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Because they mainly do not involve chemical changes,
membrane transporters have been a Cinderella subject in
the biotechnology of small molecule production, but this
is a serious oversight. Influx transporters contribute sig-
nificantly to the flux towards product, and efflux trans-
porters ensure the accumulation of product in the much
greater extracellular space of fermentors. Programmes
for improving biotechnological processes might therefore
give greater consideration to transporters than may have
been commonplace. Strategies for identifying important
transporters include expression profiling, genome-wide
knockout studies, stress-based selection, and the use of
inhibitors. In addition, modern methods of directed evo-
lution and synthetic biology, especially those effecting
changes in energy coupling, offer huge opportunities for
increasing the flux towards extracellular product forma-
tion by transporter engineering.

The control of flux in biochemical networks
In any complex biochemical network, all steps contribute to
the control of the flux through a particular pathway or even
that catalysed by a specific enzyme, but some steps exert a
greater degree of control on the fluxes of interest than do
others. Although all steps contribute to flux control, in
devising strategies to increase such fluxes [1], it is wise to
pay special attention to the particular steps that exert the
greatest control over the pathway. In many cases, and
especially for those systems involving xenobiotics, these
steps include the cellular transporters that catalyse the
influx of substrates and the efflux of products or potentially
cytotoxic compounds. In other words, these steps are typi-
cally significantly rate-controlling. A quantitative measure
of the extent of this rate or flux control is encapsulated in the
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flux-control coefficient (Box 1). With a relative density
barely greater than 1, even at 100 g.l�1 wet cell concentra-
tion most of the volume of a fermentor is extracellular; thus,
to maximise volumetric productivity it will be desirable to
ensure that cells excrete the products of interest [2].

But doesn’t stuff just diffuse into and out of cells
unaided?
There is a surprisingly widespread view in the pharmaceu-
tical industry, starting with the relevant textbooks [3], that
the main means by which most xenobiotics (e.g., drugs) enter
and exit cells is simply by diffusing passively across the lipid
bilayer portion of cell membranes down their concentration
gradients and according to their lipophilicity (log P or log D;
see Glossary). If this were the case we should have little to
say in this review, but it is not [4–14]. The main means by
which small molecules cross biological cell membranes is
through genetically encoded, proteinaceous transporter
molecules, and this gives the cells, and the biotechnologist,
important means by which to control and influence the
process. The first thing to know, then, is qualitative
[15,16]: which small molecules use which transporters?
While we shall mainly consider microbes and fermentations,
the principles we enunciate are general, and we recognise
their role in the metabolic engineering of plants where
especially vacuolar, peroxisomal, chloroplast, and root
transporters can exert significant flux control.

‘Unexpected’ transporters for the uptake of uncharged
nonelectrolyte nutrients and other small molecules
Based on the 19th-century studies of Overton, who showed
a close correlation between the logarithm of the rate of
Glossary

The logarithm of the distribution coefficient (log D): D is the ratio of the sum of

the concentrations of all forms of a compound (ionised plus non-ionised) in

each of two phases, typically 1-octanol and an equilibrated aqueous buffer,

whose pH must be specified.

The logarithm of the partition coefficient (log P): P is a measure of the

hydrophobicity of a molecule; log P is the logarithm (base 10) of the ratio of the

concentration of a solute molecule in an organic solvent, usually 1-octanol, to

that of the non-ionised form of the same molecule in water.
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Box 1. Metabolic control and flux balance analysis

Imagine a metabolic network or pathway in which we vary the

concentration of an enzyme E by an amount DE, with a concomitant

change in the flux of interest DJ. In the limit of small changes, this

becomes dJ/dE. By normalising these changes to the flux and enzyme

concentration at the operating point (J,E) we can obtain a dimension-

less quantity CJ
E, the flux-control coefficient of enzyme E on the flux

of interest J, which describes in quantitative terms the extent to which

that enzyme controls the flux. CJ
E is equivalent to a local sensitivity

coefficient. If CJ
E is 0 then the enzyme exerts no flux control, while if it

is 1 then it is completely flux-controlling. The sum of the flux-control

coefficients for all enzymes on a particular flux is 1. This means that

most enzymes have small flux-control coefficients, and even a 50%

knockdown typically has a limited effect on flux (Figure I). Thus, to

have major effects, one should seek to use haploid organisms or

homozygous diploid deletants [9,66]). A related concentration-control

summation theorem shows that the sum of the concentration control

coefficients = 0. Note that the flux-control coefficient is not constant –

at a different operating point it would be higher or lower as flux

control shifts among different parts of the network. The thesis in this

review is that, where the flux-control coefficients of transporters are

determined, they will often be found to be larger than those of other

enzymes, providing suitable suggestions for transporter engineering.

