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Abstract

We consider a nonlinear elliptic equation driven by the p-Laplacian with Dirichlet boundary conditions.
Using variational techniques combined with the method of upper–lower solutions and suitable truncation
arguments, we establish the existence of at least five nontrivial solutions. Two positive, two negative and
a nodal (sign-changing) solution. Our framework of analysis incorporates both coercive and p-superlinear
problems. Also the result on multiple constant sign solutions incorporates the case of concave–convex
nonlinearities.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let Z ⊆ R
N be a bounded domain with a C2-boundary ∂Z. We consider the following non-

linear elliptic problem:

{
−div

(∥∥Dx(z)
∥∥p−2

Dx(z)
) = f

(
z, x(z)

)
in Z,

x|∂Z = 0, 1 < p < ∞.
(1.1)
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The goal of this work is to prove multiplicity results for problem (1.1) without assuming any
symmetry conditions on the right-hand side nonlinearity x → f (z, x) and also determine the
sign of the solutions. Our results are very general and cover both problems with coercive and
indefinite Euler functional and improve several works existing in the literature.

Recently multiplicity results for the p-Laplacian without any symmetry conditions on the
right-hand side nonlinearity, were proved by Jiu and Su [15], Liu and Liu [17] and Liu [18]. Their
approach uses variational methods combined with Morse theory (critical groups). However, the
multiplicity results they prove, do not provide information about the sign of all solutions.

We also mention the very recent work of Motreanu, Motreanu and Papageorgiou [20], who
consider a class of nonlinear eigenvalue problems and using variational and truncation tech-
niques, prove the existence of three nontrivial solutions, one positive, the second negative, but
they do not determine the sign of the third solution. However, in [20] the growth of the nonlin-
earity is a general polynomial growth, not necessarily subcritical.

The existence of multiple positive solutions was investigated by Ambrosetti, Garcia Azorero
and Peral Alonso [1], Anello and Cordaro [3] and Garcia Azorero, Manfredi and Peral
Alonso [11].

In [1] and [11], the right-hand side nonlinearity has the form λ|x|q−2x + |x|r−2x, 1 < q <

p < r < p∗, and λ > 0 is a parameter (problems with concave and convex nonlinearities). The
authors prove the existence of a λ0 > 0, such that for all λ ∈ (0, λ0), the equation has at least
two positive solutions. In [1] they use the radial p-Laplacian and the main tool in the proof
is the Leray–Schauder degree theory. In [11], Z ⊆ R

N is an arbitrary bounded domain with a
smooth boundary and their approach is variational based on the critical point theory. Anello and
Cordaro [3] use a different set of technical hypotheses, which distinguish their nonlinearity from
that in [1] and [11] and they prove the existence of a whole sequence of small positive solutions,
which converge uniformly to zero. Their method of proof is completely different and is based on
an abstract variational principle due to Ricceri [22].

The question of existence of nodal (sign-changing) solutions was investigated for the
p-Laplacian only very recently. We have the works of Bartsch and Liu [4], Carl and Perera [6],
Zhang and Li [25] and Zhang, Chen and Li [24]. Bartsch and Liu [4] use critical point theory
for C1-functionals on ordered Banach spaces. Carl and Perera [6] extend to the p-Laplacian, the
method of Dancer and Du [9] (semilinear equations, i.e. p = 2), which is based on upper–lower
solutions and variational arguments. Finally Zhang and Li [25] and Zhang, Chen and Li [24] care-
fully construct a pseudogradient vector field, whose descent flow has the appropriate invariance
properties.

Our approach uses variational arguments based on critical point theory, the method of upper
and lower solutions and suitable truncation techniques.

2. Mathematical background

In the analysis of problem (1.1), we use some basic facts about the spectrum of the negative
p-Laplacian with Dirichlet boundary conditions. So let m ∈ L∞(Z)+, m �= 0 and consider the
following nonlinear weighted (with weight m) eigenvalue problem:

{
−div

(∥∥Dx(z)
∥∥p−2

Dx(z)
) = λ̂m(z)

∣∣x(z)
∣∣p−2

x(z) in Z,

x| = 0, 1 < p < ∞, λ̂ ∈ R.
(2.1)
∂Z
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The least number λ̂ ∈ R for which problem (2.1) has a nontrivial solution, is the first eigen-
value of (−�p,W

1,p

0 (Z),m) and it is denoted by λ̂1(m). We know that λ̂1(m) > 0, it is isolated
and also simple (i.e., the associated eigenspace is one-dimensional). Moreover, we have the fol-

lowing variational characterization of λ̂1(m) > 0,

λ̂1(m) = min

[ ‖Dx‖p
p∫

Z
m|x|p dz

: x ∈ W
1,p

0 (Z), x �= 0

]
. (2.2)

The minimum in (2.2) is attained on the corresponding one-dimensional eigenspace. In what
follows, by u1 ∈ W

1,p

0 (Z) we denote the normalized eigenfunction (i.e.
∫
Z

m|u1|p dz = 1). Note
that |u1| also realizes the minimum and so u1 does not change sign and we may assume that
u1(z) � 0 a.e. on Z. Moreover, from nonlinear regularity theory (see Lieberman [16], Gasin-
ski and Papageorgiou [12, p. 738] and the references therein), we have u1 ∈ C1

0(Z) = {u ∈
C1(Z): u(z) = 0 for all z ∈ ∂Z}. The Banach space C1

0(Z) is an ordered Banach space with
order cone given by

C+ = {
x ∈ C1

0(Z): x(z) � 0 for all z ∈ Z
}
.

We know that this cone has a nonempty interior and in fact we have

intC+ =
{
x ∈ C+: x(z) > 0 for all z ∈ Z and

∂x

∂n
(z) < 0 for all z ∈ ∂Z

}
.

Here by n(z) we denote the unit outward normal at z ∈ ∂Z. By virtue of the strong maximum
principle of Vazquez [23], we have u1 ∈ intC+.

The Lusternik–Schnirelmann theory, in addition to λ̂1(m) > 0, gives a whole strictly increas-
ing sequence {λ̂k(m)}k�1 ⊆ R+ of eigenvalues of (2.1) and λ̂k(m) → +∞ as k → ∞. These

are the so-called “LS (or variational) eigenvalues” of (−�p,W
1,p

0 (Z),m). When p = 2 (lin-
ear eigenvalue problem), these are all the eigenvalues of (2.1). If p �= 2 (nonlinear eigenvalue
problem), we do not know if this is true. However, since λ̂1(m) > 0 is isolated, we can define

λ̂∗
2(m) = inf

{
λ̂: λ̂ is an eigenvalue of (2.1), λ > λ̂1(m)

}
> λ̂1(m).

Since the set of eigenvalues of (2.1) is closed, we infer that λ̂∗
2(m) is the second eigenvalue of

(−�p,W
1,p

0 (Z),m). In fact we have

λ̂∗
2(m) = λ̂2(m),

i.e., the second eigenvalue and the second LS-eigenvalue of (−�p,W
1,p

0 (Z),m) coincide.
So, the second eigenvalue admits a variational characterization provided by the Lusternik–
Schnirelmann theory. The eigenvalues λ̂1(m) and λ̂2(m) exhibit certain monotonicity properties
with respect to the weight m ∈ L∞(Z)+, namely:

• If m(z) � m′(z) a.e. on Z, m �= m′, then λ̂1(m
′) < λ̂1(m) (see (2.2)).

• If m(z) < m′(z) a.e. on Z, then λ̂2(m
′) < λ̂2(m) (see Anane and Tsouli [2]).
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If m ≡ 1, then we set λ̂1(m) = λ1 λ̂2(m) = λ2. For λ2 > 0, Cuesta, De Figueiredo and
Gossez [8], produced an alternative variational characterization. More precisely, let ∂B

Lp(Z)
1 =

{x ∈ Lp(Z): ‖x‖p = 1}, S = W
1,p

0 (Z) ∩ ∂B
Lp(Z)
1 and Γ0 = {γ0 ∈ C([−1,1], S): γ (−1) =

−u1, γ (1) = u1}.
Then we have

λ2 = inf
γ0∈Γ0

sup
x∈γ0([−1,1])

‖Dx‖p
p. (2.3)

This characterization of λ2 > 0 will be useful in establishing the existence of nodal solutions.
Another result that we will need in that direction, is the so-called “second deformation theorem.”
To state this theorem, we need to introduce some notions and some notation.

Definition 2.1. Let Y be a Hausdorff topological space and A ⊆ Y nonempty.

(a) A deformation of A is a continuous map h : [0,1] × A → A such that

h(0, y) = y for all y ∈ A.

(b) If C ⊆ A is nonempty, then we say that C is a “strong deformation retract” of A, there exists
a deformation h of A, such that

h(1,A) ⊆ C and h(t, ·)|C = id|C for all t ∈ [0,1].

Now let X be a Banach space, ϕ ∈ C1(X) and c ∈ R. We introduce the following sets:

ϕc = {
x ∈ X: ϕ(x) � c

}
(sublevel set of ϕ at c),

K = {
x ∈ X: ϕ′(x) = 0

}
(set of critical points of ϕ), and

Kc = {
x ∈ K: ϕ(x) = c

}
(set of critical points of ϕ at level c).

Definition 2.2. Let ϕ ∈ C1(X). We say that ϕ satisfies the “Palais–Smale condition at level
c ∈ R” (the “PSc-condition” for short), if every sequence {xn}n�1 ⊆ X such that

ϕ(xn) → c and ϕ′(xn) → 0 in X∗ as n → ∞,

has a strongly convergent subsequence. We say that ϕ satisfies the “PS-condition,” if it satisfies
the “PSc-condition” for every c ∈ R.

The second deformation theorem, reads as follows (see Chang [7, p. 23] and Gasinski and
Papageorgiou [12, p. 628]). Note that, if b = +∞, the ϕb \ Kb = X.

Theorem 2.3. If ϕ ∈ C1(X), a ∈ R, a < b � +∞, ϕ satisfies the PSc-condition for every
c ∈ [a, b), ϕ has no critical values in (a, b) and ϕ−1(a) contains at most a finite number of
critical points of ϕ, then there exists a deformation h : [0,1] × (ϕb \ Kb) → ϕb such that
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(a) ϕa is a strong deformation retract of ϕb \ Kb;
(b) ϕ(h(t, x)) � ϕ(h(s, x)) for all t, s ∈ [0,1], s � t and x ∈ ϕb \ Kb (i.e. the deformation h is

ϕ-decreasing).

Finally, we recall the notions of upper and lower solutions for problem (1.1).

Definition 2.4. (a) A function x ∈ W 1,p(Z) with x|∂Z � 0, is an “upper solution” for prob-
lem (1.1), if ∫

Z

‖Dx‖p−2(Dx,Dψ)RN dz �
∫
Z

f
(
z, x(z)

)
ψ(z)dz, (2.4)

for all ψ ∈ C1
0(Z) with ψ(z) � 0, z ∈ Z. If x is not a solution, then x is said to be a “strict upper

solution.”
(b) A function x ∈ W 1,p(Z) with x|∂Z � 0, is a “lower solution” for problem (1.1), if∫

Z

‖Dx‖p−2(Dx,Dψ)RN dz �
∫
Z

f
(
z, x(z)

)
ψ(z)dz, (2.5)

for all ψ ∈ C1
0(Z) with ψ(z) � 0, z ∈ Z. If x is not a solution, then x is said to be a “strict lower

solution.”

3. Solutions of constant sign

We start with the following hypotheses on the right-hand side nonlinearity f (z, x):

H(f )1 f :Z × R → R is a function such that f (z,0) = 0 a.e. on Z and
(i) for all x ∈ R, z → f (z, x) is measurable;

(ii) for a.a. z ∈ Z, x → f (z, x) is continuous;
(iii) for a.a. z ∈ Z and all x ∈ R, we have∣∣f (z, x)

∣∣ � a(z) + c|x|r−1

with a ∈ L∞(Z)+, c > 0, 1 < r < p∗ =
{

Np
N−p

if N > p,

0 otherwise;
(iv) there exists η ∈ L∞(Z)+ such that λ1 � η(z) a.e. on Z, λ1 �= η and

η(z) � lim inf
x→0

f (z, x)

|x|p−2x
uniformly for a.a. z ∈ Z;

(v) there exist a strict upper solution x ∈ intC+ and a strict lower solution v ∈ − intC+
for problem (1.1), such that −�px, −�pv ∈ L∞(Z) and f (z, x) < −�px(z) a.e.
on Z for all x ∈ [0, x(z)], f (z, x) > −�pv(z) a.e. on Z for all x ∈ [−v(z),0];

(vi) there exist δ0, σ0 > 0 such that
for a.a. z ∈ Z, f (z, ·) is increasing on [−δ0, δ0] and
for a.a. z ∈ Z, f (z, x) � σ0 when x � δ0 and f (z, x) � −σ0 when x � −δ0.



