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a b s t r a c t 

Shell colour polymorphism is a widespread feature of various land snail species. In our study we aimed at

elucidating the question whether there is a correlation between shell colouration and immune defense in

three land snail species by comparing phenoloxidase (PO) activity levels of different morphs after immunos-

timulation via Zymosan A-injection. Since phenoloxidase is involved both in immune defense as well as in

melanin production, the PO activity level is particularly interesting when trying to resolve this question. Even

though Zymosan A failed to induce PO activity rendering a comparison of inducible PO activity impossible,

an interesting difference between pale and dark morphs of all tested species could be observed: dark snails

were less affected by hemolymph withdrawal and were able to maintain or regenerate a significantly higher

PO activity level after hemolymph withdrawal than pale snails. Possible implications of this observation are

discussed. 
c © 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Shell colour polymorphism is a phenomenon which can be found

in several land snail species [ 2 , 19 , 20 , 37 ], including Cepaea hortensis

(O.F. M ̈ULLER, 1774), Theba pisana (O.F. M ̈ULLER, 1774) and Cornu

aspersum (O.F. M ̈ULLER, 1774). Quite a number of studies attribute

this polymorphism to predation or climatic effects [ 23 , 33 , 32 , 36 , 37 ],

whereas climatic effects are often explained by a higher warming ca-

pacity in darker morphs furthering the paler morphs in sun-exposed,

warmer habitats [ 31 , 38 ]. However, recent work [ 52 ] has shown that

the assumption of a higher warming capacity in darker snail shells

should be regarded with caution, and alternative possibly selecting

factors and correlations have been proposed, among which are hu-

midity and the higher occurrence of parasites under humid conditions

in northern and / or sheltered habitats. And in fact, it was demon-

strated that wetter conditions can further parasite stress on molluscs

[ 45 ]. Interestingly, a correlation between shell colouration and para-

sitic load was observed in several snail species with the darker morphs

being less parasitized than paler morphs [ 13 , 14 ]. Taken together, this

raises the questions whether there is a difference in pathogen resis-

tance between dark and pale snail morphs, and which mechanism
* Corresponding author. Tel.: + 49 7071 7573557. 

E-mail address: alexandra.e.scheil@googlemail.com (A.E. Scheil). 

 

 

 

 

 

2211-2839 c © 2013 The Authors. Published by Elsevier B.V. 

http://dx.doi.org/10.1016/j.rinim.2013.06.002 

Open access under CC BY-NC-ND lic
would be underlying such a correlation between shell colouration

and immune defense. 

A correlation between colouration and phenoloxidase (PO)-

mediated immunity has already been demonstrated in insects,

whereas stronger melanisation and darker cuticle colour are linked

to higher immunity [ 4 , 9 , 22 ]. In fact, it is known that melanism and

immunity parameters are both based on the melanin-producing path-

way, the so-called PO-cascade [ 51 , 58 ]. This cascade can be activated

via β-1,3-glucans, peptidoglycans and lipopolysaccharides, which are

derived from fungi or bacteria [ 58 ]. Such β-1,3-glucans can be found,

for example, in Zymosan A, a yeast cell wall preparation that is com-

monly used for artificial PO activity stimulation in invertebrates [ 59 ],

and which was also chosen for immunostimulation in this study. 

To our knowledge, nothing is known about mechanisms underly-

ing possible links between shell colouration and immunocompetence

in molluscs even though hints to such links were found some decades

ago [ 13 , 14 ]. However, melanin has been shown to be a pigment which

is also responsible for colouration of snail shells [ 18 ], and PO is an im-

portant parameter in immune defense against microbial and parasitic

pathogens in molluscs [ 1 , 6 ], also playing an important role in wound

healing [ 49 ] and sclerotization of molluscan shells [ 47 , 61 ]. Therefore

it is imaginable that correlations between shell pigmentation and im-

mune defense and between shell pigmentation and wound healing /

sclerotization processes exist in molluscs as well. 

