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We discuss cosmological inflation in the minimal Wess–Zumino model with a single massive chiral
supermultiplet. With suitable parameters and assuming a plausible initial condition at the start of the
inflationary epoch, the model can yield scalar perturbations in the Cosmic Microwave Background (CMB)
of the correct strength with a spectral index ns ∼ 0.96 and a tensor-to-scalar perturbation ratio r < 0.1,
consistent with the Planck CMB data. We also discuss the possibility of topological inflation within the
Wess–Zumino model, and the possibility of combining it with a seesaw model for neutrino masses. This
would violate R-parity, but at such a low rate that the lightest supersymmetric particle would have a
lifetime long enough to constitute the astrophysical cold dark matter.

© 2013 Elsevier B.V. Open access under CC BY license.
1. Introduction and summary

There have been many discussions of single-field models of
chaotic inflation based on naively renormalizable field theories
with polynomial potentials [1], i.e., combinations of φn: n � 4,
neglecting any Planck-suppressed interactions, which involves a
strong assumption on the nature of the ultraviolet completion.
Prior to the Planck data on the Cosmic Microwave Background
(CMB) [2], upper limits on the ratio r of tensor and scalar den-
sity perturbations and measurements of the scalar index ns from
WMAP [3] and other CMB experiments already disfavoured φ4

models quite strongly, and φ2 models were marginal. This dis-
favouring of φn models with n � 2 has been reinforced by the
Planck data, which provide the strengthened upper limit r < 0.11
and constrain ns = 0.9603 ± 0.0073 [2]. Models with potentials of
the form αφ2 + βφ4 with positive coefficients interpolate between
pure φ2 and φ4 models and are therefore also disfavoured.1 For
these and many other reasons, attention has generally diffused to
models with non-renormalizable potentials and/or multiple fields,
many of which are also excluded or disfavoured by the Planck CMB
data [2].

However, before abandoning renormalizable single-field models
entirely, we would like to advocate a particular example with at-
tractive properties, namely
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in models with a fractional power of φ [6], which may be considered as effective
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V = Aφ2(v − φ)2, (1)

which has several interesting aspects. For example, with reference
to the title of this Letter, it appears naturally as the restriction of
the minimal single-superfield Wess–Zumino model [7] character-
ized by the superpotential

W = μ

2
Φ2 − λ

3
Φ3 (2)

to the real scalar component φ of the superfield Φ .2 Another inter-
esting feature of the model (1) is that, thanks to the two minima
at φ = 0, v and the local maximum at φ = v/2, it leads to topolog-
ical domain-wall inflation if v � MPl , where MPl � 1.2 × 1019 GeV
is the Planck mass. The third interesting feature of the model (1)
is that might be a viable extension of the minimal supersymmet-
ric seesaw model of neutrino masses with μ �= 0 and λ = 0, if one
interprets Φ as a right-handed singlet neutrino superfield. In this
case one could envisage a scenario of chaotic sneutrino inflation
followed by leptogenesis during the subsequent reheating [8]. As
we show below, the simple model (1) and its Wess–Zumino ex-
tension (2) may overcome the disfavouring by the WMAP [3] and
Planck [2] CMB data of chaotic inflationary models with monomial
φn: n � 2 potentials.

In this Letter we first consider the minimal single-field model
(1) and discuss the conditions under which it can lead to accept-
able chaotic inflation in the slow-roll approximation. We show that
the model yields enough e-folds of inflation if the value of v is
large enough, typically � MPl , and that the tensor-to-scalar ratio
r can be arbitrarily small in the limit where the initial value of

2 Neither of the models (1), (2) seems to be considered in the recent review [1].
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the inflaton field φ0 → 1/2− . Thus this simple single-field model
is very consistent with the Planck CMB data [2]. We also note
that the large value of v lies well within the range � MPl where
domain-wall inflation is possible. In the case of the Wess–Zumino
extension (2) of the minimal model, one may parameterize the
complex scalar component of Φ as φeiθ and recover the simpli-
fied model (1) in the limit θ → 0, identifying A = λ2 and v = μ/λ.
In this case, a secondary minimum at φ �= 0 appears only for
cos θ >

√
8/9, and is energetically disfavoured for cos θ < 1. This

suggests that the region of the minimum with φ = v would gener-
ically be less populated than the region of the φ = 0 minimum,
though this depends on aspects of the pre-inflationary dynamics
that we do not consider here. We conclude with some remarks
about the possible compatibility of the Wess–Zumino model (2)
with a supersymmetric seesaw model of neutrino masses, pointing
out that this would violate R-parity, though not jeopardizing the
possibility that the lightest supersymmetric particle might provide
the astrophysical cold dark matter.

