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Abstract 

This paper discusses the 0-method for the numerical solution of delay differential equations with infinite lag. Our 
analysis is based on the test equation y'(t)=ay(2t)+ by(t), where a, bE C, and 2E(0, 1). In order to solve the storage 
problem involved in studying the long time behaviour of the solution we use a grid with increased stepsizes. Monotonicity, 
uniform boundedness, asymptotic stability, algebraic decay and global discretisation error of the numerical solution are 
investigated. 
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1. I n t r o d u c t i o n  

This paper discusses the numerical solution of the initial value problem of the delay differential 
equation 

y ' ( t ) = f ( t , y ( t ) , y ( c ~ ( t ) ) ) ,  t > 0 ,  y ( t ) = y o ( t ) ,  t E [ i n f { ¢ ( z ) } , 0 ] ,  (1.1) 

where f ,  ~b and y0 are given functions with ~b(t) ~< t for all t / >  0. As far as t ime lag is concerned, the 
equation can be classified into two categories, namely,  those with finite t ime lag, i.e., l im s u P t ~ o o ( t -  
q~(t)) < (x~, and those with infinite t ime lag, i.e., l im s u p t _ ~ ( t  - q~(t)) = oo. Two typical examples  
are the initial value problems 

y ' ( t )  = ay( t  - 2) + by( t ) ,  t > 0, y ( t )  = y0(t),  t E [ - 2 , 0 ]  (1.2) 
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and 

y ' ( t )  = ay(2t)  + by(t) ,  t > O, y(O) = Yo, (1.3) 

where a,b are complex constants, 2 E ( 0 , e c )  and (0, 1) in the case of  (1.2) and (1.3), respectively. 
The numerical method to be considered is the so-called 0-method which is specified by the 

parameter 0 c [0, 1]. Before applying it to Eq. (1.1), we introduce some notation. Let t,, n =0 ,  1,..., 
be the grid points satisfying 

O = t o < h < t a < . . . < c x ~ ,  lim t~ = c~, 
n ----* Oc~ 

and hn = t,+l - t,, n = O, 1, . . . ,  the stepsizes. In order to provide an output, we define the numerical 
solution yh(t) as the piecewise linear interpolation 

9 ( t )  = t,+l - t t - t, 
hn Yn + ---~-7Y,+1, t E [t,, t,+l ), n >>- O, 

where y, denotes our approximation to the exact solution y( t )  of (1.1) at the grid point t,. There are 
two kinds of  0-methods, namely, the linear 0-method and the one-leg 0-method. Upon application 
to (1.1), they give the recurrence relations 

Yn+, = Yn + hn{(1 - O)f(tn, Yn, Yh((9(tn))) + Of(tn+l, Yn+l, Yh(d?(tn+, )))}, 

n = 0,1, . . .  

and 

Yn+~ = Yn + h , f ( (1  - O)t, + Ot,+,, (1 - O)y, + Oy,+~, (1 - O)yh((9(t,)) + Oyh(q~(t,+, ))), 

n : 0, 1, . . . ,  

respectively. In the case of  (1.3), both 0-methods give the same recurrence relation 

y , + l : y n + a h n ( ( 1 - O ) y h ( 2 t , ) + O y h ( , ~ t n + l ) ) + b h n ( ( 1 - O ) y , + O y n + l ) ,  n = 0 , 1  . . . . .  (1.4) 

There are remarkable differences, both analytically and numerically, between delay differential 
equations with infinite lags and those with finite lags. Let us compare (1.3) with (1.2). The solution 
of  (1.3) is an analytic function on [0, oo), whereas the solution of  (1.2) is initially nonsmooth but 
becomes smoother with increasing t. In the case where b + lal < 0, the solution of  (1.3) decays 
algebraically, whereas the solution of  (1.2) decays exponentially. The most significant difference is 
in storage. In order to calculate all the future values of  y( t )  beyond to, say, we must remember all 
the past values in the interval [~b(t0), to], which is bounded in the case of  (1.2) but unbounded in the 
case of  (1.3) as t0---~cx~. As far as the numerical method is concerned, we need to store at least all 
the data in the set S(to)={yn: nCY- + such that t,C[(9(to),to]}. If the stepsizes are uniformly bounded 
then the number of  data in the set S(to) tends to infinity as to ~ oo in the case of  infinite lag. This 
will inevitably bring serious storage problems even to the largest supercomputers. An example has 
been given by Iserles [11]. 