In this study, we have focused on investigating correlations be-

tween shell colouration and constitutive as well as inducible PO ac-

tivity in different shell colour morphs of Cepaea hortensis , Theba pisana
ense.

https://core.ac.uk/display/82210215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.rinim.2013.06.002
http://www.sciencedirect.com/science/journal/22112839
http://www.elsevier.com/locate/rinim
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.rinim.2013.06.002&domain=pdf
mailto:alexandra.e.scheil@googlemail.com
http://dx.doi.org/10.1016/j.rinim.2013.06.002
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


74 A.E. Scheil et al. / Results in Immunology 3 (2013) 73–78 

a

t

2

2

C

a

O

C

n

t

t

w

w

L

B

r  

h

c

b

f

l

t

2

c

r

o

2

t

p

n

(

t

l

1

m

c

s

a

c

f

a

o

0

i

t

i

a

m

G

t

M

f

6

b

w

c

Fig. 1. Different morphs of test snails; pale and dark morph of C . hortensis (a), pale and 

dark morphs of T. pisana (b), and pale and dark morph of C . aspersum maximum (c). 
nd Cornu aspersum maximum , applying Zymosan A as an immunos- 

imulant. 

. Material and methods 

.1. Test organisms, sampling and maintenance 

Tests were conducted with three different land snail species, 

epaea hortensis (O.F. M ̈uller, 1774), Theba pisana (O.F. M ̈uller, 1774) 

nd Cornu aspersum maximum (cultivated variety of Cornu aspersum , 

.F. M ̈uller, 1774; nomenclature according to Falkner et al. [ 27 ]). 

ornu aspersum maxium was obtained from a local snail farm (Sch- 

eckengarten Munderkingen, Munderkingen, Germany) and acclima- 

ised to laboratory conditions (20 ◦C, 60–90% humidity) for at least 

wo weeks before the experiments were started. Cepaea hortensis 

as sampled from a private garden in T ̈ubingen-Lustnau, Germany, 

here no pesticides are applied, and Theba pisana was collected near 

es Paluds de Noves (Dept. Bouches du Rh ̂

 one) in Southern France. 

efore testing, C . hortensis and T . pisana were acclimatised to labo- 

atory conditions (18 ◦C for C . hortensis , 22 ◦C for T . pisana , 50–90%

umidity) for at least two weeks. All snails were fed a diet of organic 

arrots / cucumbers / zucchini / oats ad libitum once a week and organic 

aby food ( Hipp Bio-Milchbrei , Hipp GmbH & Co. Vertrieb KG, Pfaf- 

enhofen, Germany), prepared according to package instructions, ad 

ibitum twice a week. Clean cuttlebone was provided ad libitum at all 

imes. Animals were kept in ventilated plastic terraria (30 × 19.5 ×
0.5 cm 

3 ) containing a moistened 2 cm layer of JBL Terra Basis ground 

overing for terraria (JBL GmbH & Co. KG, Neuhofen, Germany). Ter- 

aria were re-moistened with tap water every other day and cleaned 

n a weekly basis. 

.2. Experimental set-up, general 

To avoid possible bias through naturally existing nematode infec- 

ions, 10% of the sampled snails were tested by peptic digestion of 

ieces of the headfoot as described in Cabaret [ 15 ]. In all cases, no 

ematodes could be detected. 

In all tests the snails were individually exposed to the respective 

mentioned below for each specific test) exposure or control condi- 

ions in plastic boxes (9 × 6 × 9 cm 

3 , with perforated transparent 

ids, in case of C . hortensis and T . pisana ) or plastic terraria (16.5 ×
6.5 × 19 cm 

3 ) with lid and wall perforations, in case of C. aspersum 

aximum ) lined with a moistened 2 cm layer of JBL Terra Basis ground 

overing for terraria (JBL GmbH & Co. KG, Neuhofen, Germany). The 

pecies-specific laboratory maintenance temperatures as mentioned 

bove were sustained throughout the respective tests. Hemolymph 

ollection was conducted according to Renwrantz et al. [ 50 ], with the 

ollowing modifications: hemolymph (HL) was withdrawn from each 

nimal from the hemocoel of the upper to middle subepithelial region 

f the headfoot at a quantity of 20 μL using sterile syringes (1 mL) and 

.40 × 20 mM gauge sterile hypodermic needles. In C . aspersum max- 

mum , pre-drilling of a small hole into the shells was required due to 

he shells ’ hardness. Punctured veins were not glued as this resulted 

n strong mucus production during pre-tests. 

