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Abstract Network reconfiguration and capacitor placement are useful options applied to reduce

power losses and to keep voltage profiles within permissible limits in distribution systems. This

study presents an efficient algorithm for optimization of balanced and unbalanced radial distribu-

tion systems by a network reconfiguration and capacitor placement. An important property of the

proposed approach is solving the multi-objective reconfiguration and capacitor placement in fuzzy

framework and its high accuracy and fast convergence. The considered objectives are the minimiza-

tion of total network real power losses, the minimization of buses voltage violation, and load bal-

ancing in the feeders. The proposed algorithm has been implemented in three IEEE test systems

(two balanced and one unbalanced systems). Numerical results obtained by simulation show that

the performance of the Hybrid Big Bang Big Crunch (HBB–BC) algorithm is slightly higher than

or similar to other meta-heuristic algorithms.
� 2016 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Capacitors have been applied to compensate for network

reactive power losses, and are used to prevent the violation
of voltage profile from permissible limits as well. The advan-
tages of compensation depend on the location and size of
capacitors. Two types of switches are used in distribution sys-

tems that can change network topology. These switches are
normally closed switches (sectionalizing switches) and nor-
mally open switches (tie switches). Feeder reconfiguration is

the process of changing the topology and configuration of dis-
tribution systems by altering the open or closed status of
switches. Optimal network reconfiguration and capacitor

placement have been separately investigated in many papers,
and different approaches have been used to solve the problems
associated with feeder reconfiguration and capacitor
placement. These approaches which include different objective
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functions and optimizing methods for obtaining the optimal
solution are different from one another.

In recent years, many algorithms have been developed for

loss reduction and other utilization factors using network
reconfiguration of distribution systems. Most of these algo-
rithms are based on heuristic techniques and artificial intelli-

gence methods. Many studies have focused on network
reconfiguration. In [1], a new Meta-heuristics Fireworks Algo-
rithm is proposed to optimize the radial distribution network

while satisfying the operating constraints. Ref. [2] presents a
step-by-step heuristic algorithm for the reconfiguration of
radial electrical distribution systems, aiming at power loss min-
imization, based on a Dynamic Switches Set approach, which

is updated due to topological changes in the electrical network
and to avoid the premature convergence of the algorithm in
suboptimal solutions. A method to improve the power quality

and reliability of distribution systems by employing optimal
network reconfiguration is presented in [3], which is applied
independently to a system in a specified period to minimize

the number of propagated voltage sags and other reliability
indexes. The Quantum-Inspired Binary Firefly Algorithm is
used to find the optimal network reconfiguration. In [4] a

Modified Tabu Search (MTS) algorithm is used to reconfigure
distribution systems so that active power losses are globally
minimized with turning on/off sectionalizing switches. Tabu
Search algorithm is introduced with some modifications such

as using a Tabu list with variable size according to the system
size. A salient feature of the MTS method is that it can quickly
provide a global optimal or near-optimal solution to the net-

work reconfiguration problem. A methodology for the recon-
figuration of radial electrical distribution systems based on
the bio-inspired meta-heuristic Artificial Immune System

(AIS) to minimize energy losses is presented in [5], which radi-
ality and connectivity constraints are considered as well as dif-
ferent load levels for planning the system operation. In [6] an

efficient HBB–BC optimization algorithm to solve the multi-
objective reconfiguration of balanced and unbalanced distribu-
tion systems in a fuzzy framework was presented. The objec-
tives considered were the minimization of total real power

losses, the minimization of buses voltage deviation, and load
balancing in the feeders. In [7] allocation of power losses to
consumers connected to radial distribution networks before

and after network reconfiguration in a deregulated environ-
ment is presented. The network reconfiguration algorithm is
based on the fuzzy multi-objective approach and the max–

min principle is adopted for the multi-objective optimization
in a fuzzy framework. Multiple objectives are considered for
real-power loss reduction in which nodes voltage deviation is
kept within a range, and an absolute value of branch currents

is not allowed to exceed their rated capacities. An adapted Ant
Colony Optimization (ACO) for the reconfiguration of radial
distribution systems and minimization of real power loss was

used in [8] that conventional ant colony optimization is
adapted by the graph theory to always create feasible radial
topologies during the whole evolutionary process which avoids

tedious mesh check and hence reduces the computational
burden.