Flux balance analysis describes a series of techniques for estimat-

ing relative metabolic fluxes without the requirement to know any of

the kinetics of the participating enzymes. All it requires is knowledge

of the stoichiometries of the participating reactions, the molecular

identities of the reactants and products themselves, and an objective

function that one is trying to optimise. Linear programming

techniques can then be used to optimise the latter. The stoichiome-

tries, including mass, charge, and energy balances, provide a very

effective series of constraints to determine the possible fluxes;

however, the objective function is more problematic. Typically,

biomass is used (i.e., the rate of biomass formation), with biomass

being encoded as a ‘molecule’ with a non-integer empirical formula. It

is desirable to add further constraints, for example by confining

specific fluxes to restricted ranges or finding flux distributions that

best correlate with expression profiles [63].

Slope = dJ/dE

[Enzyme E]

Flux J

Opera�ng point

ΔE

Δ J

Flux-control coefficient CJ
E = (dJ/J)/(dE/E)
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Figure I. Flux as a function of enzyme concentration.
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cellular uptake of non-electrolytes and their log P values, it
had been widely assumed that small, uncharged molecules
could permeate freely across the bilayer portion of biologi-
cal membranes (even though it is well known that glucose
and other sugars do not). However, it is now recognised
that this is not at all the case, with transporters having
been found (and required) for the uptake of many small,
uncharged substances such as alkanes [17], ammonia
(NH3) [18], carbon dioxide (CO2) [19,20], ethanolamine
[21], fatty acids [22], glycerol [23], hydrogen peroxide
(H2O2) [24], hydroxyurea [25], nitric oxide [26], (di)oxygen
[27], urea [28,29], and even water [23,30]. The last was a
finding for which Peter Agre received the 2003 Nobel Prize
[31,32].

It has long been known that acetate enters cells mainly
in its uncharged form, as acetic acid. This may be deter-
mined by osmotic swelling experiments [33], but these
kinds of experiments do not say anything about the mech-
anism by which it enters: bilayer diffusion or a transporter.
However, it is now known in the important amino acid
producer Corynebacterium glutamicum that even the up-
take of electroneutral acetic acid involves the use of a
specific transporter [34].

Ethanol is another small nonelectrolyte of much bio-
technological interest, and it is desirable to increase its
export from producer cells [35]. It is not yet entirely certain
which transporters are responsible for this, but the ATP-
binding cassette (ABC) transporter [36] Pdr18 [37] and the
glyceroaquaporin Fps1 [38] possess properties that might
be consistent with such a role, although other mech-
anisms may also be involved [39]. While we later discuss
in more detail export (efflux) transporters of molecules
238
not normally produced by the host, this section leads
naturally to a discussion of those that are known to be
involved in the secretion of metabolites that the host
naturally produces.

Some useful case histories from classical fermentations
A notable example of the role of transporters in improving
the yield of an important fermentation product (more than
2M tonnes per annum) comes from the history of the
glutamate fermentation carried out using various coryne-
form bacteria, notably C. glutamicum [40]. Following the
initial discovery of the fermentative production of gluta-
mate, various empirical treatments in the 1960s and 1970s
were found to enhance the efflux of glutamate from pro-
ducer strains. It was later established that this was due to
a change in membrane tension that activated a mechan-
osensitive glutamate efflux pump encoded by a gene called
NCgl1221, a homologue of the Escherichia coli yggB gene,
now known as mscS, the mechanosensitive channel of
small conductance. Similar efflux pumps are now known
to be involved in the export of products during a variety of
other amino acid fermentations [41], such as those for
lysine, isoleucine, threonine, methionine, and others [2].