2. Basic formulae

For convenience in the following, we parameterize φ = xv , and
write the effective potential obtained from (2) in the form

V =
∣∣∣∣∂W

∂φ

∣∣∣∣
2

= Av4(x4 − 2 cos θx3 + x2), (3)

where, as already stated, we identify A = λ2 and v = μ/λ. We
recall that the measured magnitude of the primordial density per-
turbations requires in the slow-roll approximation [1]

(
V

ε

) 1
4

= 0.0275 × MPl, (4)

where the slow-roll parameter ε is given by [1]

ε = 1

2
M2

Pl

(
V ′

V

)2

= 2
M2

Pl

v2

1

x2

[
1 + x(x − cos θ)

x2 − 2 cos θx + 1

]2

(5)

which in the limit cos θ → 1, relevant for the single-field model
(1) becomes:

ε = 2
M2

Pl

v2

[
(1 − 2x)2

x2(1 − x)2

]
. (6)

The corresponding expressions for the other slow-roll parame-
ters are [1]

η = M2
Pl

(
V ′′

V

)
= 2

M2
Pl

v2

[
1 + x(5x − 4 cos θ)

x2 − 2 cos θx + 1

]
, (7)

and

ξ = M4
Pl

(
V ′V ′′′

V 2

)
= 24

M4
Pl

v4

(2x − cos θ)(2x2 − 3 cos θx + 1)

x3(x2 − 2 cos θx + 1)2
, (8)

which in the limit cos θ → 1 become:

η = 2
M2

Pl

v2

[
(1 − 6x + 6x2)

x2(1 − x)2

]
, (9)

and

ξ = 24
M4

Pl

v4

(2x − 1)(2x2 − 3x + 1)

x3(1 − x)2
. (10)

One can express the scalar spectral index in terms of the slow-roll
parameters as [1]
Fig. 1. The shape of the effective potential (1) of the minimal single-field model.

ns = 1 − 6ε + 2η, (11)

and the tensor-to-scalar ratio as

r = 16ε. (12)

Finally, the number of e-folds is given by [1]

N = v2

M2
Pl

xe∫
xi

(
V

V ′

)
dx, (13)

where xe,i are the values of x at the end and beginning of the
inflationary epoch. Assuming that xe � 1, we find that

N = v2

16M2
Pl

[− ln(1 − 2xi) − 2xi + 2x2
i

]
(14)

in the limit cos θ → 1, and we expect that 40 � N � 70.
For completeness, we also consider the running of the spectral

index, αs ≡ dns/d ln k, which affects the scalar power spectrum as
follows:

P (k) = A exp

[
(ns − 1) ln(k/k0) + 1

2
αs ln2(k/k0)

]
, (15)

where k0 is a pivot point, typically taken to have the value k0 =
0.002: see [2,3]. The parameter αs is given in terms of the effective
inflationary potential and the slow-roll parameters by [9]

αs = − 1

32π2

(
MPl

3 V ′′′

V

)(
MPl

V ′

V

)

+ 1

8π2

(
M2

Pl
V ′′

V

)(
MPl

V ′

V

)2

− 3

32π2

(
MPl

V ′

V

)4

= 1

8π2

[
−ξ

4
+ 2ηε − 3ε2

]
. (16)

This is in principle an important ambiguity in fits to the CMB data:
for example, the general inflationary fit to the Planck data yields
αs = −0.0134 ± 0.0090 [2], which is compatible with zero at the
1.5-σ level. However, αs is expected to be very small in generic
slow-roll models. Here we verify our models indeed predict that
αs is small, so that the predictions of (1), (2) can be confronted
with the data assuming that αs � 0.

3. Application to the single-field model

The potential of the minimal single-field model (1) is displayed
in Fig. 1. The only one of the equations in the previous section that
is inhomogeneous in A, or equivalently λ, is that for the overall
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Table 1
Numerical predictions in the simplified model (1) for representative values of xi and calculated for N = 50, showing that v � MPl , that ε,η, ξ � 1, that αs is negligible, and
that r and ns are both compatible with the WMAP data for 0.2 � xi � 0.3.