Ref. [9] introduces an optimal distribution network recon-

figuration based on a branch exchange strategy. The goals of
optimization are minimization of the cost of power losses
and the cost of damages due to power supply interruption.
In [10] a Binary Particle Swarm Optimization (BPSO) is used
for finding the optimal status of the switches for distribution

system reconfiguration. Maximizing the reliability indices
and minimizing the real power loss are the goals of optimiza-
tion. In [11] a Pareto based optimization technique called

Micro Genetic Algorithm is utilized for distribution system
reconfiguration. This algorithm finds the optimal status
switches for maximizing the reliability indices and minimizing

the real power loss. Ref. [12] uses an efficient fuzzy decision-
making based on Bellman–Zadeh method for optimal distribu-
tion network reconfiguration. The goal was to reduce power
losses, enhance the voltage profile for customers, and increase

the reliability levels. Zidan et al. [13] proposed an approach
based on a trial and error algorithm and evaluation of switch-
ing indices for optimal reconfiguration in distribution net-

works. Two objectives were minimized: power losses and
average system interruption frequency. Tomoiaga et al. [14]
propose a Pareto based optimal reconfiguration of power dis-

tribution systems by a Genetic Algorithm Based on NSGA-II.
The minimization of active power losses and system average
interruption frequency index are the goals of optimization.

Mazza et al. [15] introduce the optimal reconfiguration of dis-
tribution network using a Pareto based Genetic Algorithm.
The goals are minimizing the total energy losses: the total
Energy Not Supplied (ENS) and the Load Balancing Index

(LBI).
The problem of capacitor placement for loss reduction in

electric distribution systems has been extensively researched

in many articles. For example, a Fuzzy based approach is pro-
posed in [16]. In [17] a mixed integer Linear Programming (LP)
model is proposed to determine the size, location and number

of capacitor banks in distribution systems; in [18] a two stage
method for loss reduction is considered in the formulation, and
by using a genetic algorithm the optimal operation status of

the devices is determined, which in turn determines the loca-
tion and number of capacitors. In [19], to solve the capacitor
placement problem, a single objective probabilistic optimal
allocation is considered. In [20], the author uses a Honey

Bee Foraging Approach (HBFA) to optimal capacitor place-
ment for reduction of harmonic distortion. In [21] the optimal
allocation and sizing of capacitors are found using BB–BC

optimization algorithm.
There are many studies simultaneously dealing with both

network reconfiguration and capacitor placement [22–24].

For example, in [25], the Simulated Annealing (SA) algorithm
is employed for reconfiguration of the distribution network
and a discrete optimization algorithm is used to find the opti-
mal capacitor. In [26], three heuristic methods include Genetic,

Simulated Annealing and Tabu Search algorithms which are
used for optimal distribution network’s reconfiguration and
capacitor compensation. Ref. [27] deals with the problem of

optimal voltage regulation and power losses minimization in
distribution systems that are equipped with shunt capacitor
banks. In [27] with the optimal control of tie-switches and

capacitor banks on the feeders of a large radially operated
meshed distribution system, the power losses and voltage devi-
ations are minimized using adopted Evolutionary Algorithm

for optimization and fuzzy set theory for scaling of objectives.
The membership function for scaling is a bell-shaped normal
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distribution function and operator for combining the two
objectives values which are their minimum (intersection), and
their product [27]. In [28] Zhang et al. have used the Improved

Adaptive Genetic Algorithm (IAGA) and a simplified branch
exchange algorithm for capacitor placement and reconfigura-
tion problems respectively. In [29] Farahani et al. have used

the simple branch exchange method for the reconfiguration
problem and have shown that loops selection sequence affects
the optimal configuration and the network loss. They have also

proposed a joint optimization algorithm for combining this
improved method of reconfiguration and capacitor placement.
In [29], the discrete Genetic Algorithm (GA) is used to opti-
mize the location and size of capacitors and the sequence of

loops selection. In [30] Chung-Fu Chang has developed new
algorithms for solving the optimal feeder reconfiguration and
capacitor placement problems. There, he uses the Ant Colony

Search Algorithm (ACSA) for solving feeder reconfiguration
optimization and capacitor placement problems simultane-
ously. In [31] Montoya et al. utilize a Minimum Spanning Tree