Why would a cell export its metabolites?

One may wonder (from an evolutionary perspective) why
bacteria see fit to excrete important nutrients or metabo-
lites, often at fast rates. The most persuasive general
explanation [42] is to the effect that soil bacteria (such
as corynebacteria) that have experienced drought and are
hit by a raindrop (a common stress), experience truly
massive osmotic stresses or turgor pressures that can only
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realistically be dealt with by a virtually instantaneous
excretion of internal osmolytes. This excretion is catalysed
by a mechanically-sensitive, membrane-triggered osmo-
regulatory process which can also occur in plants [43]. Such
a role for the glutamate exporter, and one may suppose for
other such exporters, is consistent with the similar role of
its E. coli homologue [44]. Indeed, since their initial dis-
covery in bacteria, a considerable number of such mechan-
osensitive, turgor-regulating exporters are now known
[45], including seven (in two families) in E. coli.

Citric acid production

In a similar vein, the large-scale (well over 1M tonnes per
annum) fermentative production of the tricarboxylate citric
acid by the fungus Aspergillus niger involves active export
of the product from the producer strain using a proton-
symporting transporter [46]. Dicarboxylate titre is also im-
proved by enhancing dicarboxylate efflux transporters [47].

Biomass production

In some fermentations the biomass itself is the product,
and it is of interest to know what role transporters may
play in controlling growth rate more generally. By using a
pHauxostat to select strains of the fast-growing yeast
Kluyveromyces marxianus for even faster growth [48], it
was possible to evolve one that could grow up to 30% faster
than the starting strain. This decrease in doubling time to
52 min, apparently the fastest reported for a eukaryote,
was accompanied by an increase in surface area of some
40% at essentially constant volume. These results imply
that membrane processes, such as substrate uptake, were
most limiting to growth rate. Indeed, 80% of the growth
rate increase was ascribed to membrane processes
[48]. Continuous selection is also an excellent strategy
for selecting strains resistant to toxins such as solvents
[49,50], especially in turbidostats [51] in which growth rate
can be measured online [52].

In this context is noteworthy that a high-throughput
screen [53] of heterozygous deletants of diploid S. cerevi-
siae identified 145 transporter-encoding genes that exerted
significant control over growth rate (so-called high-flux-
control or HFC genes) in turbidostat culture. Ninety of
these genes had a haploinsufficient (HI) phenotype – that
is, they reduced the maximum growth rate of yeast when
present in only one copy in a diploid – while the remainder
had a haploproficient (HP) phenotype, increasing the
growth rate when in the heterozygous state. These HFC
genes included those encoding plasma membrane trans-
porters, but also genes specifying proteins involved in
transporting ions and metabolites into subcellular orga-
nelles, especially the mitochondria and the vacuole.
Amongst the HI genes were those encoding plasma mem-
brane transporters of metals (particularly iron and zinc),
organic acids (including amino acids), ammonium, phos-
phate, sulphate, vitamins, sugars (including glucose) and
sugar alcohols, and also the aquaporin gene, AQY1. This
group of HI genes also includes four that encode drug efflux
pumps. Given the discussion of efflux transporters, above,
it would seem sensible for biotechnologists and synthetic
biologists to pay attention not only to transporters of
important nutrients but also to those responsible for the
efflux of potentially toxic products of metabolism, such as
ethanol and other biofuels.

Transcriptome-based strategies for determining
transporter-mediated activities
Virtually since its inception, it has been clear that genome-
wide expression profiling at the level of the transcriptome
provides an excellent strategy for identifying which gene
products may be pertinent for particular biological pro-
cesses. This applies equally to the role of transporters in
biotechnology. Thus, the availability of the Penicillium
chrysogenum genome made it possible [54] to compare
the expression profiles of low- and high-producing strains,
finding a considerable enhancement in transporter expres-
sion in the high-producers, again implying strongly that
enhanced transporter expression could drive increased
fluxes. Although, in general terms, the expression of an
individual gene does not necessarily correlate with the
productivity of a fermentation, and certainly not over a
wide range because of changes in the distribution of flux
control (Box 1), genome-wide trawls relating expression to
activity can be highly beneficial, especially for metabolic
networks. This is because metabolic transformations are
subject to strict stoichiometric controls (no ‘alchemy’ is
allowed).