While (1.2) is being used as a test equation for assessing the stability of  the 0-method for 
delay differential equations with finite lag, we will use (1.3) for equations with infinite time lag. 
The stability of  the 0-method for the numerical solution of  (1.2) has been studied extensively in 
[6, 14, 19, 22-24] and other papers. The analysis therein is mostly based on the fact that the resulting 
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difference equations are of fixed order and have constant coefficients in the case of  uniform grid. The 
stability of  the 0-method is then proved by showing that the corresponding characteristic polynomials 
of  the difference equations are of Schur type, i.e., polynomials whose roots lie inside the unit circle. 
Unfortunately, this approach is not suited to the 0-method for (1.3). As noted by Jackiewicz [14], 
the difference equation (1.4) is not of  fixed order (in the case of  uniform grid). Even if (1.4) can 
be converted into equations of fixed order by choosing the grid carefully (see the next section), 
its coefficients are not constants. We observe that besides being a test equation, (1.3) has many 
interesting applications (a comprehensive list features in [10]). Numerical methods for (1.3) have 
been studied by Fox et al. [8] and Bakke and Jackiewicz [1], and for a more general case, namely, 
the neutral equation 

y'(t) = ay(t) + by(pt )  + ey'(qt), t > O, y(O) --- Yo, 

by Buhmann and Iserles [ 2 4 ]  and Buhmann et al. [5]. In these papers the grid is uniform, hence 
the storage problem remains problematic. We shall see in Section 5 of this paper that the long time 
behaviour of  the solutions in some cases has not been predicted correctly by numerical methods in 
[3] due to insufficient computer (random access) memory. None of these papers has fully recovered 
the stability (asymptotic stability) condition, i.e., prove that the numerical solution is uniformly 
bounded (tends to zero) subject to the condition Reb < 0, Ib]>~lal (Reb < 0,[bl > [al), and no 
global discretisation error estimate has been given in these papers. This brings doubt about the 
correct approximation of the numerical solution yh(t) to the exact solution y(t)  when t is large. 

This paper is structured as follows. In Section 2, we prove the existence and uniqueness of the 
numerical solution of (1.3) by 0-methods subject to the condition Re b ~< 0, Ib[ ~> lal . In consideration 
of  the storage problem, we formulate a kind of  grid whose stepsizes increase geometrically after 
an initial stage. In Section 3, we discuss the monotonicity, uniform boundedness and asymptotic 
stability of the numerical solution. Our result shows that the solution of the backward method retains 
certain properties such as monotonicity, uniform boundedness (for all a and b satisfying Re b < 0, 
[b I /> la]), asymptotic stability and algebraic decay (for all a and b satisfying Reb < 0, Ibl > lal), 
as possessed by the exact solution. In Section 4, we discuss the global discretisation error of the 
0-method. Our result reveals that the increased stepsizes are balanced by the algebraic decay of the 
solution. In Section 5, we present some numerical examples. We emphasise that our analysis can 
be easily applied to linear delay differential equations with variable coefficients and variable delays. 

2. The algorithm 

Throughout this paper, we use {Yn}.~0 to denote the numerical solution of (1.3) by the 0-method 
(1.4). 

Theorem 1. I f R e b  <<. O, Ibl >>. ]a[, then the solution {Y,}~0 of  (1.4) exists and is unique. 

Proof. If  2t,+l ~< tn, which is true for at least all n >t no, we have the explicit recurrence relation 

1 
((1 ÷ (1 - O)bh,)y, + (1 - O)ah, yh(2t,) + Oah, yh(2t,+~)), (2.1) Y,+I -- 1 -- Obh, 
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and if 2t.+~ > t., we have 

1 

Y.+l = 1 . Obh. - Oa(2t .+l  - t . )  

+ ( 1  - O ) a h . y h ( 2 t , ) ) .  

((1 + (1 - O)bhn + Oa(1 --  2)t.+l))y. 

This proves the existence and uniqueness of  the numerical solution. [] 

(2.2) 

To deal with the storage problem, we divide [0, c~) into a union of  an infinite number of  bounded 
intervals as follows: 

= [0,r] LJI , 
k = 0  

where r is a fixed positive number and 

Ik = (2-kr ,2-k- l r ] ,  k ~> 0. 