(MST) algorithm to determine the configuration of minimum
losses in reconfiguration problem and use GA to achieve the
greatest savings through the optimal capacitor placement

problem. In [32] Guimara̧es et al. use a modified dedicated
Genetic Algorithm-based approach that has been successfully
developed and implemented. It presents low computational
effort and is able to find good quality configurations and

capacitor allocation. In [33] some planning issues for the prior-
ity of reconfiguration and capacitor placement problems in
power distribution networks are investigated based on a new

Improved Binary Particle Swarm Optimization (IBPSO) algo-
rithm. The proposed method employs a different structure for
the optimization problem.

Considering the above mentioned features, the contribution
of this paper is to present the simultaneous optimal reconfigu-
ration and capacitor placement problems in distribution sys-

tems using a fuzzy-based multi-objective programming
method. The objective functions include the minimization of
total real power losses and buses voltage violation and also
load balancing in the feeders. We here also considered unbal-

anced power systems in the reconfiguration and capacitor allo-
cation problem, a matter which has been rarely addressed in
the literature. A fuzzy-based framework is used to transform

objective functions into fuzzy memberships and then finally
to combine them into a single objective function, which is opti-
mized subject to a variety of power system operational con-

straints. The HBB–BC algorithm, as one of the latest
evolutionary optimization tools to solve multi-objective prob-
lems, is modified here by adding a mutation operator to
improve its exploration capability [34] and then it is used to

solve the proposed problem. The proposed method is tested
on balanced 33-bus and 94-bus distribution systems and a
25-bus unbalanced distribution system. Numerical results

show the efficiency of the HBB–BC algorithm compared to
the other algorithms.
2. Proposed method for reconfiguration and capacitor allocation

In this section, the proposed formulation for distribution sys-
tem reconfiguration in the presence of capacitors is elaborated

with its objective functions and constraints.
2.1. Objective functions

� Minimization of power losses

Minimizing active power losses has been one of decisive

issues in distribution systems. It is calculated as sum of power
loss of branches as

min f1 ¼ Ploss ¼
XNbr

k¼1

RkjIkj2 ð1Þ

where Rk and Ik represent the resistance and current of branch
k, respectively; Nbr is the total number of branches in the
system.
� Minimization of Bus Voltage Deviation Index (VDI)

For the purpose of minimizing the bus voltage violation,
the index of Voltage Deviation Index (VDI) is defined as
follows:

min f2 ¼ VDIi ¼ maxðj1� Vminij and j1� VmaxijÞ ð2Þ
where Vmini and Vmaxi are the minimum and maximum values
of bus voltage for each configuration respectively.
� Minimization of Load Balancing Index (LBI)

For the purpose of Load Balancing, first an appropriate
parameter is defined, indicating what portion of the branches
has been loaded. This portion is defined as the line usage index

for the ith branch, calculated as follows [35]:

Line Usage Index ¼ Ik
Imax
k

ð3Þ

where Ik represents the current of branch k; Imax
k is the permit-

ted rating of branch k.
LBI is calculated and parameter of Y is expressed as

follows:

Y ¼ I1
Imax
1

I2
Imax
2

I3
Imax
3

. . .
INbr

Imax
Nbr

" #
ð4Þ

So the LBI index is expressed as follows:

min f3 ¼ LBI ¼ VarðYÞ ð5Þ
where Var represents the variance operation. However, the
smaller value of the LBI index indicates that the load balanc-

ing has been conducted more efficiently.

2.2. Fuzzy-based combination of objective functions

In order to find a solution in which all objective functions are
optimized, we should use a multi-objective programming
method. In view of the fact that the three considered objective
functions have different scales, using the simple method of

combining them into one objective function results in scaling
problems. In order to transform objective functions into the
same range, we here use the fuzzification method [36]. Using

this method, all objective functions are fuzzified and trans-
formed into the same range of [0,1]. The fuzzy linear member-
ship for objective function i, which is for minimization, is

defined as follows:

qi ¼
1 fi 6 fmin

i

fmax
i �fi

fmax
i �fmin

i

fmin
i 6 fi 6 fmax

i

0 fi P fmax
i

8>><
>>: ð6Þ



Figure 1 Trapezoidal fuzzy membership function for objective

functions.
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where fmin
i and fmax