Value of xi 0.1 0.2 0.3 0.4
Derived quantity

v2

M2
Pl

18 000 4200 1600 710

ε 0.0085 0.0067 0.0045 0.0020
η 0.0062 0.00074 −0.0073 −0.022
ξ −0.000053 −0.000077 −0.000079 −0.000050

r 0.14 0.11 0.072 0.031
ns 0.961 0.961 0.958 0.945
αs −1.4 × 10−6 −1.3 × 10−6 −1.4 × 10−6 −1.1 × 10−6

λ 4.3 × 10−8 1.0 × 10−7 2.1 × 10−7 4.1 × 10−7
magnitude of the density perturbations (4), so this can be used to
fix the value of A (λ) following the rest of the analysis. The mag-
nitude of v is fixed as a function of xi by the number of e-folds
N (14), and is � MPl for any value of xi , as seen in Table 1 for
N = 50 and some representative values of xi . Hence the slow-roll
conditions ε,η, ξ � 1 are always satisfied and αs is always negli-
gible, as seen in the penultimate row of the table.

In the limit xi → 0± we recover the standard predictions of φ2

models, including a value for r ∼ 0.15 that was only marginally
compatible with the WMAP data [3] and is strongly disfavoured
by the Planck data [2]. As seen in Fig. 1, the potential rises more
rapidly than φ2 for x < 0, so negative values of xi would yield
larger values of r, increasing towards the standard predictions for
φ4 models for large negative xi , which are now very strongly ex-
cluded [2].

The situation is completely different for xi → 1/2− , as seen in
Fig. 1 and Table 1. Since the potential rises much less rapidly than
the φ2 case in this region, we find that ε decreases monotoni-
cally as xi → 1/2− , and consequently that r may be much smaller
than in the φ2 model, and a fortiori also the φ4 model. We also
see that η decreases as xi increases, passing through zero and
becoming negative for xi � 0.21. This reflects the fact that the cur-
vature of the potential ∝ V ′′ changes from being positive in the
neighbourhood of the minimum at x = 0 to being negative in the
neighbourhood of the local maximum at x = 0.5. As a consequence,
ns decreases as xi → 0.5− , becoming smaller than the preferred
experimental range when xi � 0.4, if N = 50. However, we em-
phasize that the value of ns is sensitive to the number of e-folds
assumed, that the numbers in the table are calculated for N = 50,
and that larger values of N would yield values of ns closer to unity.
Table 1 shows that the simplified model (1) gives acceptable infla-
tion for xi � 0.2.

The predictions of the single-field model (1), (3) are displayed
more completely in Fig. 2, where they are also compared with the
Planck constraints [2]. We see that the model predictions enter
well within the Planck 95% CL region in the (ns, r) plane for most
of the range 40 < N < 70 for xi � 0.2. In contrast, the predictions
of the φ2 model barely graze the 95% CL region for 60 � N � 70.
Even worse are other simple inflationary models with monomial
φn: n > 2 potentials: only the potentials ∝ φ [4,5] and φ2/3 [6]
enter within the Planck 95% CL range [2].

Before leaving the simple model (1), we comment on the possi-
bility of topological inflation in this scenario. Since this model has
two distinct vacua with φ = 0, v that have zero energy, one could
imagine that the pre-inflationary dynamics would populate the
Universe roughly equally with regions of these vacua, separated
by domain walls. As pointed out in [10,11], under certain condi-
tions the domain walls between these regions could inflate. The
numerical conditions for successful topological domain wall infla-
tion were explored in [12], with the conclusion that the constraint
Fig. 2. Predictions in the (ns, r) plane of our model for inflation, based on an in-
flation potential of the form (1), (3) for various values of xi : 0.2 (red), 0.3 (green)
and 0.4 (blue) in the range 40 < N < 70, compared with the Planck constraints [2].
Also shown are the predictions of various other models for inflation in the range
50 < N < 60, also taken from [2]. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this Letter.)

v � 0.16MPl would suffice, independent of λ.3 It is clear from the
estimates of v in the table that the condition found in [12] is com-
fortably satisfied in the model (1).