For Zymosan A- injections the same types of syringes and needles, 

nd the same puncture sites were used as for HL collection. The Zy- 

osan A solution contained 5 mg Zymosan A (Sigma Aldrich Chemie 

mbH, Steinheim, Germany) in 1 mL snail saline (prepared according 

o Chiarandini [ 17 ]), equivalent to ± 4 × 10 7 particles / mL (as in 

atricon-Gondran and Letocart [ 44 ]). The Zymosan A solution was 

reshly prepared for each test. 

Originally, we planned to re-sample Zymosan A- injected snails 

 h and 24 h after injection. The 24 h time point was chosen as it has 

een shown in other molluscs that PO activity can increase two-fold 

ithin 24 h after Zymosan A-injection [ 1 ]. The 6 h time point was 

hosen in order to test for a possibly earlier PO activity induction. 
However, in C . hortensis and T . pisana , amendments to this schedule 

were necessary as described below. 

Experimental set-up for C. hortensis 

Snails were divided in two different morph groups: yellow (later 

referred to as ‘pale ’ (p)) and strongly-banded with five brown bands 

on yellow base colour (later referred to as ‘dark ’ (d)) ( Fig. 1 a). Of 

each morph group, 14 animals were sampled for HL collection at 

the beginning of the experiment (0 h, base level). Then 100 μL of the 

Zymosan A- solution were injected into each snail. After 24 h, snails 

were sampled for HL collection again (24 h Zymosan A exposure). 

In contrast to our later experiments with C . aspersum maximum , we 

avoided sampling hemolymph at 6 h of test time, as this proved to 

be too stressful for C . hortensis in pre-tests, probably due to the short 

recovery time between 0 h and 6 h, and the relatively small size of 

C . hortensis . 

2.3. Experimental set-up for T. pisana 

Snails were divided in two different morph groups: pale white 

(referred to as ‘pale ’ (p) in the following) and darkly- banded with 

distinct, dark- brown bands (referred to as ‘dark ’ (d) in the following) 

( Fig. 1 b). Tests were conducted in two runs for each morph: (1) 10 

animals were sampled for HL collection at 0 h (base level 1). After 

24 h, these animals were resampled for a further HL collection (24 h 

HL withdrawal). (2) Ten animals were sampled for HL collection at 

0 h (base level 2). These animals were also injected an 100 μL aliquot 

of the Zymosan A solution each after the 0 h-HL collection. After 24 h, 

these snails were resampled for HL collection (HL withdrawal + 24 h 

Zymosan A exposure). Another 10 snails were injected 100 μL of Zy- 

mosan A solution each at 0 h without prior HL collection. After 24 h, 

they were sampled for HL collection (24 h Zymosan A exposure). As in 

C . hortensis , we omitted a 6 h hemolymph-sampling due to the short 

time span between 0 h and 6 h, and the small size of the snails. 

2.4. Experimental set-up for C. aspersum maximum 

Snails were divided in two different morph groups: pale brownish / 

yellowish without bands (referred to as ‘pale ’ (p) in the following) and 

dark brown with bands (referred to as ‘dark ’ (d) in the following) ( Fig. 



A.E. Scheil et al. / Results in Immunology 3 (2013) 73–78 75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 , 

 

 

 

 

 

 

 

 

 

Fig. 2. Phenoloxidase (PO) activity levels in different morphs of C. hortensis ; base levels 

and levels after hemolymph (HL) withdrawal and 24 h Zymosan A-exposure (mean + 

sd; n = 10; 0.001 < p ≤ 0.01: **). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 c). Tests with this species were also conducted in two runs for each

morph: (1) 15 snails were sampled for HL collection at 0 h, 6 h and 24 h

(base level 1, 6 h HL withdrawal and 24 h HL withdrawal, the latter as

corresponding controls to the respective Zymosan A exposure times).