1888 M.E. Filippakis, N.S. Papageorgiou / J. Differential Equations 245 (2008) 1883–1922
First, we produce a strict lower solution x ∈ intC+, x − x ∈ intC+ and a strict upper solution
v ∈ − intC+, v−v ∈ intC+, for problem (1.1). To this end, let u1 be the Lp-normalized principal
eigenfunction of (−�p,W

1,p

0 (Z)). We consider the following auxiliary boundary value problem:{
−div

(∥∥Dx(z)
∥∥p−2

Dx(z)
) = η(z)

∣∣x(z)
∣∣p−2

x(z) − u1(z)
p−1 in Z,

x|∂Z = 0.
(3.1)

Here η ∈ L∞(Z)+ is as in hypothesis H(f )1(iv). We solve problem (3.1). The solutions
of (3.1), are the critical points of the C1-functional ϕ0 :W 1,p

0 (Z) → R defined by

ϕ0(x) = 1

p
‖Dx‖p

p − 1

p

∫
Z

η|x|p dz +
∫
Z

u
p−1
1 x dz for all x ∈ W

1,p

0 (Z).

In what follows by 〈·,·〉 we denote the duality brackets for the pair (W−1,p′
(Z), W

1,p

0 (Z))

( 1
p

+ 1
p′ = 1). Let A :W 1,p

0 (Z) → W−1,p′
(Z) be the nonlinear operator defined by

〈
A(x), y

〉 = ∫
Z

‖Dx‖p−2(Dx,Dy)RN dz for all x, y ∈ W
1,p

0 (Z).

Note that for all x ∈ W
1,p

0 (Z)

ϕ′
0(x) = A(x) − η|x|p−2x + u

p−1
1 . (3.2)

Proposition 3.1. ϕ0 :W 1,p

0 (Z) → R satisfies the PS-condition.

Proof. Let {xn}n�1 ⊆ W
1,p

0 (Z) be a sequence such that∣∣ϕ0(xn)
∣∣ � M1 for some M1 > 0, all n � 1 and ϕ′

0(xn) → 0 in W−1,p′
(Z).

We have (see (3.2))

∣∣〈ϕ′
0(xn), v

〉∣∣ =
∣∣∣∣〈A(xn), v

〉 − ∫
Z

η|xn|p−2xnv dz +
∫
Z

u
p−1
1 v dz

∣∣∣∣ � εn‖v‖, (3.3)

for all v ∈ W
1,p

0 (Z), with εn ↓ 0. We claim that {xn}n�1 ⊆ W
1,p

0 (Z) is bounded. We argue

indirectly. So suppose that {xn}n�1 ⊆ W
1,p

0 (Z) is unbounded. We may assume that

‖xn‖ → ∞ as n → ∞.

We set yn = xn‖xn‖ , n � 1. By passing to a suitable subsequence if necessary, we may assume
that

yn
w→ y in W

1,p
(Z), yn → y in Lp(Z), yn(z) → y(z) a.e. on Z
0
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and ∣∣yn(z)
∣∣ � k(z) for a.a. z ∈ Z, all n � 1, with k ∈ Lp(Z)+.

In (3.3) we use the test function v = yn − y ∈ W
1,p

0 (Z) and we divide with ‖xn‖p−1. We
obtain∣∣∣∣〈A(yn), yn − y

〉 − ∫
Z

η|yn|p−2yn(yn − y)dz +
∫
Z

u1

‖xn‖p−1
(yn − y)dz

∣∣∣∣ � εn‖yn − y‖.

(3.4)

Evidently∫
Z

η|yn|p−2yn(yn − y)dz → 0 and
∫
Z

u1

‖xn‖p−1
(yn − y)dz → 0 as n → ∞.

So from (3.4), we have

lim
〈
A(yn), yn − y

〉 = 0. (3.5)

But clearly A is demicontinuous, monotone (in fact strictly monotone), hence maximal mono-
tone. A maximal monotone operator, is generalized pseudomonotone (see Gasinski and Papa-
georgiou [12, p. 230]). So from (3.5) it follows that

‖Dyn‖p
p = 〈

A(yn), yn

〉 → 〈
A(y), y

〉 = ‖Dy‖p
p.

Recall that Dyn
w→ Dy in Lp(Z,R

N). The space Lp(Z,R
N) is uniformly convex. Therefore,

from the Kadec–Klee property, we have

Dyn → Dy in Lp
(
Z,R

N
) ⇒ yn → y in W

1,p

0 (Z) and so ‖y‖ = 1.

Also from the choice of the sequence {xn}n� ⊆ W
1,p

0 (Z), we have

A(y) = η|y|p−2y

⇒
{

−div
(∥∥Dy(z)

∥∥p−2
Dy(z)

) = η(z)
∣∣y(z)

∣∣p−2
y(z) a.e. on Z,

y|∂Z = 0, y �= 0.
(3.6)

Without any loss of generality, we may assume that

λ1 � η(z) < λ2 a.e. on Z, λ1 �= η (3.7)

(see hypothesis H(f )1(v)). Then from the monotonicity properties of λ̂1(m), λ̂2(m) on the
weight function m (see Section 2), we have

λ̂1(η) < λ̂1(λ1) = 1 (3.8)
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and

λ̂2(η) > λ̂2(λ2) = 1
(
see (3.7)

)
. (3.9)

From (3.6), (3.8) and (3.9), we infer that y = 0, a contradiction. So {xn}n�1 ⊆ W
1,p

0 (Z) is
bounded and we may assume that

xn → x in W
1,p

0 (Z), xn → x in Lp(Z), xn(z) → x(z) a.e. on Z,

and ∣∣xn(z)
∣∣ � k(z) for a.a. z ∈ Z, all n � 1, with k ∈ Lp(Z)+.

In (3.3) we set v = xn − x and pass to the limit as n → ∞. We obtain

lim
n→∞

〈
A(xn), xn − x

〉 = 0.

From this limit, as above we deduce that xn → x in W
1,p

0 (Z). This proves that ϕ0 satisfies the
PS-condition. �

Let V = {x ∈ W
1,p

0 (Z):
∫
Z

u
p−1
1 x dz = 0}. We have the direct sum decomposition

W
1,p

0 (Z) = Ru1 ⊕ V.

We define

λV = inf

[‖Dx‖p
p

‖x‖p
p

: x ∈ V, x �= 0

]
> λ1.

Again without any loss of generality we may assume that

λ1 � η(z) � λ1 + ε < λV � λ2 a.e. on Z, for ε > 0 small (3.10)

(see hypothesis H(f )(iv)). Because of (3.10), it is clear that we have

Proposition 3.2. ϕ0|V � 0.

Proposition 3.3. For t > 0 large, we have ϕ0(±tu1) < 0.

Proof. For t > 0, we have

ϕ0(±tu1) = tp

p
‖Du1‖p

p − tp

p

∫
Z

ηu
p

1 dz + t‖u1‖p
p

� tp

p

[∫ (
λ1 − η(z)

)
u1(z)

p dz

]
+ t

(
since ‖u1‖p

p = 1, t > 0
)
. (3.11)
Z



M.E. Filippakis, N.S. Papageorgiou / J. Differential Equations 245 (2008) 1883–1922 1891
Since u1 ∈ intC+ and λ1 � η(z) a.e. on Z with λ1 �= η, we have

ξ =
∫
Z

(
λ1 − η(z)

)
u1(z)

p−1 dz < 0 ⇒ ϕ0(±tu1) � tp

p
ξ + t

(
see (3.11)

)
. (3.12)

Therefore, if in (3.12) t > 0 is large, then ϕ0(±tu1) < 0. �
Proposition 3.4. The auxiliary problem (3.1) has a solution x̂ ∈ intC+.

Proof. Propositions 3.1–3.3 permit the application of the saddle point theorem. So we can find
x̂ ∈ W

1,p

0 (Z) such that

ϕ′
0(x̂) = 0 ⇒ A(x̂) = η|x̂|p−2x̂ − u

p−1
1 , hence x̂ �= 0,{

−div
(∥∥Dx̂(z)

∥∥p−2
Dx̂(z)

) = η(z)
∣∣x̂(z)

∣∣p−2
x̂ − u1(z)

p−1 a.e. on Z,

x̂|∂Z = 0, x̂ �= 0.
(3.13)

From nonlinear regularity theory, we have x̂ ∈ C1
0(Z). By taking in (3.10) ε > 0 even smaller

if necessary, we can apply Theorem 5.1 of Godoy, Gossez and Paczka [13] (the antimaximum
principle) and conclude that x̂ ∈ intC+. �

We also consider the auxiliary problem{
−div

(∥∥Dv(z)
∥∥p−2

Dv(z)
) = η(z)

∣∣v(z)
∣∣p−2

v(z) + u1(z)
p−1 a.e. on Z,

v|∂Z = 0.
(3.14)

The corresponding Euler functional ψ0 :W 1,p

0 (Z) → R is defined by

ψ0(v) = 1

p
‖Dv‖p

p − 1

p

∫
Z

η|v|p dz −
∫
Z

u
p−1
1 v dz for all v ∈ W

1,p

0 (Z).

Working as for problem (3.1), using this time ψ0 ∈ C1(W
1,p

0 (Z)), we obtain:

Proposition 3.5. The auxiliary problem (3.14) has a solution v̂ ∈ − intC+.

Using x̂ and v̂, we will produce the desired lower and upper solutions for problem (1.1). We
will need the following simple fact about ordered Banach spaces.

Lemma 3.6. If X is an ordered Banach space, K is the order cone of X, intK �= ∅ and x0 ∈ intK ,
then for every y ∈ X, we can find t = t (y) > 0 such that tx0 − y ∈ intK .

Proof. Since x0 ∈ intK , we can find δ > 0 such that

Bδ(x0) = {
x ∈ X: ‖x − x0‖ � δ

} ⊆ intK.
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Let y ∈ X and assume that y �= 0 (if y = 0, then clearly the lemma is true for all t > 0). We
have

x0 − δ
y

‖y‖ ∈ intK ⇒ ‖y‖
δ

x0 − y ∈ intK.

So, if t = t (y) = ‖y‖
δ

, then tx0 − y ∈ intK . �
Proposition 3.7. If hypotheses H(f )1 hold, then problem (1.1) has a strict lower solution
x ∈ intC+ with x − x ∈ intC+ and a strict upper solution v ∈ − intC+ with v − v ∈ intC+.

Proof. By virtue of hypothesis H(f )1(iv), given ε > 0, we can find δ = δ(ε) > 0 such that(
η(z) − ε

)
xp−1 � f (z, x) for a.a. z ∈ Z and all x ∈ [0, δ]. (3.15)

We choose ε > 0 small as indicated in the proof of Proposition 3.4 and also such that by virtue
of Lemma 3.6, we have

u
p−1
1 − εx̂

p−1 ∈ intC+. (3.16)

Having chosen ε > 0 this way and using Lemma 3.6 once more, we can find β ∈ (0,1] small
such that

x − βx̂ ∈ intC+, u1 − βx̂ ∈ intC+ and βx̂(z) ∈ [0, δ] for all z ∈ Z (3.17)

(recall that x̂ ∈ intC+, see Proposition 3.4). We set x = βx̂ ∈ intC+. Then for a.a. z ∈ Z we have

−div
(∥∥Dx(z)

∥∥p−2
Dx(z)

) = −βp−1 div
(∥∥Dx̂(z)

∥∥p−1
Dx̂(z)

)
= βp−1(η(z)x̂(z)p−1 − u1(z)

p−1) (
see (3.13)

)
= η(z)x(z)p−1 − βp−1u1(z)

p−1 (since x = βx̂)

< η(z)x(z)p−1 − εx(z)p−1 (
see (3.16)

)
� f

(
z, x(z)

) (
see (3.15)

)
.