Flux balance analysis
While the counsel of perfection in genome-scale metabolic
modelling includes mechanistic details of every enzymatic
step, which can then be turned into an ordinary differential
equation (ODE) model that may be used to model or predict
all the fluxes and concentrations of interest, we very rarely
have sufficient of the kinetic parameters to do this [55–
58]. However, the stoichiometric constraints alluded to
above mean that the methods of flux balance analysis
[58–60] (Box 1) may be used to attempt to predict the
fluxes of interest. As part of a strategy to minimise the
number of possible flux patterns that can explain the
observable data [61,62], we have found [63] that absolute
transcriptomics provides a valuable surrogate for the flux
through each step.

The distribution of expression levels for transporter and
non-transporter genes were determined (but not shown) in
a recent study [63] of a yeast strain growing at 85% of its
maximum growth rate. The transporter nature of the genes
was assessed (Figure 1) by the present version of the yeast
metabolic network. As judged by their median levels, as
well as by 5000 permutations, there is a significantly lower
level of expression (P <0.0004) of transporter genes
(19.3 transcripts per cell) than of non-transporter genes
(31.7). This is not inconsistent with the fact that cellular
membranes, as 2D structures, possess a more limited
amount of real estate for incorporating transporters and
other membrane proteins than do the 3D intracellular
spaces. The ‘surfaceome’, including SLCs, is also the most
variable between different and differentiated cells [64].

Detecting relevant uptake transporter genes through
genome-wide knockout analyses
Although individual genes were classically and typically
discovered individually, it is now possible to extend the
239
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Figure 1. Expression profiles of 151 transporter and 6373 non-transporter

transcripts in baker’s yeast. Data from [63]. Note that fewer transport reactions

in the model (327/1079, 30.3%) have associated genes (hence transcripts) than do

all other metabolic reactions (1983/2255, 87.9%).

Box 2. Genomics approaches to transporter identification

The modern approach to detecting transporters, especially for strain

improvement based on systems biology principles (Figure I), is

through genome sequencing in which particular sequence motifs can

more or less reliably identify transporters, even if not always their

substrates. The next step is to incorporate such transporters into

genome-scale metabolic network reconstructions [58,139]. While this

is most effectively done by domain experts, recent advances in

methods such as text mining for systems biology [140], and other

strategies [141], mean that it is becoming increasingly amenable to

automation. A list of ‘predictive genome-scale metabolic network

reconstructions’ is maintained at http://systemsbiology.ucsd.edu/

InSilicoOrganisms/OtherOrganisms. Significantly, almost all free-

living organisms analysed are known to have genes encoding

hundreds of transporters [8]. Indeed, approximately one third of the

reactions in the heavily curated yeast [142] and human [143,144]

metabolic networks are represented by transporter reactions.
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Figure I. A modern strategy for transporter engineering in biotechnology

requires first that we construct suitable metabolic networks from genomic and

other data, then that we use variations in expression profiles and desirable

phenotypic properties to identify qualitatively those transporters whose

properties most need improving, and finally that we use the methods of

intelligent directed evolution to modify their properties and expression levels

appropriately.
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analysis of transporter roles to the genomic level (Box 2),
and there are useful online databases focussing on trans-
porters (Table 1). The sole requirements are for a suitable
variation in the extent of expression of different enzymes in
different strains, and this is most conveniently achieved
using single gene knockouts combined with a means of
selecting the phenotype of interest such as growth selection
(Figure 2). Thus, in the case of S. cerevisiae, we were able to
exploit the barcoded yeast deletion mutant collection to
identify transporters for 18 out of 26 drugs tested [9]. Most
had multiple transporters. For the eight where we could
not detect which transporters were used, this is likely
because there were simply too many transporters, and
removing only one did not provide sufficient selectivity.