Another 15 animals were sampled for HL collection at 0 h (base level

2), these animals were also injected 100 μL of the Zymosan A solution

each at 0 h. They were resampled at 6 h and 24 h (HL withdrawal + 6 h

and 24 h Zymosan A exposure). (2) Fifteen animals were sampled for

HL collection at 0 h (base level 3). Another 15 animals were sampled

for HL collection at 6 h (6 h control), these animals were resampled at

24 h (24 h control). A further 15 snails were injected an 100 μL aliquot

of the Zymosan A solution each at 0 h without prior HL collection.

These animals were sampled for HL collection at 6 h (6 h Zymosan A

exposure) and 24 h (24h Zymosan A exposure). 

2.5. Phenoloxidase (PO) assay 

The phenoloxidase assay was conducted with hemolymph (HL)

samples. This restriction to HL samples was chosen as we aimed
at depicting the immune-defense-related function of PO as a part

of the humoral immune response of molluscs (as described in
Gli ́nski and Jarosz [ 28 ]), avoiding possible bias through, for example,

reproduction-related functions of the enzyme in other tissues [ 7 , 40 ].

Furthermore, the analysis of PO in HL samples has already been suc-

cessfully performed for a number of invertebrate species, including
molluscs [ 10 , 39 , 46 , 53 , 54 , 56 ], and PO analysis in other tissue samples
is rather regarded as an alternative in case HL collection is not feasible

[ 43 ]. The assay procedure was adapted from Sepp ̈al ̈a and Jokela [ 54 ]

with slight modifications, and care was taken to prevent unwanted
unfolding of hemocyanin [ 26 , 35 ]. In short, 20 μL of hemolymph (HL)

were mixed with 200 μL of phosphate buffered saline (PBS, pH 7.4;
Sigma Aldrich Chemie GmbH, Steinheim, Germany) and immediately

shock-frozen in liquid nitrogen. The resulting samples were stored at

−80 ◦C until further processing. After thawing, 40 μL sample aliquots
were placed in 96-well microtiter plate wells which contained 140 μL
of cold aqua bidest. and 20 μL of PBS each. Each sample was mea-

sured in triplicates. Additionally, four controls (sample aliquots re-
placed by aqua bidest.) per plate were set up. Then, 20 μL of cold

L-dopa (Sigma Aldrich Chemie GmbH, Steinheim, Germany) solution
(4 mg / mL aqua bidest.) were added to each well and plates were
immediately measured photometrically at 490 nm in a microplate

reader (ELx800, Bio-Tek Instruments, INC., Vermont, USA) resulting
in 0 h values. The plates were then covered and incubated at 30 ◦C in

a thermocabinet (ST 2 A60, STL-Neckarwestheim, Neckarwestheim,
Germany) for a species-specific time (30 min for C . hortensis , 6 h for
T . pisana and 3.5 h for C . aspersum maximum , determined in pre-tests,

data not shown) to ensure linearity of the absorbance increase allow-

ing most accurate measurments. After incubation, the plates were
re-measured photometrically at 490 nm resulting in incubation time

values. PO activity was then calculated according to the following
equation: 

PO activity = 

incubation time values − 0 h values − mean absorbance change in controls

and expressed in milliunits. 

2.6. Statistical analysis 

The obtained data were statistically analysed implanting JMP 
®

9.0

(SAS Institute Inc., Cary, USA). Data were tested for normality using

the Shapiro–Wilks-test, and when the following normal distribution

was analysed via Tukey–Kramer-HSD for significant differences. Not

normally distributed data were analysed for significant differences

using the non-parametric Wilcoxon U - test and in case of multiple

comparisons, a Bonferroni correction was applied. Levels of signifi-

cance were set to 0.01 < p ≤ 0.05: *; 0.001 < p ≤ 0.01: **; p ≤ 0.001: ***

for normally distributed data and not normally distributed data used
in single comparisons. For not normally distributed data analysed in

multiple comparisons, the levels of significance were calculated im-

planting a Bonferroni correction; they are shown in the respective

figure legends. 