Therefore x ∈ intC+ is a strict lower solution for problem (1.1) (see Definition 2.4(b)).
From (3.17) we have x − x ∈ intC+.

Similarly, using v̂ ∈ − intC+ and since (η(z) − ε)|x|p−2x � f (z, x) for a.a. z ∈ Z and all
x ∈ [−δ,0], we obtain v = β ′v̂ ∈ − intC+ with β ′ ∈ (0,1], a strict upper solution for prob-
lem (1.1) such that v − v ∈ intC+. �

Now using the ordered pairs of upper–lower solutions {x, x} and {v, v}, we will produce the
first two solutions of constant sign.

Let ϕ :W 1,p

0 (Z) → R be the Euler functional for problem (1.1) defined by

ϕ(x) = 1

p
‖Dx‖p

p −
∫
Z

F
(
z, x(z)

)
dz for all x ∈ W

1,p

0 (Z),

with F(z, x) = ∫ x
f (z, s) ds. Evidently ϕ ∈ C1(W

1,p
(Z)).
0 0
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Proposition 3.8. If hypotheses H(f )1 hold, then problem (1.1) has two solutions x0 ∈ intC+
and v0 ∈ − intC+ both local minimizers of ϕ.

Proof. We introduce the order interval

I+ = [x, x] = {
x ∈ W

1,p

0 (Z): x(z) � x(z) � x(z) a.e. on Z
}

and the following truncation of the nonlinearity f (z, x),

f̃+(z, x) =
{

f (z, x(z)) if x < x(z),

f (z, x) if x(z) � x � x(z),

f (z, x(z)) if x(z) < x.

(3.18)

We set F̃+(z, x) = ∫ x

0 f̃+(z, s) ds and we consider the functional ϕ̃+ :W 1,p

0 (Z) → R defined
by

ϕ̃+(x) = 1

p
‖Dx‖p

p −
∫
Z

F̃+
(
z, x(z)

)
dz for all x ∈ W

1,p

0 (Z).

We have ϕ̃+ ∈ C1(W
1,p

0 (Z)) and in addition, due to the compact embedding of W
1,p

0 (Z)

into Lp(Z), we can easily see that ϕ̃+ is w-lower semicontinuous. Moreover, from (3.18) and
hypothesis H(f )1(iii), we see that

ϕ̃+(x) � 1

p
‖Dx‖p

p − c1 for some c1 > 0, all x ∈ W
1,p

0 (Z) ⇒ ϕ̃+ is coercive.

So, by the Weierstrass theorem, we can find x0 ∈ I+ such that

ϕ̃+(x0) = inf
I+

ϕ̃+ = m̃+. (3.19)

For any y ∈ I+, let ξ0(t) = ϕ̃+(ty + (1 − t)x0), t ∈ [0,1]. Then because of (3.19)

0 � ξ ′
0(0) ⇒ 0 �

〈
A(x0), y − x0

〉 − ∫
Z

f̃+
(
z, x0(z)

)
(y − x0)(z) dz. (3.20)

Given h ∈ W
1,p

0 (Z) and ε > 0, we set

y(z) =
{

x(z) if z ∈ {x0 + εh � x},
x0(z) + εh(z) if z ∈ {x < x0 + εh < x},
x(z) if z ∈ {x � x0 + εh}.
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Clearly y ∈ I+ and so using it in (3.20), we obtain

0 � ε

∫
{x<x0+εh<x}

‖Dx0‖p−2(Dx0,Dh)RN dz − ε

∫
{x<x0+εh<x}

f (z, x0)hdz

+
∫

{x0+εh�x}
‖Dx0‖p−2(Dx0,Dx − Dx0)RN dz −

∫
{x0+εh�x}

f (z, x0)(x − x0) dz

+
∫

{x�x0+εh}
‖Dx0‖p−2(Dx0,Dx − Dx0)RN dz −

∫
{x�x0+εh}

f (z, x0)(x − x0) dz

= ε

∫
Z

‖Dx0‖p−2(Dx0,Dh)RN dz − ε

∫
Z

f (z, x0)hdz

+
∫

{x0+εh�x}
‖Dx‖p−2(Dx,D(x − x0 − εh)

)
RN dz

−
∫

{x0+εh�x}
f (z, x)(x − x0 − εh)dz

−
∫

{x�x0+εh}
‖Dx‖p−2(Dx,D(x0 + εh − x)

)
RN dz

+
∫

{x�x0+εh}
f (z, x)(x0 + εh − x)dz

−
∫

{x0+εh�x}

(
f (z, x0) − f (z, x)

)
(x − x0 − εh)dz

+
∫

{x�x0+εh}

(
f (z, x) − f (z, x0)

)
(x − x0 − εh)dz

+
∫

{x0+εh�x}

(‖Dx0‖p−2Dx0 − ‖Dx‖p−2Dx,D(x − x0)
)
RN dz

− ε

∫
{x0+εh�x}

(‖Dx0‖p−2Dx0 − ‖Dx‖p−2Dx,Dh
)
RN dz

+
∫

{x�x0+εh}

(‖Dx‖p−2Dx − ‖Dx0‖p−2Dx0,D(x0 − x)
)
RN dz

+ ε

∫ (‖Dx‖p−2Dx − ‖Dx0‖p−2Dx0,Dh
)
RN dz. (3.21)
{x�x0+εh}
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Since x ∈ intC+ is a strict lower solution for problem (1.1), we have (see Definition 2.4(b))∫
{x0+εh�x}

‖Dx‖p−2(Dx,D(x − x0 − εh)
)
RN dz

−
∫

{x0+εh�x}
f (z, x)(x − x0 − εh)dz � 0. (3.22)

Similarly, since x ∈ intC+ is a strict upper solution for problem (1.1), we have (see Defini-
tion 2.4(a)) ∫

{x�x0+εh}
‖Dx‖p−2(Dx,D(x0 + εh − x)

)
RN dz

−
∫

{x�x0+εh}
f (z, x)(x0 + εh − x)dz � 0. (3.23)

From the monotonicity of the map θp : RN → R
N defined by θp(x) = ‖x‖p−2x for x �= 0,

θp(0) = 0, we have∫
{x0+εh�x}

(‖Dx0‖p−2Dx0 − ‖Dx‖p−2Dx,D(x − x0)
)
RN dz � 0 (3.24)

and ∫
{x�x0+εh}

(‖Dx‖p−2Dx − ‖Dx0‖p−2Dx0,D(x0 − x)
)
RN dz � 0. (3.25)

Moreover, we have

−
∫

{x0+εh�x}

(
f (z, x0) − f (z, x)

)
(x − x0 − εh)dz

= −
∫

{x0+εh�x<x0}

(
f (z, x0) − f (z, x)

)
(x − x0 − εh)dz

� c2

∫
{x0+εh�x<x0}

(x − x0 − εh)dz for some c2 > 0
(
see hypothesis H(f )1(iii)

)
� −εc2

∫
{x0+εh�x<x0}

hdz (since x � x0) (3.26)

and
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∫
{x�x0+εh}

(
f (z, x) − f (z, x0)

)
(x − x0 − εh)dz

= −
∫

{x0<x�x0+εh}

(
f (z, x) − f (z, x0)

)
(x − x0 − εh)dz

� c3

∫
{x0<x�x0+εh}

(x0 + εh − x)dz for some c3 > 0
(
see hypothesis H(f )1(iii)

)
� εc3

∫
{x0<x�x0+εh}

hdz (since x0 � x). (3.27)

Returning to (3.21) and using (3.22)–(3.27), we obtain

0 � ε

∫
Z

‖Dx0‖p−2(Dx0,Dh)RN dz − ε

∫
Z

f (z, x0)hdz

− εc2

∫
{x0+εh�x<x0}

hdz + εc3

∫
{x0<x�x0+εh}

hdz

− ε

∫
{x0+εh�x}

(‖Dx0‖p−2Dx0 − ‖Dx‖p−2Dx,Dh
)
RN dz

+ ε

∫
{x�x0+εh}

(‖Dx‖p−2Dx − ‖Dx0‖p−2Dx0,Dh
)
RN dz. (3.28)

If by | · |N we denote the Lebesgue measure on R
N, then∣∣{x0 + εh � x < x0}

∣∣
N

↓ 0 and
∣∣{x0 + εh � x > x0}

∣∣
N

↓ 0 as ε ↓ 0. (3.29)

Moreover, by Stampacchia’s theorem (see for example Gasinski and Papageorgiou [12,
pp. 195–196]), we have

Dx0(z) = Dx(z) a.e. on {x0 = x} and Dx0(z) = Dx(z) a.e. on {x0 = x}. (3.30)

So, if we divide (3.28) by ε > 0, then let ε ↓ 0 and use (3.29), (3.30), we obtain

0 �
∫
Z

‖Dx0‖p−2(Dx0,Dh)RN dz −
∫
Z

f (z, x0)hdz. (3.31)

Since h ∈ W
1,p

0 (Z) was arbitrary, from (3.31) we conclude that{
−div

(∥∥Dx0(z)
∥∥p−2

Dx0(z)
) = f

(
z, x0(z)

)
in Z,
x0|∂Z = 0,
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hence x0 ∈ W
1,p

0 (Z) is a solution of (1.1) and from nonlinear regularity theory we have
x0 ∈ intC+.

From the proof of Proposition 3.7, we know that

−div
(∥∥Dx(z)

∥∥p−2
Dx(z)

)
< f

(
z, x(z)

)
a.e. on Z. (3.32)

By hypothesis H(f )1(vi), we have

f
(
z, x(z)

)
� f

(
z, x0(z)

) = −div
(∥∥Dx0(z)

∥∥p−2
Dx0(z)

)
a.e. on {x0 � δ0}. (3.33)

From (3.32) and (3.33), it follows that

−div
(∥∥Dx(z)

∥∥p−2
Dx(z)

)
< −div

(∥∥Dx0(z)
∥∥p−2

Dx0(z)
)

a.e. on {x0 � δ0}. (3.34)

If σ0 > 0 is as in hypothesis H(f )1(vi), then in the definition of x ∈ intC+ (see the proof of
Proposition 3.7), we can always choose β ∈ (0,1] small enough such that

η(z)x(z)p−1 = η(z)
(
βx̂(z)

)p−1 � σ0 a.e. on Z. (3.35)

Hypothesis H(f )1(vi) implies that

η(z)x(z)p−1 � f
(
z, x0(z)

)
a.e. on {x0 > δ0}

(
see (3.35)

)
⇒ −div

(∥∥Dx(z)
∥∥p−2

Dx(z)
)
< −div

(∥∥Dx0(z)
∥∥p−1

Dx0(z)
)

a.e. on {x0 > δ0}.
(3.36)

From (3.34) and (3.36), we conclude that

−div
(∥∥Dx(z)

∥∥p−2
Dx(z)

)
< −div

(∥∥Dx0(z)
∥∥p−2

Dx0(z)
)

a.e. on Z.

From this, by virtue of Proposition 2.2 of Guedda and Veron [14], we infer that

x0 − x ∈ intC+. (3.37)

Also from hypothesis H(f )1(v), we have

−div
(∥∥Dx(z)

∥∥p−2
Dx(z)

)
> f

(
z, x0(z)

)
= −div

(∥∥Dx0(z)
∥∥p−2

Dx0(z)
)

a.e. on Z.

Invoking once more Proposition 2.2 of Guedda and Veron [14], we conclude that

x − x0 ∈ intC+. (3.38)

From (3.37) and (3.38), it follows that x0 is a local C1
0(Z)-minimizer of ϕ. Then by The-

orem 1.1 of Garcia Azorero, Manfredi and Peral Alonso [11], we have that x0 is also a local
W

1,p
(Z)-minimizer of ϕ.
0
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Similarly, truncating f (z, x) with respect to the ordered pair {v, v} and working on I− =
[v, v] = {v ∈ W

1,p

0 (Z): v(z) � v(z) � v(z) a.e. on Z}, we obtain another solution v0 ∈ − intC+
of problem (1.1), which too is a local minimizer of ϕ. �

Therefore, we have produced two solutions of (1.1), the first (the positive) in I+ and the
second (the negative) in I−.