That study [9] used haploid strains (Box 1) and a
purpose-designed microarray chip, but nowadays it is
recognised that deep sequencing is much more effective
and reliable [65]. Thus, in an exciting development, a near-
haploid human cell line (KBM7) with a retroviral gene-trap
was used to demonstrate that only a single transporter
(called SLC35F2) is responsible for the uptake of the
cytotoxic anticancer drug candidate sepantronium bro-
mide (also known as YM155) into these cells [66]. Clearly,
these kind of methods may be applied to any system for
which cells that have or have not taken up a particular
drug may be discriminated and separated (e.g., by cell
sorting [67]), and then identified genetically. It is worth
stressing that this kind of experiment would not ‘work’ – in
other words, return any hits – if bilayer diffusion were the
dominant mechanism of transmembrane transport. Put
another way, it would indeed seem from such experiments
that, for drug transport into cells, phospholipid bilayer
diffusion is negligible [13,14].

In theory these kinds of knockout strategies could also be
used to select strains with knockouts in efflux transporters
(if such exist), via their greater sensitivity to a compound,
but positive selection methods for resistance are always
more reliable (Box 3 and Figure 2). While it has already
been noted the deletion of only one of the two copies of a gene
can be sufficient to produce a significant reduction in growth
rate [53], it was also found that the removal of two genes,
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PDR10 and PDR12, encoding ABC multidrug transporters,
actually enhanced growth rate. Thus, further investigation
of the substrate preferences of these apparently promiscu-
ous efflux pumps might pay dividends in both biotechnology
and drug design.

Genes for efflux transporters
As well as the genes for efflux transporters described
above, there is considerable interest in the recognition
that a chief cause of antibiotic resistance, a huge continu-
ing and present problem [68], is the ability of microbes to
pump out such molecules using ‘multidrug resistance’
(MDR) efflux transporters [69,70]. MDR pumps are often
of wide specificity, for example, for lipophilic compounds,
and increasing numbers of structures are becoming known
[71]. Efflux transporters are of wider significance in medi-
cine because, by removing toxins, they lower the intracel-
lular concentrations. This can be good in the case of
genuine toxicants [72] but less so when they encode phe-
notypic resistance, for example, to anticancer agents [73].
However, in biotechnology it is both desirable and possible
to select for strains that are particularly resistant to

http://systemsbiology.ucsd.edu/InSilicoOrganisms/OtherOrganisms
http://systemsbiology.ucsd.edu/InSilicoOrganisms/OtherOrganisms


Table 1. Some databases with a focus on membrane transporters

Name Focus/organism URL

Bioparadigms SLC tables Human http://www.bioparadigms.org/slc/intro.htm

Caenorhabditis elegans solute transporter database C. elegans http://www.wormslc.org/

Drugbank Human/drugs http://drugbank.ca

Human intestinal transporter database Human/drugs Not apparently directly online; data are

downloadable from each paper’s

supplementary information.

Human transporter database Human http://htd.cbi.pku.edu.cn

Transportal Human/drug transport http://bts.ucsf.edu/fdatransportal/

TransportDB Comparative genomics

of transporters

http://membranetransport.org/

Transporter classification database (TCDB) IUBMB-approved transporter

classifications

http://www.tcdb.org/

Transporter database TP-search Human/drug uptake http://www.tp-search.jp

TransportTP Transporter prediction http://bioinfo3.noble.org/transporter/

Yeast metabolome database S. cerevisiae http://www.ymdb.ca/

Yeast transport protein database (YTPdb) S. cerevisiae http://ytpdb.biopark-it.be/ytpdb/

Yeti: yeast transport information S. cerevisiae http://genolevures.org/yeti.html
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stresses, including stresses from organic solvents [74] and/
or from high intra- and/or extracellular product titres.

Indeed, it is precisely this kind of positive selection that
can be used to our advantage in biotechnology. Thus, by
seeking tolerance to added compounds, efflux transporters
have been found for alkanes [17,75–79], arenes [80,81],
short-chain alcohols [82,83], terpenoids [78], short-chain
fatty acids [84,85], and long-chain fatty acids [86,87], while
those for isoprene and isoprenoids are eagerly sought
[88]. Unusual efflux transporters produced by microbes
for specific purposes include one for FAD in Shewanella
oneidensis [89], while virtually all free-living aerobes must
and do secrete siderophores to permit them to effect iron
uptake [90–93].

