN intrusions in this disorder
(Sonuga-Barke, 2005b). This study suggests that a difference in the
number of attentional lapses (tau) between diagnostic groups depends
on two factors: first, the age of the sample being tested, and second, on
task difficulty. Our findings suggest that an age-related difference be-
tween groups in the effect of attentional lapses on task performance
was mediated by task difficulty: in the control group, but not the ADHD
group, a reductionof the number of attentional lapseswith agewas apre-
dictor for task performance, but only in the more difficult (no-go 5) con-
dition. Tentative support for the notion of age-dependent differences
comes from Leth-Steensen and colleagues (2000). They compared
children with ADHD to two typically developing control groups, one
younger group (average age 7 years) and one age matched control
group (9–13 years). They found a difference in tau when comparing the
age-matched groups, but no difference in tau between subjects with
ADHD and the younger controls. This suggests that increased tau in
ADHDmay in fact reflect a developmental delay, in keeping with our re-
sult (Leth-Steensen et al., 2000).

Despite behavioral differences in tau, we did not find any differences
in neural activity related to this measure between subjects with ADHD
and typically developing controls. This could be related to a difference
in statistical power between the two analyses, as age was used as a
continuous measure in the behavioral analysis and as a categorical on
in the imaging analysis. However, even at reduced statistical thresholds,
we found no evidence of age-related differences between groups. One
explanation could be that the analysis to detect between-group differ-
ences in neural activity specifically tested for activation differences
within networks. There is increasing evidence that attentional lapses,
as captured by tau, are related to more global changes in the interaction
between networks (e.g., interference from the default mode network)
(Christakou et al., 2013; Fassbender et al., 2009; Sun et al., 2012) and
may be mediated by differences in the frequencies of neural oscillation
(Adamo et al., 2014; Feige et al., 2013; Helps et al., 2008; Sato et al.,
2012) which would not be detected in an fMRI analysis.

This study used Independent Component Analysis (ICA) to investi-
gate neural networks involved in cognitive control, as opposed to the
General Linear model (GLM) which is the most predominant method
in the analysis of fMRI data. ICA has many advantages over the GLM,
but an important advantage in the light of this study is that performance
differences between subjects do not affect the estimation of indepen-
dent components, whereas in the GLM, task performance (the number
of successful trials) directly affects the power of the estimated effects.
In GLM analyses, activation differences may therefore equally reflect
this difference in power, rather than a true difference in activation.
The networks resulting from ICA in this study, which were the basis of
the between subjects analysis (MANCOVAN), were present across
both groups and unaffected by performance. We believe that ICA is
a good method to use in developmental imaging studies, where
between-subject differences in both performance and neural activa-
tion are considerable.

There are some methodological choices that should be taken into
account when interpreting our results. First, the splitting of the two
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diagnostic groups into two age groups resulted in a relatively low num-
ber of subjects per age group, especially given the age range. We chose
to do this, as we did not want to make the assumption that age-effects
would be the same in the diagnostic groups. However, this choice did
of necessity reduce our power to detect differences between the groups.
As such, the neural activation results should be interpreted with some
caution, certainly until they are replicated in a larger sample. Second,
the ex-Gaussian parameters represent one of many ways to describe
the RT distribution. We chose to use ex-Gaussian parameters over
formal models of RT distribution, in order to directly show the differ-
ence with standard mean-centered RT measures, as the sum of the
ex-Gaussian parameters approaches the mean centered distribution.
However, theremay be other sets of parameters that can capture devel-
opmental differences between groups (Matzke and Wagenmakers,
2009). As such, findings of this study should be validated using other
theoretical accounts of the response time distribution (for overview,
see (Van Zandt, 2000)).

Third is the issue ofmulti-colinearity, which is always problematic in
investigating the development of functions with shared neural under-
pinnings. Our regression model relied on the process of backwards
elimination andwas linear, and as such not sensitive to changing values
of predictors due to multi-colinearity.

A last consideration is that the majority of our ADHD subjects were
treated with methylphenidate. They discontinued medication for a
minimum of 24 h before participating. However, the long-term effects
of methylphenidate on neural development are not clear (Schweren
et al., 2013).

5. Conclusions

In this study, we investigated developmental changes in response
variability in subjects with ADHD and typically developing subjects
using parameters from the ex-Gaussian distribution. This permitted us
to separate attentional lapses from intra-individual variability on fast
responses. Results showed that ex-Gaussian measures were better pre-
dictors of developmental improvements in task performance than tradi-
tional measures of reaction time. Furthermore, they were differentially
related to task performance and neural activity in dACG in each group:
in typically developing controls, improvements in task performance
with age were related to reduced response variability on fast responses,
and increased recruitment of dACG. For subjects with ADHD, a similar
improvement in task performance with age was related to recruitment
of dACG, but not to reductions in response variability.

Supplementary data related to this article can be found online at
http://doi.dx.org/10.1016/j.nicl.2014.11.014.
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