3. Results 

3.1. Phenoloxidase (PO) activity in C. hortensis 

The base levels of the different morphs were not significantly dif-

ferent from each other, even though the level of dark morphs tended

to be higher ( Fig. 2 ). Also, the PO activity levels of the different morphs

after HL withdrawal and Zymosan A exposure for 24 h did not differ

significantly ( Fig. 2 ). However, when comparing the results within

the morph groups it became evident that the PO activity level in pale

morphs decreased significantly after HL withdrawal and Zymosan A

exposure for 24 h ( Fig. 2 ). In the dark morphs no significant difference

could be detected between base level and results after HL withdrawal

and Zymosan A exposure for 24 h ( Fig. 2 ). 

3.2. Phenoloxidase activity in T. pisana 

Run 1: No significant differences between the base levels (base

level 1) were found between the two morphs, yet there was a ten-

dency for a higher level in dark morphs ( Fig. 3 ). Twenty four hour after

HL withdrawal no significant differences between the two morphs

could be detected as well ( Fig. 3 ). However, the 24 h HL withdrawal

results for the pale morphs had significantly decreased compared to

the respective base level, whereas no such decrease could be found

in the dark morphs ( Fig. 3 ). 

Run 2: When comparing the two morphs, no significant differences

were found concerning the base levels (base level 2) even though, by

trend, the level in dark morphs appeared higher, also there were no

significant differences detectable between the base levels of run 1

and run 2 ( Fig. 3 ). The HL withdrawal combined with a 24h Zymosan

A exposure resulted in a significant decrease of the PO activity level

compared to the base level in both morphs ( Fig. 3 ). A 24 h Zymosan

A exposure without prior HL withdrawal did not result in signifi-

cant differences compared to the base levels in both morphs ( Fig. 3 ).

However, in both morphs the 24 h Zymosan A exposure results were

significantly higher compared to the respective HL withdrawal + 24 h

Zymosan A exposure results ( Fig. 3 ). Furthermore, the 24 h Zymosan

A exposure data recorded for the two morphs differed significantly

from each other with the dark morphs showing a higher PO activity

level. 
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Fig. 3. Phenoloxidase (PO) activity levels in different morphs of T. pisana ; test run 1 

with base levels and levels 24 h after hemolymph (HL) withdrawal, and test run 2 with 

base levels, levels after hemolymph withdrawal and 24 h Zymosan A-exposure and 

levels after 24 h Zymosan A-exposure only (mean + sd; n = 10; 0.01 < p ≤ 0.05: *; 

0.001 < p ≤ 0.01: **; p ≤ 0.001: ***). 

Fig. 4. Phenoloxidase (PO) activity levels in different morphs of C . aspersum maximum ; 

test run 1 with base-levels and levels 6 h or 24 h after hemolymph (HL) withdrawal 

considering the same individuals as for the base levels, and base levels and levels after 

hemolymph (HL) withdrawal plus 24 h Zymosan A-exposure considering the same 

individuals as for the base levels (mean + sd; n = 15; 0.000435 < p ≤ 0.0022: *; p ≤
0.000435: ** after Bonferroni-corrections for 23 comparisons). 
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Fig. 5. Phenoloxidase (PO) activity levels in different morphs of C. aspersum maximum ; 

test run 2 with base levels and levels 6 h or 24 h after hemolymph (HL) withdrawal 

considering other individuals as for the base levels, and levels after 6 h or 24 h Zymosan 

A-exposure (mean + sd; n = 15; p ≤ 0.0024:* after Bonferroni-corrections for 21 

comparisons). 
.3. Phenoloxidase activity in C. aspersum maximum 

Run 1: The base levels (base level 1) of the two morphs did not dif- 

er significantly from each other ( Fig. 4 ). Also, the 6 h HL withdrawal 

esults were not significantly different between the two morphs, and 

id not differ from their respective base levels as well ( Fig. 4 ). How- 

ver, the 24 h HL withdrawal results in the pale morphs showed a 

ignificant decrease compared to the respective base level, whereas 

o such difference was found in the dark snails ( Fig. 4 ). The base levels 

 of the different morphs did not differ from each other as well. Also, 

here were no significant differences between base levels 1 and 2 ( Fig. 