Now by imposing conditions concerning the behavior of the nonlinearity in a neighborhood
of ±∞, we will present two broad classes of problems for which hypotheses H(f )1 hold and so
the multiplicity result in Proposition 3.8 is valid.

The first class of problems, are the coercive problems (namely the corresponding Euler func-
tional is coercive). So the hypotheses on the nonlinearity f (z, x) are the following:

H(f )2 f :Z × R → R is a function such that f (z,0) = 0 a.e. on Z and
(i) for all x ∈ R, z → f (z, x) is measurable;

(ii) for a.a. z ∈ Z, x → f (z, x) is continuous;
(iii) for a.a. z ∈ Z and all x ∈ R, we have∣∣f (z, x)

∣∣ � a(z) + c|x|r−1

with a ∈ L∞(Z)+, c > 0, 1 < r < p∗;
(iv) there exists η ∈ L∞(Z)+ such that λ1 � η(z) a.e. on Z, λ1 �= η and

η(z) � lim inf
x→0

f (z, x)

|x|p−2x
uniformly for a.a. z ∈ Z;

(v) there exists θ ∈ L∞(Z)+ such that θ(z) � λ1 a.e. on Z, θ �= λ1 and

lim sup
x→±∞

f (z, x)

|x|p−2x
� θ(z) uniformly for a.a. z ∈ Z;

(vi) there exist δ0, σ0 > 0 such that
for a.a. z ∈ Z, f (z, ·) is increasing on [−δ0, δ0] and
for a.a. z ∈ Z, f (z, x) � σ0 when x � δ0 and f (z, x) � −σ0 when x � −δ0.

We start a simple lemma, which is an easy consequence of the hypothesis on the function
θ ∈ L∞(Z)+ and of the fact that u1 ∈ intC+. So we omit its proof.

Lemma 3.9. If θ ∈ L∞(Z)+, θ(z) � λ1 a.e. on Z and θ �= λ1, then there exists ξ0 > 0 such that

‖Dx‖p
p −

∫
Z

θ |x|p dz � ξ0‖Dx‖p
p for all x ∈ W

1,p

0 (Z).

Using this lemma, we will be able to produce a strict upper solution and a strict lower solution
for problem (1.1), under the new hypothesis H(f )2(v). This way we will satisfy hypothesis
H(f )1(v) and so Proposition 3.8 will apply to coercive problems.
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Proposition 3.10. If hypotheses H(f )2(i)–(iii), (v) hold, then we can find x ∈ intC+ a strict
upper solution for problem (1.1) and v ∈ − intC+ a strict lower solution, both of which satisfy
hypothesis H(f )1(v).

Proof. By virtue of hypotheses H(f )2(iii), (v), given ε > 0, we can find γε ∈ L∞(Z)+, γε �= 0,
such that

f (z, x) <
(
θ(z) + ε

)
xp−1 + γε(z) for a.a. z ∈ Z and all x � 0. (3.39)

We consider the following auxiliary boundary value problem:{
−div

(∥∥Dx(z)
∥∥p−2

Dx(z)
) = (

θ(z) + ε
)∣∣x(z)

∣∣p−2
x(z) + γε(z) in Z,

x|∂Z = 0.
(3.40)

Let Kε :Lp(Z) → Lp′
(Z) ( 1

p
+ 1

p′ = 1) be the nonlinear operator defined by

Kε(x)(·) = (
θ(·) + ε

)∣∣x(·)∣∣p−2
x(·).

Clearly Kε is bounded continuous and due to the compact embedding of W
1,p

0 (Z) into Lp(Z),
we have Kε|W 1,p

0 (Z)
is completely continuous.

Recall that the operator A :W 1,p

0 (Z) → W−1,p′
(Z) defined by

〈
A(x), y

〉 = ∫
Z

‖Dx‖p−2(Dx,Dy)RN dz for all x, y ∈ W
1,p

0 (Z),

is bounded, demicontinuous, monotone (in fact strictly monotone), hence maximal monotone.
Therefore the operator A−Kε :W 1,p

0 (Z) → W−1,p′
(Z) is pseudomonotone. Moreover, for every

x ∈ W
1,p

0 (Z), we have

〈
A(x) − Kε(x), x

〉 = ‖Dx‖p
p −

∫
Z

θ |x|p dz − ε‖x‖p
p

�
(

ξ0 − ε

λ1

)
‖Dx‖p

p

(
see Lemma 3.7 and (2.2)

)
. (3.41)

So, if we choose ε ∈ (0, ξ0λ1), then from (3.41) we infer that the operator x → A(x) − Kε(x)

is coercive. But a pseudomonotone, coercive operator is surjective (see Gasinski and Papageor-
giou [12, p. 336]). Therefore, we can find x ∈ W

1,p

0 (Z), x �= 0 such that

A(x) − Kε(x) = γε. (3.42)

On (3.42), we act with the test function −x− ∈ W
1,p

0 (Z) and obtain

‖Dx−‖p
p −

∫
θ |x−|p dz � ε‖x−‖p

p ⇒ ξ0‖Dx−‖p
p � ε

λ1
‖Dx−‖p

p. (3.43)
Z
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Since 0 < ε < ξ0λ1, from (3.43) we infer that x− = 0 and so x � 0, x �= 0. From (3.42), we
have {

−div
(∥∥Dx(z)

∥∥p−2
Dx(z)

) = θ(z)
∣∣x(z)

∣∣p−2
x(z) + γε(z) a.e. on Z,

x|∂Z = 0.
(3.44)

From nonlinear regularity theory, we have x ∈ C+ \ {0}. Also from (3.44) and since γε � 0,
we have

div
(∥∥Dx(z)

∥∥p−2
Dx(z)

)
� 0 a.e. on Z.

Invoking the nonlinear strong maximum principle of Vazquez [23], we have x ∈ intC+.
Because of (3.39), we have that x ∈ intC+ is a strict upper solution for problem (1.1). Also

−�px ∈ L∞(Z)+ and f (z, x) < −�px(z) for a.a. z ∈ Z and all x ∈ [0, x(z)] (see (3.39)). Hence
x ∈ intC+ satisfies hypothesis H(f )1(v).

Hypotheses H(f )2(iii), (vi) also imply that

f (z, x) >
(
θ(z) + ε

)|x|p−2x − γε(z) for a.a. z ∈ Z and all x � 0. (3.45)

In this case, we consider the problem{
−div

(∥∥Dv(z)
∥∥p−2

Dv(z)
) = (

θ(z) + ε
)∣∣v(z)

∣∣p−2
v(z) − γε(z) a.e. on Z,

v|∂Z = 0.
(3.46)

As we did for problem (3.40), we can show that problem (3.46) has a solution v ∈ − intC+,
which is a strict lower solution for problem (1.1) and satisfies hypothesis H(f )1(v). �

Combining Propositions 3.8 and 3.10, we have the first multiplicity result for coercive prob-
lems.

Proposition 3.11. If hypotheses H(f )2 hold, then problem (1.1) has at least two solutions of
constant sign, x0 ∈ intC+, v0 ∈ − intC+.

Another important class of problems, which fit in the general framework of Proposition 3.8,
are certain parametric p-superlinear problems. Namely we consider the following problems:{

−div
(∥∥Dx(z)

∥∥p−2
Dx(z)

) = f
(
z, x(z), λ

)
a.e. on Z,

x|∂Z = 0, 1 < p < ∞, λ > 0.
(3.47)

H(f )3 f :Z × R × (0,+∞) → R is a function such that f (z,0, λ) = 0 a.e. on Z, for all λ > 0
and

(i) for all (x,λ) ∈ R × (0,+∞), z → f (z, x,λ) is measurable;
(ii) for a.a. z ∈ Z and all λ ∈ (0,∞), x → f (z, x,λ) is continuous;

(iii) for a.a. z ∈ Z, all x ∈ R and all λ ∈ (0,∞), we have∣∣f (z, x,λ)
∣∣ � a(z,λ) + c|x|r−1

with a(·, λ) ∈ L∞(Z)+, ‖a(·, λ)‖∞ → 0 as λ → 0+, c > 0, p < r < p∗;
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(iv) for every λ ∈ (0,∞), there exists a function η = η(λ) ∈ L∞(Z)+ such that λ1 �
η(z) a.e. on Z, λ1 �= η and

η(z) � lim inf
x→0

f (z, x,λ)

|x|p−2x
uniformly for a.a. z ∈ Z;

(v) for every λ ∈ (0,∞), there exist M = M(λ) > 0 and μ = μ(λ) > p such that

0 < μF(z, x,λ) � f (z, x,λ)x for a.a. z ∈ Z, all |x| � M,

where F(z, x,λ) = ∫ x

0 f (z, s, λ) ds;
(vi) for every λ ∈ (0,∞), there exist δ0 = δ0(λ) > 0 and σ0 = σ0(λ), such that

for a.a. z ∈ Z, f (z, ·, λ) is increasing on [−δ0, δ0] and
for a.a. z ∈ Z, f (z, x,λ) � σ0 when x � δ0 and f (z, x,λ) � −σ0 when x � −δ0.

Proposition 3.12. If hypotheses H(f )3(i)–(iii), (v) hold, then there exists λ∗ ∈ (0,∞) such that
for all λ ∈ (0, λ∗), problem (3.47) has a strict upper solution x ∈ intC+ and a strict lower
solution v ∈ − intC+, both of which satisfy hypothesis H(f )1(v).

Proof. Let � ∈ intC+ be such that

−div
(∥∥D�(z)

∥∥p−2
D�(z)

) = 1 a.e. on Z, �|∂Z = 0. (3.48)

We claim that we can find λ∗ ∈ (0,∞) such that, if λ ∈ (0, λ∗), then we can choose ξ1 =
ξ1(λ) > 0 satisfying ∥∥a(·, λ)

∥∥∞ + c
(
ξ1‖�‖∞

)r−1
< ξ

p−1
1 . (3.49)

We argue by contradiction. So suppose that we cannot find ξ1 > 0 for which (3.49) holds. This
means that there exists a sequence {λn}n�1 ⊆ (0, λ) such that λn → 0+ and

ξp−1 �
∥∥a(·, λn)

∥∥∞ + c
(
ξ‖�‖∞

)r−1 for all n � 1 and all ξ > 0.

Passing to the limit as n → ∞ and using hypothesis H(f )3(iii), we have

ξp−1 � c
(
ξ‖�‖∞

)r−1 ⇒ 1 � cξ r−p‖�‖r−1∞ for all ξ > 0.

Since r > p, letting ξ → 0+, we have a contradiction. Therefore, we can find ξ1 = ξ1(λ) > 0
for which (3.49) is true.

We fix λ ∈ (0, λ∗) and we choose ξ1 = ξ1(λ) > 0 as in (3.49). We set x ∈ ξ1� ∈ intC+. Then

−div
(∥∥Dx(z)

∥∥p−2
Dx(z)

) = −ξ
p−1
1 div

(∥∥D�(z)
∥∥p−2

D�(z)
)

= ξ
p−1
1

(
see (3.49)

)
>

∥∥a(·, λ)
∥∥∞ + c

(
ξ1‖�‖∞

)r−1 (
see (3.49)

)
� f

(
z, x(z), λ

)
a.e. on Z

(
see hypothesis H(f )3(iii)

)
.

(3.50)
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From (3.50) we infer that x ∈ intC+ is a strict upper solution for problem (1.1). Moreover,
we have −�px ∈ L∞(Z)+ and f (z, x,λ) < −�px(z) for a.a. z ∈ Z, all x ∈ [0, x(z)] and all
λ ∈ (0, λ∗). Therefore x ∈ intC+ satisfies hypothesis H(f )1(v).

Similarly, let v = (−ξ1)� ∈ − intC+, with ξ1 > 0 as in (3.49). Then as above, using (3.49),
we can verify that v ∈ − intC+ is a strict lower solution for problem (3.47), which satisfies
hypothesis H(f )1(v). �

Combining Propositions 3.8 and 3.12, we can have the first multiplicity result for p-superlin-
ear problems.

Proposition 3.13. If hypotheses H(f )3 hold, then there exists λ∗ ∈ (0,∞) such that for all λ ∈
(0, λ∗) problem (3.47) has at least two solutions of constant sign, x0 ∈ intC+ and v0 ∈ − intC+.