For given integers no, n~ ~> 2, we formulate the grid as follows: 

0=to < t l  < t2 < " ' "  < tno = r ,  

2 - k r  = tno+kn, < t n o + k n , + l  < - . .  < tno+(k+l)n ' = 2-k-~r, k = 0 , 1  . . . . .  

The advantage of  the preceding grid is that the lag function qS(t) := 2t has the property 

~b • Ik+l H Ik, k ~> 0, (2.3) 

which implies that no storage problem arises for the 0-method. The magnitude of  r ,  no and n 1 

depends on the parameters of Eq. (1.3). We will discuss this in Sections 4 and 5. 
With the property (2.3), we need only to set up two finite-dimensional arrays in practical calcu- 

lation. More specifically, we can do the calculation in the following way: 
S t e p  1: Calculate {y,}n° l by (2.1), (2.2) and store it in an n0-dimensional array U. 
S t e p  2: Calculate {Yno+n}nn~=l by (2.1) and store it in an nl-dimensional array V, then free the 

storage occupied by U and set k = 0. 
S t e p  3: Calculate {Y,,0+(k+l),,+,}~'--I by (2.1) and store it in an nl-dimensional array U, then update 

V by U, increase k by 1, and repeat this step. 
1 for both cases) Commonly used 0-methods include the trapezoidal rule and midpoint rule (0 = 5 

and the backward Euler method (0 = 1). We suggest that the Trapezoidal Rule be used to calculate 
{yn}no , when Eq. (1.3) is not stiff, i.e., [hi is not large, otherwise the backward Euler method 
should be used. The solution {Y,},~n0+l should be calculated through the backward Euler method. 
The reasons for doing so will be explained in the next two sections. 

Remark 1. If the grid is chosen as follows, 

0 = to < tl < t2 < "'" < tno = r < t n o + l  < " ' "  < tno+nl = , ~ - l r ,  

tn0+k.,+n = 2-kt.0+n, n = 0, 1 . . . .  ,nl, k = 1,2 . . . . .  
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the recurrence relation (1.4) then becomes 

1 + (1 - O)bh. ah. 
Y"+1= 1 - O b h .  y . +  - - l -Obh- - ( (1 -O)Y"-" '  +Oyn-" '+l) '  n>>.no+nl,  (2.4) 

which is a difference equation of fixed order, but of variable coefficients. 

Remark 2. We may solve the storage problem by reducing the delay differential equation with 
infinite lag into an equation with finite lag. In the case of (1.3), by letting x( t )  = y(et), we get 

x'( t )  = aetx(t + log 2) ÷ betx(t), t E ~, x ( - o o )  = Yo, 

which is equivalent to (1.3). However, the preceding equation is not a proper model for implementing 
numerical methods since the initial point is -cx~. To deal with this, we can apply numerical methods 
to Eq. (1.3) for t E [0,e t°] and then to 

x'( t )  = aetx(t + log2)  + betx(t), t > to, x( t )  = y(e') ,  t <~ to. 

This approach has been investigated in Liu [17]. 

Remark 3. Consider the general equation (1.1), where q~(t) is an eventually strict monotonic in- 
creasing function, i.e., there exists r0 ~> 0 such that ~b(t) is a strictly monotonic increasing function 
on [r0, oc), and l i m t ~  q~(t)= oc. Given a fixed real number r >~ r0, we can divide [0, oc) into a 
union of an infinite number of  bounded intervals as follows: 

O<3 

= [o,r] [.J 
k=O 

where 

= k />  0, 

where ~k(t) is the inverse function of  q~(t) and ffk(t) is the kth iterate of  ~. For given positive 
integers no, n1, we formulate the grid as follows: 

0 : to < t l  <t2 < . . .  <tn0 = r, 

~bk(r) = tn0+~n, < tn0+~,,,+l < " "  < t.0+(k+l)., = ~ k + l ( r ) ,  k = 0, 1 . . . . .  

The advantage of  the preceding grid is that the lag function ~b(t) satisfies (2.3). 