Transporter-mediated osmotic stress engineering
If cells are to accumulate soluble products to high titres,
there will always be the danger of significant osmotic
Principle of transporter iden�fica�on:
add toxic drug to single-gene deletant strains

Survives

Lacks carrier Y

Dead

D
KO2

KO1
D

KO3

KO4

D

D
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Figure 2. One approach to genome-wide identification of transporters for a toxic

drug. This evaluates the enrichment of survivors when the gene encoding the

transporter for an appropriate concentration of a cytotoxic drug is knocked out,

relative to other strains in which other genes may or may not be knocked out.
stresses as well as lowered water activities [94]. While
these osmotic stresses can be relieved by the synthesis of
so-called compatible solutes [95], such as betaine, another
strategy includes their intracellular accumulation via up-
take transporters [96]. Corynebacterium glutamicum pro-
vides an excellent example [97,98]. Note that inducing the
synthesis of such compatible solutes can also be of value
in the production of soluble and functional recombinant
proteins [99,100].

Transporter engineering
Having established which transporters are important for the
problem of interest, it is possible to improve them, typically
by the methods of directed evolution [101–103]. These in-
volve varying the primary sequence of the protein, and
selecting those with improved properties, in an iterative
manner. The variation in primary sequence is carried out
by various forms of mutation and recombination, nowadays
including the methods of synthetic biology in which we can
control rather precisely which sequences are made by creat-
ing them at the DNA level by chemical synthesis [103–
109]. The question then arises as to what kind of objective
function we might seek (Box 4). We might wish to turn a
concentrative uptake transporter into one that merely catal-
yses equilibration, in other words the efflux of product
formed intracellularly. There is ample precedent for this
loss of energy coupling, for example, in mutants of the
normally concentrative lactose permease of E. coli [110] or
of the mammalian intestinal di- and tripeptide transporter
PepT1 (SLC15a1) [111], and – for influx of substances nor-
mally pumped out – of drug uptake via uncoupled variants of
the LmrP ‘efflux’ transporter in lactobacilli [112]. By con-
trast, it was possible [113] to change a multidrug monovalent
‘efflux’ antiporter into one that used divalent ions. Thus
there seems little doubt that we should be able to change
the specificity [114], promiscuity [115], or detailed molecular
transport pathways [116] of transporters by directed evolu-
tion as easily [117] as we can for other proteins [118]. Indeed,
evidence for the selection of efflux transporters during the
development of various amino acid fermentations was given
241
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Box 3. Classical strategies for detecting the roles of

particular cell membrane transporters

Originally, the determination of which transporters accounted for

the uptake of particular nutrients or other compounds used classical

genetic techniques, often obtaining mutants in transporter genes by

selecting for resistance to cytotoxic structural analogues of those

nutrients. For example, canavanine is a structural analogue of

arginine that can be taken up by cells, including those of

Saccharomyces cerevisiae [9] and humans, and is incorporated into

proteins where it disrupts their function, thus proving cytotoxic.

Such cytotoxic molecules, that bear structural similarities to

intermediary metabolites, are known as antimetabolites, and

antimetabolite molecules such as analogues of folate, nucleobases,

and nucleosides (Figure I) continue to play a major role in cancer

chemotherapy [145]. In yeast, the overwhelming bulk of canavanine

uptake and, in mutants, resistance to it, is determined by the

arginine transporter Can1p encoded by the gene can1. Strains

lacking this gene function are, depending upon the precise metric,

more than 100-fold more resistant to the antimetabolite than is the

wild type [9], and of course the gene encoding the arginine

transporter is explicitly named after its ability to encode resistance

to this antimetabolite.
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Figure I. Some antimetabolites that bear structural similarities to natural

metabolites with which they compete for uptake transport (and intracellular

activity).