i represent the ideal and nadir values for

objective function i, respectively; fi is objective function value;

qi is its fuzzy membership value.
Ideal and nadir values represent the best and worst accessi-

ble value of each objective function, respectively, in the solution

space of the problem. The ideal value for each objective func-
tion is obtained by individually optimizing the objective func-
tion regardless of other objective functions. Then, we should
carry out three individual single objective optimization tasks

to get the ideal value of three objective functions described in
the previous subsection. By individually optimizing each objec-
tive function, the value of other objective functions is also

obtained and they may not be optimal if objective functions
are competing; that is, optimizing one objective function makes
others be deteriorated. Among the obtained values from indi-

vidual optimizations, the worst value of each objective function
gives its nadir value. More details can be found in [36].

The fuzzy membership as a function of objective function is
depicted in Fig. 1. In this figure, a smaller value of the objective

function leads to a larger membership function, which is more
preferred when the objective function is for minimization. In
the proposed method, three memberships of qLoss, qVDI and

qLBI are calculated for objective functions of loss, VDI and
LBI, respectively. There are several methods to combine these
memberships and constitute an overall fuzzy satisfaction func-

tion representing the fitness of the solution of the multi-
objective problem. If the combination of objective functions
is done carefully without scaling problems, the Pareto optimal-

ity of the solution can be guaranteed [37] and at the same time,
it has less computation burden than Pareto-based methods [37].
This type of combining objective functions has already been
used in some papers such as [36] using some operators. In

[38], Gupta et al. introduced a newer operator named ‘‘max
geometric mean” that gives better performance than other tech-
niques of combining objective functions. Using this technique,

the degree of overall fuzzy satisfaction is computed as follows:

lf ¼ ðqLoss � qVDI � qLBIÞ1=3 ð7Þ
where lf represents the overall fitness function of the solution.

This overall fitness function is the objective function that is
maximized in our multi-objective problem.

2.3. Constraints

The proposed multi-objective problem for simultaneous recon-
figuration and capacitor allocation is optimized subject to fol-
lowing constraints:

� Power flow equations

Active and reactive power balance at each node of the net-
work should be observed using following constraints:

PGi � PDi ¼
XNbus

j¼1

jVijjVjjjYijj cosðdi � dj � uijÞ i ¼ 1; . . . ;Nbus

ð8Þ

QGi �QDi ¼
XNbus

j¼1

jVijjVjjjYijj sinðdi � dj � uijÞ i ¼ 1; . . . ;Nbus

ð9Þ
where PGi and QGi are active and reactive generations at bus i;
PDi and QDi are active and reactive demands at bus i; Vi and di
represent the magnitude and angle of voltage phasor at bus i;
|Yij| and uij are the magnitude and angle of ij entry from the
bus admittance matrix; and Nbus is number of buses.
� Network radiality and connectivity

This can be achieved by using the Kirchhoff algebraic
method based on the bus incidence matrix that proposed in

[4,39]. This connection matrix obtained by graph theory has
one row for each branch and one column for each node. Each
member of this matrix is determined by the following rules:

� ai;j ¼ 0 if branch i is not connected to node j

� ai;j ¼ 1 if branch i is directed away from node j

� ai;j ¼ �1 if branch i is directed toward node j

The first column corresponding to the reference node is
removed, and the resultant square branch-to-node matrix is
denoted by A. The system radiality is specified by the value

of the determinant of A. If the determinant of A is equal to
1 or �1, then the system configuration is radial, but if the
determinant of A is equal to zero, the system configuration

is not radial or some loads are not energized.