3. Stabi l i ty  analysis  

The stability problem concerning (1.3) has been studied by Kato and MacLeod [16] and by Kato 
[15]. Equations of  general forms have been investigated by Iserles [10], Iserles and Terj6ki [13], 
Iserles and Liu [12], Liu [18], etc. The basic result is that (see [15]) when Reb < 0 and Ibl/> [al 
the exact solution of  (1.3) decays algebraically, i.e., 

y( t )  ---- O(t~), t ---, oc, (3.1) 
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for K = In [b/al/ln2, and that no solution except the identical zero one is o f  o(t ~) as t ~ cx~. 
Hence, the exact solution is uniformly bounded when R e b  < 0 and [hi = la], and tends to zero as 
t ~ oe when Re b < 0 and [b[ > [a[. Another important feature is that when b is a real constant and 
b + la[~<0 the exact solution o f  (1.3) is tmiformly bounded by [Y0[ [13]. As far as the numerical 
method is concerned, we need to choose an appropriate numerical method so that the numerical 
solution can retain as many of  these properties as possible. 

Firstly, we consider the case where b is real constant. 

Theorem 2. I f  b+ lal ~ o then the solution {y,) ,m o o f ( 1 . 4 )  is uniformly bounded by lyol provided 
that 

( (20-1)b+lal )hn<<.2  whenever l + ( 1 - O ) b h n < O ,  O < ~ n < ~ m - 1 .  (3.2) 

Proof .  It is easy to see from (2.1), (2.2) that 

ly.+ll max lykl, 0 n ~< m - 1, 
O<~k<~n 

which implies that {y,)nm0 is uniformly bounded by ly01. [] 

Suppose that a < 0 and Yk = Y0 for all k ~< n. In either case o f  (2.1) and (2.2), we have 
[y,+l[ > [y0[ if  1 + (1 - O)bh, < 0 and ((20 - 1)b + [a[)hn > 2. This implies that the condition (3.2) 
is necessary. A direct consequence o f  Theorem 2 is the following corollary. 

Corol lary 3. I f  b < 0 and ( 2 0 -  1)lb[ > lal then the solution {Y, )~o  o f  (1.4) is uniformly bounded 
by IT0]. 

Theorem 4. I f b  < 0, ( 2 0 -  1)]b[ > [a[ and liminfn~o~ h, > 0  then the solution y, o f  (1.4) tends 
to zero as n ~ ~ .  

Proof .  It follows from Corollary 3 that y* := lim sup,~o ~ [yn[ ~< [Y0[. In order to prove that y* > 0 
leads to contradiction, we let 

7 : = s u p  I I + ( 1 - 0 ) b h "  I+[alh. 1 - 7  , > O. 
~>~o 1 - O b h .  <1, 6:= 1+7  y 

Noting that there are integers ml > no and rn2 > rnl such that 

lyn]< y* +6,  n > m l  

and 

2tn > tin,, n > m2, 

we deduce from (2.1) that 

lY,+I] ~ < Y ( Y * + a ) = Y * - 6 ,  n > m 2 ,  

which contradicts the definition o f  y*. Hence, limn+o~ y,  = 0. [] 
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Secondly, we consider the case where b is complex constant. 

Theorem 5. I f  Reb  < 0  then the solution yn o f  (1.4) 
(i) tends to zero as n ~ oo provided that (20 - 1)[b[ > ]a[ and l i m , _ ~  hn = co; 

(ii) is uniformly bounded provided that ( 2 0 -  1)[b I = [a[ and ~,~=oh21 < oo. 

Proof.  The proof  o f  the first part is similar to that o f  Theorem 4 except that in this case we choose 
m >> 1 such that 

I1 + ( 1  - O)bh.[ + lalh. 
7 := sup < 1. 

,>~m 1 - Obhn 

TO prove the second part, we obtain from (2.1) that 

max [Yk[, n />  no, [Yn+X[ ~< ~nO<~k<~ n 

where ~, = ([1 + (1 - O)bh, I + [a[hn)/([1 - Obh,]). Since E,~oh21 < cc implies that I],~,o 7n < c~, 
we see that the solution o f  (1.4) is uniformly bounded. [] 

Theorem 6. I f  Reb  < 0, ( 2 0 -  1)b] > la] and l i m . ~  h. = oc, then there exists a positive integer 
ko and a sequence {C~k}k~_~o with the property 

1 (1 - O)lbl + lal 
lim ~k -- - - l n  (3.3) 

k ~  ln2 O[b[ 

such that the solution y. o f  (1.4) satisfies the following decay estimate: 

]Y.o+k.,+.] ~< (r-'t.o+~,+.) ~ max [y,~], k >~ ko, 0 < n ~< n,. (3.4) 
no+(ko--1)nl <m ~ no+konl 