Box 4. ‘Influx’ and ‘efflux’ transporters

Assessing the contributions of membrane proteins to the tolerance

of stresses induced by fermentation or incubation conditions is also

an important experimental approach to detecting ‘efflux’ transpor-

ters, a comment that leads us to note that thermodynamic principles

mean that any transporter is theoretically reversible in its direction

of operation, although for kinetic reasons connected with the

Haldane relationship this may not appear to be the case. Thus,

‘influx’ and ‘efflux’ transporters refer to their normal direction of

operation in vivo, and this is determined both by the thermo-

dynamics and the mechanistic details of any energy coupling

involved (Figure I). While our chief interest here is in identifying

cases where transporters exert significant flux control, increasing

numbers of 3D protein structures for transporters are becoming

available [146], and these are beginning to allow calculation of their

molecular mechanisms from first principles, based on molecular

dynamics [147]. This will also, in time, assist in their rational

redesign.
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Figure I. An illustration of four types of transporters. V and W are transported

in exchange for each other – if there is a concentration gradient of one, it will

drive the transport (antiport) of the other. X is transported out of the cell,

potentially against its concentration gradient, by a transporter that couples its

transport activity to ATP hydrolysis. Y enters and exits the cell by facilitated

diffusion (it is a uniporter), while Z is taken up concentratively in symport with

a sodium ion (that descends its own concentration gradient). The terms ‘active’

(concentrative) and ‘passive’ (equilibrative) are best used solely to describe the

thermodynamics, with no mechanism being implied unless stated [13]. The

membrane is drawn approximately to scale, with a typical in vivo protein:lipid

ratio of 3:1 by mass. Note too that there can be a highly-intimate interaction

between specific lipids and transporter function such that changing the former

may affect the latter.
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above. Papers showing a gain-of-function of NCgl1221 to
constitutive glutamate excretion [119,120] are of special
note, indicating the potential for transporter engineering.

E. coli contains a (possibly) surprising number of efflux
pumps, comprising one sixth of all its transporters [117], even
for sugars. Indeed, in E. coli there are as many as 37 MDR
transporters [121], most commonly from the Major Facili-
tator Superfamily [122]. Arguably, the main efflux trans-
porters are AcrB [123,124], MdfA [125], EmrE [126,127],
and MtdM [122,128]. Thus, and while n-alkanes are much
less cytotoxic than many other organic solvents [129], a
particularly nice example of the directed evolution of a
242
membrane protein for catalysing product efflux is the study
of Foo and Leong [78], who evolved AcrB to drive improved
efflux of the hydrocarbons n-octane and a-pinene from E. coli
using selection against the toxicity of n-octanol (that was
also presumably excreted) while Fisher et al. did the
same for shorter-chain alcohols [82]. Mutations in several
other genes, such as lon, proV, soxS, and marR, also act via
AcrB to increase the solvent tolerance of E. coli [130,131].
Multidrug resistance transporters have also been used to
export dipeptides [41] and arabinose [132] from E. coli,
while NAD transporter engineering has been exploited to
advantage in the whole cell biocatalytic production of
dihydroxyacetone [133].

S. cerevisiae contains 28 members of the Major Facili-
tator Superfamily of multidrug efflux pumps and at least
six members of the ABC multidrug transporter family
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[134–136]. All these efflux pumps reside in the plasma
membrane, while Vmr1p is a vacuolar membrane protein.
While the importance of the plasma membrane pumps in
drug resistance (notably to azoles) in pathogenic yeasts is
well recognised [137], any possible role in the efflux of
diesel fuels from engineered yeast seems not to have been
considered [138] or, at least, not published.

Concluding remarks and future perspectives
In this short review we have sought to summarise some of
the evidence that membrane transporters represent some-
what underutilised yet excellent targets for the purposes of
strain improvement in biotechnology. Some of the evidence
comes from more classical fermentations where such
changes ‘emerged’ from undirected (mutation and selec-
tion) strain improvement programmes, while more recent-
ly there are examples of more deterministic strategies
based on metabolic engineering. We anticipate many
major improvements in the future as the powerful techni-
ques of directed evolution are brought to bear on selected
membrane transporters, especially those catalysing con-
centrative efflux of the desired product. Much as with
pharmaceutical drug transporters [13], what we need
now are good, predictive, quantitative structure–activity
relationship models that will help to determine the activity
of any transporter sequence for any drug. Such models will
bring us truly closer to the era of ‘designer transporters for
biotechnology’.
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