 ). HL withdrawal combined with a 6 h Zymosan A exposure resulted 

n a significantly decreased PO activity level for the pale morphs but 

ot for the dark morphs ( Fig. 4 ). After HL withdrawal + 24 h Zymosan 

 exposure the PO activity levels were significantly decreased in both 

orphs ( Fig. 4 ). 

Run 2: In run 2, no significantly different results could be detected, 

nly a trend for slightly higher levels in base level and control snails 

as observable for the dark morphs ( Fig. 5 ). 
4. Discussion 

Concerning the constitutive levels (base levels) of PO activity, it is 

remarkable that we did not find significant differences between dif- 

ferent morphs in each of the species tested. This is contrary to what 

has been found in other invertebrate species, e.g. Tenebrio beetles [ 4 ], 

or other insects [ 62 ]. These studies revealed a positive relation be- 

tween either stronger melanisation and higher constitutive PO activ- 

ity levels leading to increased pathogen resistance in darker animals 

[ 4 ], or between melanism and disease resistance involving phenolox- 

idase [ 62 ]. However, concerning the three snail species tested in our 

study, we may exclude a higher pathogen resistance of darker snails 

based on differences in constitutive PO activity levels. A possible ex- 

planation for the lack of differences in the constitutive PO activity lev- 

els of different morphs is the differential structure of hemocyanins, 

which also exhibit PO activity and have immunological functions [ 25 ], 

in different molluscs as it was demonstrated by De Smet et al. [ 24 ] 

and Velkova et al. [ 60 ]. The stability of snails ’ hemocyanin due to pos- 

session of three structural subunits compared to two subunits only 

in other molluscs [ 24 , 60 ] can account for the absence of detectable 

differences in constitutive levels in snails. Another explanation comes 

from the fact that maintaining relatively high constitutive (or prophy- 

lactic) levels of phenoloxidase can provide animals with the benefit 

of higher resistance to pathogens, yet this may also be costly for 

the respective organisms [ 55 ]. It is also known that phenoloxidase 

activity provides cytotoxic properties, this has, for example, been ob- 

served in ascidians [ 8 ] and is based on the generation of reactive 

oxygen metabolites during the PO-mediated conversion of phenols 

to o -quinones and then melanin. Therefore it is likely that maintain- 

ing a high constitutive PO activity level poses a considerable oxida- 

tive stress on the respective organism, in our case snails. A solution 

to the ‘dilemma ’ of oxidative stress vs. pathogen resistance might 

come from relying on induced PO activity as it has been proposed 

for lighter-coloured beetles by Armitage and Siva-Jothy [ 4 ], this re- 

stricts oxidative stress deriving from PO activity to periods of actual 

demand for immune response. However, in our experiments with 

C . hortensis , T . pisana and C . aspersum maximum , we did not observe 

any upregulation of PO activity following injection of Zymosan A in 

any of these three species. Consequently, no differences in inducible 

PO activity could be observed in different morphs. This might lead to 

the exclusion of a higher pathogen resistance based on different PO 

activity in darker morphs, rejecting our hypothesis. Yet, it has to be 

taken into account that the fact that the Zymosan A-injection failed 
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to induce higher PO activity levels in all three species should be con-