4. Extension to the Wess–Zumino model

We now proceed to the one-superfield Wess–Zumino model
characterized by the effective potential (2) in which the addi-
tional degree of freedom parameterized by θ appears as in (3). It
is clear that there is an equivalence between the configurations
(cos θ, x) ↔ −(cos θ, x), so we restrict our attention here to the
portion of parameter space with cos θ � 0. Fig. 3 displays the ef-
fective potential (3) in this region. When cos θ is small, the only
minimum of the potential (3) is that with x = 0. The second, lo-
cal minimum develops only for cos θ >

√
8/9, but this has positive

energy, falling to zero only when cos θ → 0.
Along the boundary where cos θ = 1, the form of the effec-

tive potential (3) is identical to that in the single-field model (1),
and the discussion of inflation given in the previous section goes
through unchanged. On the other hand, the potential (3) van-
ishes along the boundary x = 0. At any fixed positive value of
x �= 0, the potential increases monotonically as cos θ decreases
from 1 → 0+ . In particular, when cos θ = 0 (θ = π/2), the potential

3 The papers [10–12] considered models with V (ϕ) = λ(ϕ2 − v̂2)2, which are
seen to be equivalent to (1) when one identifies v̂ = v/2 and ϕ = φ − v/2.
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Fig. 3. The shape of the effective potential (3) of the single-superfield Wess–Zumino model (2) as a function of x and cos θ for 0 � x � 0.5 and cos θ � 0.
is a combination of quadratic and quartic terms with coefficients
of the same sign, a scenario that is excluded by the CMB data
[2,3]. A complete discussion of the inflationary possibilities for ini-
tial conditions at arbitrary points in the (x cos θ) plane lies beyond
the scope of this work, but it is clear that, although successful in-
flation cannot be obtained when cos θ = 0, it would be possible in
a neighbourhood of cos θ = 1.

5. Combination with the seesaw model of neutrino masses

We now discuss how such a Wess–Zumino inflationary model
could be combined with the minimal supersymmetric seesaw
model. In this case, one would identify the superfield Φ with
the singlet (right-handed) sneutrino superfield. In this case, the
quadratic term in (2) would generate �L = 2 processes (where L is
lepton number), corresponding to a Majorana neutrino mass. These
processes would conserve R parity. On the other hand, the trilinear
term in (2) would generate �L = 3 processes, which would violate
R parity and cause the lightest supersymmetric particle (LSP) to
be unstable, in general. However, the rate of R violation would be
very small, so the LSP could still provide the astrophysical cold
dark matter.

Consider, for example, the case in which the LSP is the
gravitino G̃ . This would have a tree-level coupling to a singlet
antisneutrino–neutrino pair. The singlet neutrino would mix with
the conventional left-handed neutrino via a Yukawa vertex with a
Standard Model Higgs scalar vacuum expectation value divided by
the large singlet neutrino mass. On the other hand, the singlet an-
tisneutrino would couple via the trilinear coupling in (2) to a pair
of singlet neutrinos, which would also mix with left-handed neu-
trinos. This and similar diagrams would give rise to G̃ → 3ν decay,
but at a very low rate, suppressed by several factors of the heavy
singlet-neutrino mass scale.

6. Conclusions

The very precise Planck data [2] are generally consistent with
the idea of cosmological inflation (modulo a few well-publicized
anomalies), but pose considerable challenges for simple inflation-
ary models. Indeed, no single-field model with a monomial poten-
tial ∝ φn: n � 2 is comfortably consistent with the data. However,
we have shown in this Letter that a simple single-field model of
the form (1) is highly consistent with the data. Moreover, we have
shown that this potential arises very naturally within the simplest
single-superfield Wess–Zumino model (2). Finally, we have also
shown that this model may be combined with a minimal super-
symmetric seesaw model of neutrino masses.

The most important pressure on this model comes from the
Planck upper limit on the tensor-to-scalar ratio r, and we look for-
ward to future improved constraints on this quantity from CMB
polarization data from Planck and other experiments. If the upper
limit on r were reduced significantly, this would favour variants
of the model with larger values of xi → 0.5− , in which case the
model might be consistent with the observational constraint on ns

for only a more restricted range of N .
In the mean time, it would be interesting to explore in more

detail the possible predictions of the Wess–Zumino model (2) for
cos θ > 0, the possibility of topological inflation, the possible ob-
servational signatures of the small violation of R parity that this
model would predict if combined with a supersymmetric seesaw
model of neutrino masses.

Note added

Higher-order interactions that are not naively renormalizable in field theory
were explicitly neglected in this Letter. For subsequent extensions to include such
corrections as can arise in specific effective supergravity frameworks, see [13].
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