In fact in the case of p-superlinear problems, we can have more solutions of constant sign.
More precisely, we have the following multiplicity result.

Theorem 3.14. If hypotheses H(f )3 hold, then there exists λ∗ ∈ (0,∞) such that for all
λ ∈ (0, λ∗) problem (3.47) has at least four solutions of constant sign x0, x̂ ∈ intC+, x0 � x̂,
x0 �= x̂ and v0, v̂ ∈ − intC+, v̂ � v0, v̂ �= v0.

Proof. Let x0 ∈ I+ be the positive solution obtained in Proposition 3.13 (see also Proposi-
tion 3.8). We may assume that this is the only solution of (3.47) in the order interval I+ or
otherwise we have already a second positive solution. We introduce the following truncation of
the nonlinearity f (z, x,λ):

f +(z, x,λ) =
{

f (z, x0(z), λ) if x � x0(z),

f (z, x,λ) if x > x0(z),
(3.51)

for all (z, x,λ) ∈ Z × R × (0, λ∗).
Let F+(z, x,λ) = ∫ x

0 f +(z, s, λ) ds, the primitive of f + and consider the functional

ϕλ+ :W 1,p

0 (Z) → R defined by

ϕλ+(x) = 1

p
‖Dx‖p

p −
∫
Z

F+
(
z, x(z), λ

)
dz for all x ∈ W

1,p

0 (Z).

Clearly ϕλ+ ∈ C1(W
1,p

0 (Z)). We consider the following auxiliary boundary value problem:{
−div

(∥∥Dx(z)
∥∥p−2

Dx(z)
) = f +

(
z, x(z), λ

)
in Z,

x|∂Z = 0.
(3.52)

From the proof of Proposition 3.8, we know that

−div
(∥∥Dx(z)

∥∥p−2
Dx(z)

)
< f

(
z, x0(z), λ

)
a.e. on Z.

But from (3.51) and since x � x0, we have

f
(
z, x0(z), λ

) = f +
(
z, x(z), λ

)
a.e. on Z for all λ ∈ (0, λ∗).
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Therefore,

−div
(∥∥Dx(z)

∥∥p−2
Dx(z)

)
< f +

(
z, x(z), λ

)
a.e. on Z

⇒ x ∈ intC+ is a strict lower solution for problem (3.52).

On the other hand, from Proposition 3.12 and since x0 � x, we have

−div
(∥∥Dx(z)

∥∥p−2
Dx(z)

)
> f

(
z, x(z), λ

)
= f +

(
z, x(z), λ

)
a.e. on Z,λ ∈ (0, λ∗)

⇒ x ∈ intC+ is a strict upper solution for problem (3.47).

So we have an ordered pair {x, x} of upper–lower solutions for problem (3.52).
Then since ϕλ+ is w-lower semicontinuous and ϕλ+|I+ is coercive, by the Weierstrass theorem

we can find x̃ ∈ I+ such that ϕλ+(x̃) = infI+ ϕλ+. As in the proof of Proposition 3.8, we have that
(ϕλ+)′(x̃) = 0 and so {

−div
(∥∥Dx̃(z)

∥∥p−2
Dx̃(z)

) = f +
(
z, x̃(z), λ

)
in Z,

x̃|∂Z = 0.
(3.53)

We multiply (3.53) with the test function (x0 − x̃)+ ∈ W
1,p

0 (Z), integrate over Z and use the
nonlinear Green’s identity (see Gasinski and Papageorgiou [12, p. 211]). We obtain∫

{x0>x̃}
‖Dx̃‖p−2(Dx̃,D(x0 − x̃)

)
RN dz

=
∫

{x0>x̃}
f (z, x0, λ)(x0 − x̃) dz

(
see (3.47)

)
=

∫
{x0>x̃}

‖Dx0‖p−2(Dx0,D(x0 − x̃)
)
RN dz

(
since x0 solves (3.47)

)
⇒

∫
{x0>x̃}

(‖Dx̃‖p−2Dx̃ − ‖Dx0‖p−2Dx0,D(x̃ − x0)
)
RN dz = 0. (3.54)

Due to the strict monotonicity of the map θp : RN → R
N defined by θp(x) = ‖x‖p−2x,

x �= 0, θp(0) = 0, from (3.54) we infer that |{x0 > x̃}|N = 0, hence x0 � x̃ and so we have
f +(z, x̃(z), λ) = f (z, x̃(z), λ) a.e. on Z, λ ∈ (0, λ∗). Then from (3.53) and since we have as-
sumed that x0 ∈ I+ is the only solution of problem (3.47) in the order interval I+, we deduce that
x̃ = x0. We have

x0 − x ∈ intC+ and x − x0 ∈ intC+.

Therefore, it follows that x0 is a local C1
0(Z)-minimizer of the functional ϕλ+. Hence,

Theorem 1.1 of Garcia Azorero, Manfredi and Peral Alonso [11], implies that x0 is a local
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W
1,p

0 (Z)-minimizer of ϕλ+. We may assume that x0 is an isolated local minimizer of ϕλ+ or
otherwise arguing as above, we can generate a whole sequence of distinct positive solutions for
problem (3.47). Then as in Motreanu, Motreanu and Papageorgiou [21], we can find ρ > 0 small
such that

ϕλ+(x0) < inf
[
ϕλ+(x): ‖x − x0‖ = ρ

] = cρ. (3.55)

Note that hypothesis H(f )3(v) (the Ambrosetti–Rabinowitz condition) implies that

F(z, x,λ) � c4|x|μ − c5 for a.a. z ∈ Z, all x ∈ R, all λ > 0, with c4, c5 > 0. (3.56)

So using (3.56), we see that

ϕλ+(tu1) → −∞ as t → +∞. (3.57)

We also check that ϕλ+, λ ∈ (0, λ∗), satisfies the PS-condition. To this end let {xn}n�1 ⊆
W

1,p

0 (Z) be the sequence such that

∣∣ϕλ+(xn)
∣∣ � M1 for some M1 > 0, all n � 1 and

(
ϕλ+

)′
(xn) → 0 as n → ∞.

We have ∣∣〈(ϕλ+
)′
(xn), v

〉∣∣ � εn‖v‖ for all v ∈ W
1,p

0 (Z), with εn ↓ 0.

Let v = −x−
n ∈ W

1,p

0 (Z). Then

∣∣∣∣∥∥Dx−
n

∥∥p

p
+

∫
Z

f (z, x0, λ)x−
n dz

∣∣∣∣ � εn

∥∥x−
n

∥∥
⇒ ∥∥Dx−

n

∥∥p

p
� εn

∥∥x−
n

∥∥ (
since f (z, x0, λ)x−

n � 0
)

⇒ {
x−
n

}
n�1 ⊆ W

1,p

0 (Z) is bounded. (3.58)

From the choice of the sequence {xn}n�1 ⊆ W
1,p

0 (Z) and (3.47), (3.58), we have

μ

p

∥∥Dx+
n

∥∥p

p
−

∫
{x0�xn}

μF(z, xn,λ) dz � M2 for some M2 > 0, all n � 1 (3.59)

and

−∥∥Dx+
n

∥∥p

p
+

∫
{x0�xn}

f (z, xn,λ)x+
n dz � M3 for some M3 > 0, all n � 1. (3.60)
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Adding (3.59) and (3.60) and using hypothesis H(f )3(v), we obtain(
μ

p
− 1

)∥∥Dx+
n

∥∥p

p
� M4 for some M4 > 0, all n � 1

⇒ {
x+
n

}
n�1 ⊆ W

1,p

0 (Z) is bounded

⇒ {xn}n�1 ⊆ W
1,p

0 (Z) is bounded.

Therefore we may assume that

xn
w→ x in W

1,p

0 (Z), xn → x in Lr(Z), xn(z) → x(z) a.e. on Z

and ∣∣xn(z)
∣∣ � k(z) a.e. on Z, for all n � 1, with k ∈ Lr(Z)+.

We have∣∣〈(ϕλ+
)′
(xn), xn − x

〉∣∣ � εn‖xn − x‖

⇒
∣∣∣∣〈A(xn), xn − x

〉 − ∫
Z

f +
(
z, xn(z), λ

)
(xn − x)(z) dz

∣∣∣∣ � εn‖xn − x‖. (3.61)

Note that ∫
Z

f +
(
z, xn(z), λ

)
(xn − x)(z) → 0.

So from (3.61) it follows that

lim
n→∞

〈
A(xn), xn − x

〉 = 0. (3.62)

Then by virtue of the generalized pseudomonotonicity of A, from (3.62) we infer that

xn → x in W
1,p

0 (Z) (see the proof of Proposition 3.1).

Therefore, ϕλ+ satisfies the PS-condition. Combining this fact with (3.55) and (3.57), we see

that we can apply the mountain pass theorem and find x̂ ∈ W
1,p

0 (Z), x̂ �= x0 which is a critical
point of the functional ϕλ+, λ ∈ (0, λ∗). Then, as we did for x̃, we can show that x̂ � x0 and so
x̂ ∈ intC+ is a second positive solution of (3.47) distinct from x0.

On the other hand, let v0 ∈ I− be the negative solution obtained in Proposition 3.13 (see also
Proposition 3.8). We use v0 ∈ I− and the following modification of the nonlinearity f (z, x,λ):

f −(z, x,λ) =
{

f (z, x,λ) if x < v0(z),

f (z, v (z), λ) if x � v (z)
for all (z, x,λ) ∈ Z × R × (0,∞).
0 0
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We set F−(z, x,λ) = ∫ x

0 f −(z, s, λ) ds and consider the C1-functional ϕλ− :W 1,p

0 (Z) → R

defined by

ϕλ−(x) = 1

p
‖Dx‖p

p −
∫
Z

F−
(
z, x(z), λ

)
dz for all x ∈ W

1,p

0 (Z), λ ∈ (0, λ∗).

Then arguing as above, through the mountain pass theorem, we obtain a second negative
solution v̂ ∈ − intC+, distinct from v0 and such that v̂ � v0. So finally we have generated four
nontrivial constant sign solutions, namely x0, x̂ ∈ intC+ and v0, x̂ ∈ − intC+. �
Remark 3.15. Let p < r < p∗ and assume that g :Z × R → R is a Carathéodory function
(i.e. measurable in z ∈ Z and continuous in x ∈ R) with g(z,0) = 0 a.e. on Z. Let G(z, x) =∫ x

0 g(z, s) ds. We suppose that

• g(z, x)x � 0 for a.a. z ∈ Z and all x ∈ R;
• there exist M > 0, ĉ0 > 0 and 1 < q < p such that∣∣g(z, x)

∣∣ � ĉ0|x|q−1 for a.a. z ∈ Z, all |x| � M;

• there exist δ0, σ0 > 0 such that x → g(z, x) is increasing for a.a. z ∈ Z, all x ∈ [−δ0, δ0] and
g(z, x) � σ0 for a.a. z ∈ Z, all x � δ0 and g(z, x) � −σ0 for a.a. z ∈ Z and all x � −δ0.

Set f (z, x,λ) = |x|r−2x + λg(z, x), λ > 0. Then f (z, x,λ) satisfies hypotheses H(f )3.
A particular case, is when g(z, x) = g(x) = |x|q−1x (convex–concave nonlinearity). This is
the nonlinearity in the works of Ambrosetti, Garcia Azorero and Peral Alonso [1] and Garcia
Azorero, Manfredi and Peral Alonso [11]. So Theorem 3.14, extends the aforementioned works.
Also partially extends the result of Motreanu, Motreanu and Papageorgiou [20] and the existence
result of Boccardo, Escobedo and Peral Alonso [5].

4. Nodal solutions and multiplicity results

In this section, we go beyond solutions of constant sign and look for nodal (sign-changing)
solutions. Recall that every eigenfunction of (2.1) corresponding to an eigenvalue λ �= λ̂1(m),
must change sign. So we expect that in general, the nodal solutions of (1.1) must be more than the
constant sign solutions. Nevertheless, to produce a nodal solution for problem (1.1), is a highly
nontrivial task which requires involved arguments using various tools from nonlinear analysis.