sidered a rather unusual phenomenon. Immunostimulation via β-1,3

glucans, being a major component of yeast cell walls (Zymosan A),

has been observed in a variety of invertebrates [ 16 , 59 , 48 ], including

molluscs [ 1 , 21 , 34 , 41 ]. However, there is also work showing that Zy-

mosan A can appear ineffective in causing elevated PO activity levels

[ 3 , 11 ], yet studies on this phenomenon are relatively scarce and no

concluding explanation for this has been offered so far. Yet, an ob-

servation of Brivio et al. [ 11 ] was that increasing Ca 2 + concentration

led to decreasing PO activity in the hemolymph of their test organ-

isms ( Allogamus auricollis ), and they suggest that high calcium levels

may protect against unwanted proPO activation in insects as this is

also known for other arthropods [ 5 , 57 ]. As calcium ion levels in snail

hemolymphs are relatively high [ 29 , 30 ], it is possible that a high cal-

cium content might also form a barrier against undesired PO activity

in our test snails. Again, although being a plausible explanation for

the absence of Zymosan A-related PO activity increase in our snails,

we cannot draw a final conclusion from this ruling out other, probably

unknown factors that might have contributed to or even exclusively

led to the observed phenomenon of PO activity decline. As a conse-

quence, we find it difficult to conclude whether darker morphs of the

three test species possess a stronger immunocompetence based on

PO activity than paler conspecifics or not. 

However, we did observe a remarkable difference between

dark and pale morphs in all three tested snail species: 24 h after

hemolymph-withdrawal the PO activity level was significantly de-

creased in the hemolymph samples of pale snails but not in the

samples of dark animals. As this probably affected a possible PO

activity induction due to Zymosan A, we repeated the experiments

with T . pisana and C . aspersum maximum without prior hemolymph-

withdrawal (run 2) to exclude bias through this, yet no Zymosan

A-related PO activity increase was observable as discussed above.

A plausible explanation for the significant decrease of PO activity

following hemolymph withdrawal solely in pale snails could be that

pale snails possibly cannot compensate for hemolymph and / or hemo-

cyte loss as fast or as effectively as dark snails. As PO is produced by

hemocytes [ 12 ], and positive correlations between hemocyte density

and PO activity levels have been found in insects as well as molluscs

[ 22 , 54 ], it is possible that hemolymph-withdrawal causing a reduc-

tion of hemocyte numbers also results in reduced PO activity. Taking

this into account, our results indicate that dark snails can either re-

generate hemocyte numbers or PO content in the hemolymph within

24 h to a better extent than pale snails. One might also presume that

hemocyte numbers were generally higher in dark snails, however,

the absence of significantly different constitutive levels in different

morphs contradicts this. As hematopoiesis in gastropods is gener-

ally only poorly understood [ 42 ], we find it difficult to speculate on

possible mechanisms underlying such a regeneration of hemocyte

numbers / hemolymph PO content and its plausible links to colour

polymorphism in land snails, and recommend further investigations

on this topic implanting corresponding hemocyte counts. Neverthe-

less, considering our results it is plausible that dark snails benefit from

being obviously less affected by hemolymph withdrawal concerning

PO activity levels than pale snails. Such a benefit can, for example, oc-

cur following injuries involving shell and / or tissue impairment lead-

ing to hemolymph loss and requiring wound healing processes. This

consideration gains in importance when taking into account that phe-

noloxidase plays an important role in shell sclerotization of molluscs

[ 47 , 61 ]. As phenoloxidase is an important parameter in pathogen re-

sistance in molluscs [ 12 , 34 ], and as tissue and / or shell impairment

can facilitate pathogen infections since this affects the main physical

barriers of molluscs [ 28 ], it becomes even more plausible that darker

snail morphs can be at an advantage compared to paler morphs when

shell and body wall injuries occur. 

Even though, due to lack of induction via Zymosan A, no differences

in PO activity levels in different morphs could be observed in this
experiment, another difference between pale and dark snail morphs

concerning their immune response to hemolymph withdrawal stress

was detected in our study. This is interesting and implies that the

dark morphs benefit under certain circumstances from being able to

regenerate or preserve hemolymph PO content to a better extent than

pale morphs. 
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