Proof .  Let ko c 7/+ such that 

11 + (1 - O)bh.o+kn,+. t + ]alh~0+k,,÷, 
7k = sup < 1, k ~> ko. 

o~<.<., 11 - Obh.o+k.,+. [ 

It follows from (2.1) that 

lY.o+k.,+.[ ~< Yk max [Ym], 0 < n ~< nl, k ~> ko, 
no+(k--1)nl<m <~ no+knl+n--1 

which implies that 

( j I~  ) m a x  lyml, O < n <~ nl, k >~ ko. [Yno+~.,+n[ ~< 7j no+(ko-1).,<m~.o+ko., 
=ko 

Let 

1 k 
~ k =  ( k + , j ,  , . ' ~ ' n  ~ l n 7 g '  k>~ko. 

j=ko 
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It is easy to see that 

k ]-[ 
j=ko 

= (2-k-1)=k ~< (r -1, ~=k tno+kn~+n) , k >-ko. 

By L'Hopital 's rule, we see that (3.3) holds. [] 

By comparing (3.3) with (3.1) we see that the numerical solution of  (1.3) by the backward Euler 
method has asymptotically the same decay rate as the exact solution. 

4. Global  error estimate 

Recall that the solution y( t )  of Eq. (1,3) is an analytic function on [0, c~) (see, e.g., [16]). It 
is easy to verify that the approximation oder of  the Trapezoidal Rule is 2 at least and the orders 
of  all other 0-methods are 1 at least. However, a global discretisation error estimate is needed to 
guarantee the approximation of  the numerical solution to the exact solution globally even when both 
the numerical solution and the exact solution tend to zero at infinity. Let en = y(tn) - y . ,  n >10. It 
follows from (2.1) that 

1 
e.+l - 10bh----~. + (1 - O)bh.)en + (1 - O)ah.eh(2t.) + Oah.eh(2t.+l)) 

+E.,  n/>n0, (4.1) 

e cx~ where e h is the piecewise linear interpolation of  { .}.=0, and 

1 
E. = y(t.+, ) 1 - Obh~ ((1 + (1 - O)bh.)y(t . )  + (1 - O)ah.((1 - ~k.)y(tm(.)) + ~.y(tm(.)+l)) 

+Oah.((1 - ~9~+1 )y(tm(.+l)) + ~k,,+ly(tm(.+~)+l ))) 

is the local discretisation error, where m(n) :Z + ~ 7/+ denotes the function that satisfies the following 
inequalities, 

tm(n) ~ 2t. < tm(.)+~, 

and ~. = (2t. - tm(.))/hm(n). In order to give a reasonably good estimation of  the global error, we 
need the following result (see, e.g., [15, 18]) which concerns the decay rate of  the second-order 
derivative of  the exact solution. 

Lemma 7. There exists a constant M > 0 such that the second-order derivative o f  the solution 
y( t )  of  (1.3) satisfies the following estimate: 

[y"(t)l ~< M ( t  + 1) ~-a, t ~ 0, 

where • = In [b/al/In 2. 
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Theorem 8. I f  Re b < 0, ( 2 0 -  1)lb [ > la[ and lim,__,~ h, = c ~  then the global discretisation error 
of  the O-method (1.4) for (1.3) is bounded by Mlh + M2 max,,~>,o h2m(tm + 1 )~-2, where M1 and 342 
are positive constants that depend on the coefficients a,b and 2 only, and h = max0~m<,0+,, hm. 

Proof.  For simplicity, we prove this theorem in the case that b is negative constant. It follows from 
(4.1) that 

[e,+l[ ~< p max [era[ + [E,[, n t> no, (4.2) 
O<~m~n 

where 

l1 + (1 - O)bh°l + lalh, 
p := sup < 1. 

,~,0 I1 - Obh.I 

By induction, we obtain from (4.2) that 

max [ e , l ~ < m a x ~  max le.[, 1 } max IE.I . (4.3) 
n>no+nl [O<~n<~no+nl 1 - -  p n>~no+no 

By standard procedure we can prove that 

max [e,[ ~< Mlh (4.4) 
O <~ n <~no+nl 

for some positive constant M1. Using the estimate in Lemma 7 we see that the following estimate, 

max [En[ <<. (1 - p)Mzmaxh2m(tm + 1) ~-2, (4.5) 
n>~no+nl m>~no 

holds for some positive constant M2. The desired error bound follows from the estimates (4 .3 ) -  
(4.5). [] 

Remark  4. Our results about the scalar case (1.3) are mostly subject to the conditions that Reb  < 0 
and (20 - 1)lb I > la[. In the case o f  the initial value problem of  the system of  delay differential 
equations 

i~'(t) = Ai~(2t) + B~(t) ,  t > 0, ~(0)  ---- Y0, 

those two conditions need only be replaced by a ( B ) <  0 and p(B-1A)< 2 0 -  1, where eft.) is the 
maximal real part o f  the eigenvalues of  the matrix (the spectral abscissa) and p(.)  the spectral 
radius. 