Here we follow the approach of Dancer and Du [9], where p = 2 (semilinear problems) (see
also Carl and Perera [6], for nonlinear problems). Roughly speaking the strategy is the following.
Continuing the argument employed in Section 3, we generate a smallest positive solution y+ ∈
intC+ and a biggest negative solution y− ∈ − intC+. We form the order interval [y−, y+]. Using
variational techniques on certain appropriate truncations of the original Euler functional, we are
able to produce a solution y0 ∈ [y−, y+] of (1.1) different from y− and y+. Evidently, if y0 �= 0,
then y0 is nodal. To show the nontriviality of y0, we use (2.3) and Theorem 2.3.

We start with a lemma, which shows that the set of upper solutions for problem (1.1) is down-
ward directed.
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Lemma 4.1. If y1, y2 ∈ W 1,p(Z) are two upper solutions for problem (1.1) and y = min{y1, y2} ∈
W 1,p(Z), then y is also an upper solution for problem (1.1).

Proof. Given ε > 0, we consider the truncation function ξε : R → R defined by

ξε(s) =
{−ε if s � ε,

s if −ε � s � ε,

ε if ε � s.

Clearly ξε is Lipschitz continuous. So from Marcus and Mizel [19], we have

ξε

(
(y1 − y2)

−) ∈ W 1,p(Z)

and

Dξε

(
(y1 − y2)

−) = ξ ′
ε

(
(y1 − y2)

−)
D(y1 − y2)

−.

Consider a test function ψ ∈ C1
c (Z) with ψ � 0. Then

ξε

(
(y1 − y2)

−)
ψ ∈ W 1,p(Z) ∩ L∞(Z)

and

D
(
ξε

(
(y1 − y2)

−)
ψ

) = ψDξε

(
(y1 − y2)

−) + ξε

(
(y1 − y2)

−)
Dψ.

Since by hypothesis y1, y2 ∈ W 1,p(Z) are upper solutions for problem, then from Defini-
tion 2.4(a), we have

〈
A(y1), ξε

(
(y1 − y2)

−)
ψ

〉
�

∫
Z

f (z, y1)ξε

(
(y1 − y2)

−)
dz

and

〈
A(y2),

(
ε − ξε

(
(y1 − y2)

−))
ψ

〉
�

∫
Z

f (z, y2)
(
ε − ξε

(
(y1 − y2)

−))
ψ dz.

Adding these two inequalities, we obtain

〈
A(y1), ξε

(
(y1 − y2)

−)
ψ

〉 + 〈
A(y2),

(
ε − ξε

(
(y1 − y2)

−))
ψ

〉
�

∫
Z

f (z, y1)ξε

(
(y1 − y2)

−)
dz +

∫
Z

f (z, y2)
(
ε − ξε

(
(y1 − y2)

−))
ψ dz. (4.1)
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Note that

〈
A(y1), ξε

(
(y1 − y2)

−)
ψ

〉
=

∫
Z

‖Dy1‖p−2(Dy1,D(y1 − y2)
−)

RNξ ′
ε

(
(y1 − y2)

−)
ψ dz

+
∫
Z

‖Dy1‖p−2(Dy1,Dψ)RNξε

(
(y1 − y2)

−)
dz

= −
∫

{−ε�y1−y2�0}
‖Dy1‖p−2(Dy1,D(y1 − y2)

)
RN dz

+
∫
Z

‖Dy1‖p−2(Dy1,Dψ)RNξε

(
(y1 − y2)

−)
dz (4.2)

and

〈
A(y2),

(
ε − ξε

(
(y1 − y2)

−))
ψ

〉
=

∫
{−ε�y1−y2�0}

‖Dy2‖p−2(Dy2,D(y1 − y2)
)
RNψ dz

+
∫
Z

‖Dy2‖p−2(Dy2,Dψ)RN

(
ε − ξε

(
(y1 − y2)

−))
dz. (4.3)

Adding (4.2) and (4.3) and recalling that ψ � 0, we have

〈
A(y1), ξε

(
(y1 − y2)

−)
ψ

〉 + 〈
A(y2),

(
ε − ξε

(
(y1 − y2)

−))
ψ

〉
=

∫
{−ε�y1−y2�0}

(‖Dy2‖p−2Dy2 − ‖Dy1‖p−2Dy1,D(y1 − y2)
)
RNψ dz

+
∫
Z

‖Dy1‖p−2(Dy1,Dψ)RNξε

(
(y1 − y2)

−)
dz

+
∫
Z

‖Dy2‖p−2(Dy2,Dψ)RN

(
ε − ξε

(
(y1 − y2)

−))
dz

�
∫
Z

‖Dy1‖p−2(Dy1,Dψ)RNξε

(
(y1 − y2)

−)
dz

+
∫
Z

‖Dy2‖p−2(Dy,Dψ)RN

(
ε − ξε

(
(y1 − y2)

−))
dz. (4.4)
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We return to (4.1), use (4.4) and then divide by ε > 0. We obtain∫
Z

‖Dy1‖p−2(Dy1,Dψ)RN

1

ε
ξε

(
(y1 − y2)

−)
dz

+
∫
Z

‖Dy2‖p−2(Dy2,Dψ)RN

(
1 − 1

ε
ξε

(
(y1 − y2)

−))
dz

�
∫
Z

f (z, y1)ξε

(
(y1 − y2)

−)
ψ dz +

∫
Z

f (z, y2)
(
ε − ξε

(
(y1 − y2)

−))
ψ dz. (4.5)

Note that

1

ε
ξε

(
(y1 − y2)

−(z)
) → χ{y1<y2}(z) a.e. on Z as ε ↓ 0

and

χ{y1�y2} = 1 − χ{y1<y2}.

Therefore, if we pass to the limit as ε → 0+ in (4.5), we obtain∫
{y1<y2}

‖Dy1‖p−2(Dy1,Dψ)RN dz +
∫

{y1�y2}
‖Dy2‖p−2(Dy2,Dψ)RN dz

�
∫

{y1<y2}
f (z, y1) dz +

∫
{y1�y2}

f (z, y2)ψ dz. (4.6)

Recall that y = min{y1, y2} ∈ W 1,p(Z) and

Dy(z) =
{

Dy1(z) a.e. on {y1 < y2},
Dy2(z) a.e. on {y1 � y2}.

Using this in (4.6), we have∫
Z

‖Dy‖p−2(Dy,Dψ)RN dz �
∫
Z

f (z, x)ψ dz. (4.7)

Since ψ ∈ C1
c (Z)+ was arbitrary and C1

c (Z)+ is dense in W
1,p

0 (Z)+, from (4.7) we con-
clude that y = min{y1, y2} ∈ W 1,p(Z) is an upper solution for problem (1.1) (see Defini-
tion 2.4(a)). �

Using a similar argument, we can show that the set of lower solutions for problem (1.1) is
upward directed. So we have:

Lemma 4.2. If w1,w2 ∈ W 1,p(Z) are two lower solutions for problem (1.1) and w =
max{w1,w2} ∈ W 1,p(Z), then w is also a lower solution for problem (1.1).
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Using the above two auxiliary results, we can show that problem (1.1) has a smallest solution
in the order interval I+ = [x, x] and a biggest solution in the order interval I− = [v, v]. By a
smallest solution x∗ of (1.1) in I+ (resp. biggest solution v∗ of (1.1) in I−) we mean a solution
x∗ ∈ I+ (resp. v∗ ∈ I−) such that if x ∈ I+ (resp. v ∈ I−) is any other solution of (1.1) in I+
(resp. in I−), then x∗ � x (resp. v � v∗).

Proposition 4.3. If hypotheses H(f )1 hold, then problem (1.1) admits a smallest solution x∗
in I+ and a biggest solution v∗ ∈ I−.

Proof. Let S+ be the set of solutions of (1.1) which belong in the order interval I+. We claim
that the set S+ is downward directed. To this end let x1, x2 ∈ S+. Both x1 and x2 are also upper
solutions for problems (1.1). So by virtue of Lemma 4.1, x̂ = min{x1, x2} ∈ W

1,p

0 (Z) is an upper
solution for problem (1.1). We set

Î+ = [x, x̂] = {
x ∈ W

1,p

0 (Z): x(z) � x(z) � x̂(z) a.e. on Z
}
.

As before, truncating f (z, ·) at the ordered pair {x, x̂} and using the Weierstrass theorem, we
can find x̂0 ∈ I+ a solution of (1.1). Nonlinear regularity theory implies that x̂ ∈ intC+ and we
have

x � x0 � x̂ = min{x1, x2} ⇒ S+ is downward directed. (4.8)

Let C ⊆ S+ be a chain in S+ (i.e. a totally ordered subset of S+). From Corollary 7, p. 336 of
Dunford and Schwartz [10], we can find {xn}n�1 ⊆ C such that

inf
n�1

xn = infC.

Because of (4.8), we may assume that {xn}n�1 is decreasing. Also because of hypothesis

H(f )1(iii) and since A(xn) = f (·, xn(·)), we infer that {xn}n�1 ⊆ W
1,p

0 (Z) is bounded. Hence
we may assume that

xn
w→ ŷ in W

1,p

0 (Z) and xn → ŷ in Lp(Z).

Note that

〈
A(xn), xn − ŷ

〉 = ∫
Z

f
(
z, xn(z)

)
(xn − ŷ)(z) dz → 0 as n → ∞.

From this as before (see the proof of Proposition 3.1), we deduce that

xn → ŷ in W
1,p

0 (Z) as n → ∞.
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So, in the limit as n → ∞, we have

A(ŷ) = f
(·, ŷ(·))

⇒ −div
(∥∥Dŷ(z)

∥∥p−2
Dŷ(z)

) = f
(
z, ŷ(z)

)
a.e. on Z, ŷ|∂Z = 0

⇒ ŷ ∈ S+ and ŷ = infC.

Because C was an arbitrary chain in S+, from Zorn’s lemma, we obtain a minimal element
x∗ ∈ S+. From (4.8), we infer that x∗ is the smallest solution of (1.1) in I+.

A similar argument in I−, using this time Lemma 4.2, produces a greatest solution v∗ ∈ I−
of (1.1) in I−. �

Using this proposition and a strengthened version of hypothesis H(f )1(iv), we will be able to
produce a minimal positive solution y+ ∈ intC+ and a maximal negative solution y− ∈ − intC+
for problem (1.1). The new more restrictive version of hypothesis H(f )1(iv) dictates a strictly
p-linear behavior of the nonlinearity f (z, ·) near the origin. More precisely, the new hypotheses
on the nonlinearity f (z, x), are the following:

H(f )4 f :Z × R → R is a function such that f (z,0) = 0 a.e. on Z, hypotheses H(f )4(i)–(iii),
(v), (vi) are the same as hypotheses H(f )1(i)–(iii), (v), (vi) and
(iv) there exist functions η, η̂ ∈ L∞(Z)+ such that λ1 � η(z) a.e. on Z, λ1 �= η and

η(z) � lim inf
x→0

f (z, x)

|x|p−2x
� lim sup

x→0

f (z, x)

|x|p−2x
� η̂(z)

uniformly for a.a. z ∈ Z.

Proposition 4.4. If hypotheses H(f )4 hold, then problem (1.1) has a smallest positive solution
y+ ∈ intC+ and a biggest negative solution y− ∈ − intC+.

Proof. Let x ∈ intC+ be the strict lower solution for problem (1.1) obtained in Proposition 3.7
and let xn = εnx with εn ↓ 0 and In+ = [xn, x]. From Proposition 4.3, we know that problem (1.1)
admits a smallest solution xn∗ in the order interval In+. We know that the sequence {xn∗ }n�1 ⊆
W

1,p

0 (Z) is bounded and so we may assume that

xn∗
w→ y+ in W

1,p

0 (Z) and xn∗ → y+ in Lp(Z) as n → ∞.

We have

A
(
xn∗

) = Nf

(
xn∗

)
, n � 1, (4.9)

where Nf (xn∗ )(·) = f (·, xn∗ (·)), the Nemytskii operator corresponding to the nonlinearity f . Act-
ing on (4.9) with the function xn∗ − y+ and passing to the limit as n → ∞, from the properties
of A, as before, we obtain

xn∗ → y+ in W
1,p

(Z) as n → ∞. (4.10)
0
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Suppose that y+ = 0. Then we have ‖xn∗‖ → 0 as n → ∞ (see (4.10)). We set wn = xn∗‖xn∗ ‖ ,
n � 1. We may assume that

wn
w→ w in W

1,p

0 (Z) and wn → w in Lp(Z) as n → ∞.

From (4.9) we have

A(wn) = Nf (xn∗ )

‖xn∗‖p−1
for all n � 1

⇒ 〈
A(wn),wn − w

〉 = ∫
Z

f (z, xn∗ (z))

‖xn∗‖p−1
(wn − w)(z) dz. (4.11)

Hypotheses H(f )4 imply that∣∣f (z, x)
∣∣ � c0|x|p−1 for a.a. z ∈ Z, all x ∈ R, for some c0 > 0. (4.12)

From this growth relation we infer that{
Nf (xn∗ )

‖xn∗‖p−1

}
n�1

⊆ Lp′
(Z) is bounded. (4.13)

Therefore∫
Z

Nf (xn∗ )

‖xn∗‖p−1
(wn − w)dz → 0 as n → ∞

⇒ lim
n→∞

〈
A(wn),wn − w

〉 = 0
(
see (4.11)

)
⇒ wn → w in W

1,p

0 (Z), hence ‖w‖ = 1 (see the proof of Proposition 3.1).

Because of (4.13), we may assume that

hn = Nf (xn∗ )

‖xn∗‖p−1
w→ h in Lp′

(Z) as n → ∞. (4.14)

For every ε > 0 and n � 1, we introduce the following sets:

En+ =
{
z ∈ Z: xn∗ (z) > 0, η(z) − ε � f (z, xn∗ (z))

xn∗ (z)p−1
� η̂(z) + ε

}
and

En− =
{
z ∈ Z: xn∗ (z) < 0, η(z) − ε � f (z, xn∗ (z))

n p−2 n
� η̂(z) + ε

}
.
|x∗ (z)| x∗ (z)
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Since xn∗ → 0 in W
1,p

0 (Z), we may assume (at least for a subsequence) that xn∗ (z) → 0 a.e.
on Z. We have

xn∗ (z) → 0+ a.e. on {w > 0} and xn∗ (z) → 0− a.e. on {w < 0}.

Therefore, hypothesis H(f )4(v) implies

χEn+(z) → 1 a.e. on {w > 0} and χEn−(z) → 1 a.e. on {w < 0}.

From this and (4.14) it follows that

χEn+hn
w→ h in Lp′({w > 0}) and χEn−hn

w→ h in Lp′({w < 0}).
From the definition of the set En+, we have

χEn+(z)
(
η(z) − ε

)
wn(z)

p−1 � χEn+(z)
f (z, xn∗ (z))

xn∗ (z)p−1
wn(z)

p−1 = χEn+(z)
f (z, xn∗ (z))

‖xn∗‖p−1

� χEn+(z)
(
η̂(z) + ε

)
wn(z)

p−1 a.e. on Z.

Taking weak limits in Lp′
({w > 0}), via Mazur’s lemma and since ε > 0 was arbitrary, we

obtain

η(z)w(z)p−1 � h(z) � η̂(z)w(z)p−1 a.e. on {w > 0}. (4.15)

Working similarly with the set En−, we obtain

η̂(z)
∣∣w(z)

∣∣p−2
w(z) � h(z) � η(z)

∣∣w(z)
∣∣p−2

w(z) a.e. on {w < 0}. (4.16)

Finally from (4.12) it is clear that

h(z) = 0 a.e. on {w = 0}. (4.17)

Combining (4.15)–(4.17), we can say that

h(z) = k(z)
∣∣w(z)

∣∣p−2
w(z) a.e. on Z,

with k ∈ L∞(Z)+, η(z) � k(z) � η̂(z) a.e. on Z. Then, in the limit as n → ∞, we have

A(w) = k|w|p−2w

⇒ −div
(∥∥Dw(z)

∥∥p−2
Dw(z)

) = k(z)
∣∣w(z)

∣∣p−2
w(z) a.e. on Z,

w|∂Z = 0, w �= 0. (4.18)

We know that

λ̂1(k) < λ̂1(λ1) = 1.
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So from (4.18), we see that w ∈ C1
0(Z) (nonlinear regularity theory) cannot be the principal

eigenfunction and so it must change sign. But wn = xn∗‖xn∗ ‖ ∈ intC+ for all n � 1 and wn → w

in W
1,p

0 (Z). Therefore w � 0, a contradiction. This proves that y+ �= 0 and of course y+ � 0.

Moreover, since xn∗ → y+ in W
1,p

0 (Z) as n → ∞ (see (4.10)), passing to the limit as n → ∞
in (4.9), we obtain

A(y+) = Nf (y+)

⇒ −div
(∥∥Dy+(z)

∥∥p−2
Dy+(z)

) = f
(
z, y+(z)

)
a.e. on Z,

y|∂Z = 0, y+ � 0, y+ �= 0.

From nonlinear regularity theory, we have y+ ∈ C+ \ {0} and then the nonlinear strong maxi-
mum principle of Vazquez [23], implies that y+ ∈ intC+.

We claim that y+ is the smallest positive solution of (1.1). Indeed, let ŷ �= 0 be another positive
solution. As before, from nonlinear regularity and the nonlinear strong maximum principle of
Vazquez [23], we have ŷ ∈ intC+. Using Lemma 3.6, we can find ε̂ ∈ (0,1) such that ε̂x � ŷ.
Then for n � 1 large we will have εn < ε̂ and so xn � ε̂x � ŷ � x. We fix such large n � 1 and
work on the order interval [xn, x]. On this interval we have xn∗ � ŷ (see Proposition 4.3) and so
y+ � ŷ. This proves that y+ is the smallest positive solution of (1.1).

In a similar fashion, if vn = εnv, εn ↓ 0 and working on the order interval In− = [v, vn], we
obtain y− ∈ − intC+, the biggest negative solution of (1.1). �

Now we are ready to produce a nodal solution for problem (1.1). This requires a further
strengthening of hypothesis H(f )1(v).

H(f )5 f :Z×R → R is a function such that f (z,0) = 0 a.e. on Z, hypotheses H(f )5(i)–(iii),
(v) are the same as hypotheses H(f )1(i)–(iii), (v), respectively, and
(iv) there exists η̂ ∈ L∞(Z)+ such that

λ2 < lim inf
x→0

f (z, x)

|x|p−2x
� lim sup

x→0

f (z, x)

|x|p−2x
� η̂(z)

uniformly for a.a. z ∈ Z;
(vi) f (z, x)x � 0 for a.a. z ∈ Z and all x ∈ R.

Remark 4.5. The stronger version of hypothesis H(f )5(v) (uniform nonresonance with respect
to λ2 > 0 at the origin) allows us to relax hypothesis H(f )5(vi) to a simple sign condition. The
reason for this is that now a positive strict lower solution can be obtained much easier, by just
taking a small multiple of the principal eigenfunction u1 ∈ intC+ and then the comparison with
x0 is straightforward.

Theorem 4.6. If hypotheses H(f )5 hold, then problem (1.1) has at least three nontrivial solu-
tions, x0 ∈ intC+, v0 ∈ − intC+ and a nodal solution y0 ∈ C1

0(Z), y0 �= 0.

Proof. The two nontrivial smooth solutions of constant sign x0 ∈ intC+, v0 ∈ − intC+, were
obtained in Proposition 3.8. So we need to produce the nodal solution.
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Let y+ ∈ intC+ and y− ∈ − intC+ be the two extremal constant sign solutions of (1.1)
obtained in Proposition 4.4. We introduce the following truncated versions of the nonlinearity
f (z, x):

f̂+(z, x) =
{0 if x < 0,

f (z, x) if 0 � x � y+(z),

f (z, y+(z)) if y+(z) < x,

f̂−(z, x) =
{

f (z, y−(z)) if x < y−(z),

f (z, x) if y−(z) � x � 0,

0 if 0 < x,

f̂ (z, x) =
{

f (z, y−(z)) if x < y−(z),

f (z, x) if y−(z) � x � y+(z),

f (z, y+(z)) if y+(z) < x.

Then we set

F̂+(z, x) =
x∫

0

f̂+(z, s) ds, F̂−(z, x) =
x∫

0

f̂−(z, s) ds and F̂ (z, x) =
x∫

0

f̂ (z, s) ds.

Finally we introduce the following C1-functionals defined on W
1,p

0 (Z):

ϕ̂+(x) = 1

p
‖Dx‖p

p −
∫
Z

F̂+
(
z, x(z)

)
dz,

ϕ̂−(x) = 1

p
‖Dx‖p

p −
∫
Z

F̂−
(
z, x(z)

)
dz and

ϕ̂(x) = 1

p
‖Dx‖p

p −
∫
Z

F̂
(
z, x(z)

)
dz for all x ∈ W

1,p

0 (Z).

In what follows, we will use the following order intervals

T+ = [0, y+], T− = [y−,0] and T = [y−, y+].

The critical points of ϕ̂+ are located in T+, the critical points of ϕ̂− in T− and the critical
points of ϕ̂ in T̂ . We do the proof for ϕ̂+, the proof for the others being similar.

Suppose x ∈ W
1,p

0 (Z) is a critical point of ϕ̂+. Then

A(x) = N̂+(x), (4.19)

where N̂+(x)(·) = f̂+(·, x(·)) (the Nemytskii operator corresponding to the nonlinearity
f̂+(z, x)). We take duality brackets of (4.19) with (x − y+)+ ∈ W

1,p
(Z). We obtain
0
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〈
A(x), (x − y+)+

〉 =
∫
Z

f̂+(z, x)(x − y+)+ dz

=
∫
Z

f (z, y+)(x − y+)+ dz (recall the definition of f̂+)

= 〈
A(y+), (x − y+)+

〉 (
since y+ ∈ intC+ is a solution of (1.1)

)
⇒ 〈

A(x) − A(y+), (x − y+)+
〉= 0

⇒
∫

{x>y+}

(‖Dx‖p−2Dx − ‖Dy+‖p−2Dy+,Dx − Dy+
)
RN dz = 0.

(4.20)

Since the map θp : RN → R
N defined by θp(u) = ‖u‖p−2u if u �= 0, θp(0) = 0, is strictly

monotone, from (4.20) we infer that∣∣{x > y+}∣∣
N

= 0
(
recall | · |N is the Lebesgue measure on R

N
) ⇒ x � y+.

Similarly we show 0 � x. Therefore x ∈ T+.
Since the critical points of ϕ̂+ are in T+, we see that {0, y+} are the only critical points of ϕ̂+.

By virtue of hypothesis H(f )5(v), we can find δ > 0 small such that

λ2x
p−1 < f (z, x) for a.a. z ∈ Z and all x ∈ [0, δ]

⇒ λ2

p
xp < F(z, x) for a.a. z ∈ Z and all x ∈ [0, δ]. (4.21)

We choose ε > 0 small, such that

εu1(z) � min
{
y+(z), δ

}
for all z ∈ Z, (4.22)

see Lemma 3.6. Then

ϕ̂+(εu1) = εp

p
‖Du1‖p

p −
∫
Z

F̂+
(
z, εu1(z)

)
dz

<
εp

p

∫
Z

(λ1 − λ2)u1(z)
p dz

(
see (4.20), (4.21) and (2.2)

)
< 0

⇒ inf
W

1,p
0 (Z)

ϕ̂+ < 0 = ϕ̂+(0).

Clearly ϕ̂+ is coercive and w-lower semicontinuous. So by the Weierstrass theorem, we can
find ŷ0 ∈ W

1,p

0 (Z) such that

ϕ̂+(ŷ0) = inf
W

1,p
(Z)

ϕ̂+ = m̂+ < 0 = ϕ̂+(0) ⇒ ŷ0 �= 0.
0



M.E. Filippakis, N.S. Papageorgiou / J. Differential Equations 245 (2008) 1883–1922 1917
Therefore ŷ0 is a nonzero critical point of ϕ̂+, hence ŷ0 = y+. Recall that y+ ∈ intC+. So
y+ is a local C1

0(Z)-minimizer of ϕ̂ and so y+ is a local W
1,p

0 (Z)-minimizer of ϕ̂ (see Garcia
Azorero, Manfredi and Peral Alonso [11]). We may assume that y+ is an isolated local minimizer
of ϕ̂+. Indeed, if this is not the case, we can find a sequence {xn}n�1 ⊆ W

1,p

0 (Z) such that

xn → y+ in W
1,p

0 (Z), xn �= 0, y+, y− and ϕ̂′(xn) = 0.