5. Numerical examples 

In this section, we present some numerical examples. We are mainly interested in the long time 
behaviour of  the numerical solution o f  Eq. (1.3) on the stability boundary Reb  < 0, [b[ = ]a[. For 
the convenience o f  our computation, we choose the grid points as follows: 

tn = nh, n -- 0, 1 . . . .  , no, 

t,o+k,,+, = p"2-kr, n = 0, 1 . . . .  ,nl,  k = 0, 1 , . . . ,  
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1 Fig. 1. a = - e  5~i/~l, b = e 2~i/3, 2 = ~. r = 10, no = 100, nl = 200, n2 = 100, n3 = 42. This one is the " same"  as Fig. 
2 o f  Iserles [11], the latter was produced from the exact solution (see [12]), whereas  Fig. 4 o f  Iserles [11], produced by  
the Trapezoidal  Rule wi th  constant  stepsize h = ½, is used as an example  to show the storage problem. 

i i 

lO 

! 
-101 

-,'~ -,'o 4 o + 1'o 1'5 

Fig. 2. a = 1, b = e 217ti/40, ~ = 21-. r = 10, no = 100, nl = 200, n2 -~ 200, n3 = 80. This figure can be verified by us ing  
the exact solution, whereas  Fig. 7 (and some others as wel l )  o f  B u h m a n n  and Iserles [3] failed to predict  the correct  long 
t ime behav iour  o f  the exact solution due to insufficient computer  memory.  
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Figs. 3 and  4. In Fig. 3, a = 4 + 0 . 1 i ,  b = - 0 . 1  + 4 i ,  2 = ½. r = 10, no = 100, nl = 100, n2 = 50, n3 = 8. The  solut ion is 

un i fo rmly  bounded .  In Fig. 4, a = 4, b = - 0 . 1  4 4i, 2 = ½. r = 10, no = 100, nl = 100, n:  = 50, n3 = 32. The  solut ion 

tends  to zero, bu t  its geometr ic  pat tern is s imilar  to that  o f  Fig. 3 in finite t ime interval except  that  in Fig. 3 the curve is 

"c losed"  and in this  figure the  curve  is not  c losed  and  actual ly consis ts  o f  about  8 s imilar  port ions (or  about  k por t ions  

i f  we set n3 -= 4k) .  



i i ' i i 

1 

0.5 ) 

0 

ii 
-1 -0.5 0 0.5 1 

Fig. 5. 

0.5 

-0.5 

-1 
J 

-1 -0.5 0 0.5 1 

188 Y. Liu/Journal of Computational and Applied Mathematics 71 (1996) 177-190 

Fig. 6. 

Figs. 5 and 6. In bo th  figures, a = e 16~ri/ll, b = e 6ni/ll, r ~- 10, no --  100, nl ~ 400, n2 = 60, n3 = 30, except  that  
.~ --  10 -2 in Fig. 5 and 2 = 10 -3 in Fig. 6. These  two figures show that  as 2 --~ 0 + ,  the orbit  o f  the solutions seemingly  
tends to a limit. They  also reveal  how different the long t ime dynamical  behav iour  o f  the solution in the case o f  2 << 1 
is f rom that of  2 = 0. 
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where h =r/no, p = 2 -~/n'. Due to its higher accuracy, the Trapezoidal Rule is used in the inter- 
val [0, r]. Noting from previous sections that the backward Euler methods retain many long time 
dynamical behaviour such as uniform boundedness, asymptotic stability and algebraic decay for 
all pairs of (a,b) satisfying Reb < 0, Ibl > lal, we use the backward Euler method to perform 
the numerical experiment outside [0, r]. In Figs. 1-6, we let Y0 = 1 and display (Re Yn, Imyn) for 
no + nln2 < n <<, no + nln3, where  no, n1 and n2>> 1. 
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