We have xn ∈ T and since xn �= y+, xn �= y−, xn �= 0, n � 1, we have produced a whole
sequence of distinct nodal solutions for problem (1.1) and so we are done.

Similarly working with ϕ̂− on T−, we deduce that y− ∈ − intC+ is a global minimizer of ϕ̂−,
ϕ̂−(y−) = ϕ̂(y−) < 0 = ϕ̂(0), it is a local minimizer of ϕ̂ and we may also assume that it is an
isolated local minimizer of ϕ̂.

Then we can find δ > 0 small such that

ϕ̂(y+) < inf
[
ϕ̂(x): x ∈ ∂Bδ(y+)

]
� 0

and

ϕ̂(y−) < inf
[
ϕ̂(x): x ∈ ∂Bδ(y−)

]
� 0

with ∂Bδ(y±) = {x ∈ W
1,p

0 (Z): ‖x − y±‖ = δ} (see Motreanu, Motreanu and Papageorgiou
[21]). We may assume without any loss of generality that ϕ̂(y−) � ϕ̂(y+).

If we set S0 = ∂Bδ(y+) and T = [y−, y+], T0 = {y−, y+}, then we can easily see that the pair
{T0, T } is linking with S0 in W

1,p

0 (Z) (see for example Gasinski and Papageorgiou [12, p. 642]).
Moreover, it is clear that ϕ̂ is coercive and so it verifies the PS-condition. Therefore, we can apply
the minimax theorem for linking sets (see for example Gasinski and Papageorgiou [12, p. 646])
and produce y0 ∈ W

1,p

0 (Z), a critical point of ϕ̂ such that

ϕ̂(y±) < ϕ̂(y0) = inf
γ∈Γ

max
t∈[−1,1]

ϕ̂
(
γ (t)

)
, (4.23)

where Γ = {γ ∈ C([−1,1],W 1,p

0 (Z)): γ (−1) = y−, γ (+1) = y+}. From (4.23) we see that
y0 �= y±.

We will show that ϕ̂(y0) < 0 = ϕ̂(0) and so y0 �= 0 and of course is nodal since y0 ∈ T .
According to (4.23), to show the nontriviality of y0, it is enough to produce a path γ 0 ∈ Γ

such that

ϕ̂
(
γ 0(t)

)
< 0 for all t ∈ [−1,1].

So, in what follows, we construct such a path γ 0.
Recall that ∂B

Lp(Z)
1 = {x ∈ Lp(Z): ‖x‖p = 1} and set S = W

1,p

0 (Z) ∩ ∂B
Lp(Z)
1 endowed

with W
1,p

0 (Z)-topology. We also set

Sc = W
1,p

(Z) ∩ ∂B
Lp(Z) ∩ C1(Z)
0 1 0
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equipped with the C1
0(Z)-topology. Evidently Sc is dense in S in the W

1,p

0 (Z)-topology. Then,
if

Γ0 = {
γ ∈ C

([−1,1], S)
: γ (−1) = −u1, γ (+1) = u1

}
and

Γ0,c = {
γ ∈ C

([−1,1], Sc

)
: γ (−1) = −u1, γ (+1) = u1

}
,

we have that Γ0,c is dense in Γ0. Because of (2.3), we can find γ̂0 ∈ Γ0,c such that

max
[‖Dx‖p

p: x ∈ γ̂0
([1,1])] � λ2 + δ, δ > 0. (4.24)

We can always choose δ > 0 small such that

λ2 + 2δ < lim inf
x→0

f (z, x)

|x|p−2x
uniformly for a.a. z ∈ Z

(see hypothesis H(f )5(v)). We can find δ̂ > 0 such that

λ2 + δ <
f (z, x)

|x|p−2x
for a.a. z ∈ Z and all 0 < |x| � δ̂

⇒ 1

p
(λ2 + δ)|x|p � F(z, x) for a.a. z ∈ Z and all 0 < |x| � δ̂. (4.25)

Because γ̂0([−1,1]) ⊆ Sc and −y−, y+ ∈ intC+, we can find ε > 0 small such that∣∣εx(z)
∣∣ � δ̂ for all z ∈ Z, all x ∈ γ̂0

([−1,1])
and

εx ∈ [y−, y+] for all x ∈ γ̂0
([−1,1]).

Then, if x ∈ γ̂0([−1,1]), we have

ϕ̂(εx) = ϕ(εx) = εp

p
‖Dx‖p

p −
∫
Z

F
(
z, εx(z)

)
dz

<
εp

p
‖Dx‖p

p − εp

p
(λ2 + δ)‖x‖p

p

(
see (4.25)

)
� 0

(
see (4.24) and recall that ‖x‖p = 1

)
. (4.26)

So, if we consider the continuous path γ0 = εγ̂0 which joins −εu1 and εu1, then

ϕ̂|γ < 0. (4.27)
0
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Next, with the help of Theorem 2.3 (the second deformation theorem), we will produce a con-
tinuous path joining εu1 and y+, along which the functional ϕ̂ is strictly negative. Recall that
{0, y+} are the only critical points of the functional ϕ̂+. Let a+ = ϕ̂+(y+) = inf ϕ̂+ < 0 = b+.
The functional ϕ̂+ is coercive and so it satisfies the PS-condition. Therefore according to Theo-
rem 2.3, we can find a deformation h : [0,1] × (ϕ̂b+ \ Kb+) → ϕ̂b+ such that

h(t, ·)|Ka+ = id|Ka+ for all t ∈ [0,1],
h
(
1, ϕ̂b+ \ Kb+

) ⊆ ϕ̂a+ ,

ϕ
(
h(t, x)

)
� ϕ

(
h(s, x)

)
for all t, s ∈ [0,1], s � t and all x ∈ ϕ̂b+ \ Kb+ .

We consider the path γ+ : [0,1] → ϕ̂b+ defined by

γ+(t) = h(t, εu1) for all t ∈ [0,1].

Clearly γ+ is a continuous path and

γ+(0) = h(0, εu1) = u1 (since h is a deformation, see Definition 2.1),

γ+(1) = h(1, εu1) = y+
(
since ϕ̂a+ = {y+}) and

ϕ̂+
(
γ+(t)

) = ϕ̂+
(
h(t, εu1)

)
� ϕ̂+(εu1) < 0 for all t ∈ [0,1] (

see (4.27)
)
.

Therefore the continuous path γ+ joins εu1 and γ+ and

ϕ̂+|γ+ < 0.

But note that ϕ̂+ � ϕ̂ on γ+ due to hypothesis H(f )5(iv). Therefore

ϕ̂|γ+ < 0. (4.28)

Similarly we construct a continuous path γ− which joins −εu1 and y−, such that

ϕ̂|γ− < 0. (4.29)

If we concatenate paths γ−, γ0, γ+, we produce a path γ 0 ∈ Γ such that

ϕ̂|γ < 0
(
see (4.27)–(4.29)

)
.

Therefore y0 is a nontrivial critical point of ϕ in T = [y−, y+], y0 �= y+, y0 �= y−. Hence y0
is a nodal solution of (1.1). Nonlinear regularity theory guarantees that y0 ∈ C1

0(Z). �
Now we can have the final multiplicity result for coercive problems (see Proposition 3.12). So

we introduce the following hypotheses on the nonlinearity f (z, x):

H(f )6 f :Z × R → R is a function such that f (z,0) = 0 a.e. on Z and
(i) for all x ∈ R, z → f (z, x) is measurable;

(ii) for a.a. z ∈ Z, x → f (z, x) is continuous;
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(iii) for a.a. z ∈ Z and all x ∈ R, we have∣∣f (z, x)
∣∣ � a(z) + c|x|r−1

with a ∈ L∞(Z)+, c > 0, 1 < r < p∗;
(iv) there exists η̂ ∈ L∞(Z)+ such that

λ2 < lim inf
x→0

f (z, x)

|x|p−2x
� lim sup

x→0

f (z, x)

|x|p−2x
� η̂(z)

uniformly for a.a. z ∈ Z;
(v) there exists θ ∈ L∞(Z)+ such that θ(z) � λ1 a.e. on Z, λ1 �= θ and

lim sup
x→±∞

f (z, x)

|x|p−2x
� θ(z) uniformly for a.a. z ∈ Z;

(vi) f (z, x)x � 0 for a.a. z ∈ Z, all x ∈ R.

Combining Proposition 3.11 and Theorem 4.6, we have

Theorem 4.7. If hypotheses H(f )6 hold, then problem (1.1) has at least three nontrivial solu-
tions, x0 ∈ intC+, v0 ∈ − intC+ and a nodal solution y0 ∈ C1

0(Z), y0 �= 0.

Remark 4.8. Liu and Liu [17] and Liu [18] prove multiplicity results for coercive problems.
They obtain three nontrivial solutions, but they do not give any information about the sign of the
third solution. So Theorem 4.9 improves the multiplicity results of [17] and [18].

Next we state the complete multiplicity result for the p-superlinear problem (see Theo-
rem 3.14). For this purpose, we introduce the following hypotheses on the nonlinearity f (z, x,λ).

H(f )7 f :Z ×R× (0,+∞) → R is a function such that f (z,0, λ) = 0 a.e. on Z, for all λ > 0
and

(i) for all (x,λ) ∈ R × (0,+∞), z → f (z, x,λ) is measurable;
(ii) for a.a. z ∈ Z and all λ ∈ (0,+∞), x → f (z, x,λ) is continuous;

(iii) for a.a. z ∈ Z, all x ∈ R and all λ ∈ (0,+∞), we have∣∣f (z, x,λ)
∣∣ � a(z,λ) + c|x|r−1

with a(·, λ) ∈ L∞(Z)+, ‖a(·, λ)‖∞ → 0 as λ → 0+, c > 0, 1 < r < p∗;
(iv) for every λ ∈ (0,+∞), there exists a function η̂ = η̂(λ) ∈ L∞(Z)+ such that

λ2 < lim inf
x→0

f (z, x,λ)

|x|p−2x
� lim sup

x→0

f (z, x,λ)

|x|p−2x
� η̂(z)

uniformly for a.a. z ∈ Z;
(v) for every λ ∈ (0,+∞), there exist M = M(λ) > 0 and μ = μ(λ) > p such that

0 < μF(z, x,λ) � f (z, x,λ)x for a.a. z ∈ Z, all |x| � M;
(vi) f (z, x,λ)x � 0 for a.a. z ∈ Z, all x ∈ R and all λ ∈ (0,+∞).
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Combining Proposition 3.13 and Theorem 4.6, we have:

Theorem 4.9. If hypotheses H(f )7 hold, then there exists λ∗ ∈ (0,+∞) such that for all
λ ∈ (0, λ∗) problem (1.1) has at least five nontrivial solutions x0, x̂ ∈ intC+, x0 � x̂, x0 �= x̂,
v0, v̂ ∈ − intC+, v̂ � v0, v̂ �= v0 and a nodal solution y0 ∈ C1

0(Z), y0 �= 0.

Remark 4.10. In the works of Zhang and Li [25] and Zhang, Chen and Li [24], the quotients
f (x)

|x|p−2x
(f is independent of z ∈ Z in both works) have finite limits as x → 0± and as x → ±∞.

This is important in their analysis. Also f is locally Lipschitz and in Zhang and Li [25] N < p.
This low dimensionality of the problems permits the authors to exploit the compact embedding
of the Sobolev space W

1,p

0 into C(Z). In both papers, the authors prove the existence of at
least three nontrivial solutions, one positive, the second negative and the third nodal. As we
already mentioned in the introduction, their approach is completely different and it is based on the
invariance properties of the descent flow of a pseudogradient vector field. In Bartsch and Liu [4]
the nonlinearity f (z, x) is continuous, they employ the Ambrosetti–Rabinowitz growth condition
(so their problem is p-superlinear), they assume that for some m > 0, x → f (z, x)+m|x|p−2x is
increasing and when N � 6, they require a technical condition on the exponent p > 1. Again they
obtain three nontrivial solutions, one positive, one negative and the third nodal. Their approach
uses critical point theory for C1-functionals for ordered Banach spaces.
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