� Branch current limits

In order to protect cables and feeders against excessive cur-
rents, their rating should be taken into account:

jIkj 6 Imax
k k ¼ 1; . . . ;Nbr ð10Þ

� Bus voltage permissible range

Bus voltages after reconfiguration and capacitor allocation
should remain in their permissible range specified by the sys-
tem operator:

Vmin 6 Vj 6 Vmax j ¼ 1; . . . ;Nbus ð11Þ
where Vmin and Vmax are minimum and maximum allowable
voltages, respectively, which are considered as Vmin¼0:95p:u:
and Vmax¼1:05p:u:

3. HBB–BC algorithm

In this section, after briefly reviewing the basic BB–BC
method, the modified version of HBB–BC which is used to
solve the proposed formulation, is introduced.
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3.1. Basic BB–BC

In this section, first we introduce the BB–BC algorithm, and
then will explain how this algorithm can be combined with
the capabilities of the PSO algorithm to create the HBB–BC

algorithm. The HBB–BC algorithm is a combination of the
BB–BC algorithm [40,41] and the PSO algorithm. In fact, this
algorithm utilizes the PSO’s abilities to improve the search
ability and also uses mutation operator to avoid trapping into

the local optimum. The BB–BC optimization algorithm is a
powerful method with several advantages. These include few
control parameters and optimization capabilities such as quick

convergence and easy implementation. This algorithm
comprises two basic sages:

Stage 1: the random distribution of the initial candidate in

the search space, called the Big Bang phase.
Stage 2: the continuation of the previous stage with Big

Crunch phase that is a convergence operator with some input

and only one output called center of mass. Each individual is
generated in initial population and is considered as candidate
solution. The center of mass is computed with respect to the
positions of each individual in the population as follows:

A
cðkÞ
i ¼

PN
j¼1

1
fj
A

cðk;jÞ
iPN

j¼1
1
fj

i ¼ 1; 2; . . . ;D ð12Þ

where A
cðkÞ
i is the ith component of the center of mass in the

kth iteration and A
cðk;jÞ
i represents the ith component of the

jth candidate generated in the kth iteration; D represents
the number of control variables; fj represents the fitness

function value of candidate j; N represents the population size

in the stage 1 of BB–BC algorithm or Big Bang phase
randomly generated within the search space.

After the Big Crunch phase, the algorithm generates new

candidate solution as the Big Bang phase to be used for the
next iteration using center of mass.

Using normal distribution function the new candidates for

the next iteration of the Big Bang are normally distributed
around the center of mass and the standard deviation of this
normal distribution function reduces by increasing the number
of iterations as follows:

A
ðkþ1;jÞ
i ¼ A

cðkÞ
i þ rja1ðAimax � AiminÞ

kþ 1
; i ¼ 1; 2; . . . ;D ð13Þ

where rj represents a random number obtained from the

standard normal distribution function and changes for each

candidate; a1 represents a parameter for limiting the size of
the search space; k is number of iterations; Aimax and Aimin

represent the upper and lower limits for the ith control variable

respectively.
All of the above steps will be repeated until a stopping

criterion has been satisfied.

3.2. Overview of PSO

PSO is a swarm intelligence class method which was invented

in the mid-1990s [42]. The PSO is a population-based stochas-
tic optimization algorithm and recently, it has acquired wide
applications in optimizing design problems because of its sim-
plicity and ability to optimize complex constrained objective

functions in multimodal search spaces [43]. In the PSO each
potential solution is referred as a particle and each set of par-
ticles composes a population. Each particle maintains the posi-
tion associated with the best fitness ever experienced by it in a

personal memory called pbest. Besides, the position associated
with the best value obtained so far by any particle is called
gbest. In any iteration, the pbest and gbest values are updated

and each particle modifies its velocity to move toward them
stochastically. This concept can be formulated as

V
ðkþ1Þ
j ¼ w� V

ðkÞ
j þ c1r1ðpbestðkÞj � x

ðkÞ
j Þ þ c2r2ðgbestðkÞ � x

ðkÞ
j Þ
ð14Þ

x
ðkþ1Þ
j ¼ x

ðkÞ
j þ V

ðkþ1Þ
j j ¼ 1; . . . ;N ð15Þ

where V is particle velocity; x is particle position; w is inertia
weight factor; c1, c2 are cognitive and social acceleration fac-

tors, respectively; r1, r2 are uniformly distributed random num-

bers in the range (0,1); pbest
ðkÞ
j and gbestðkÞ represents the best

position of the jth particle and the best global position up to
iteration k, respectively.

Appropriate selection of c1, c2 and w plays an important

role in effective performance of the PSO. In some cases the
convergence is premature, especially for small inertia weight
factor. As the early found global best in the searching proce-

dure may be a local minimum, an Improved PSO (IPSO) is
used to avoid such a case. This variant of PSO has been pro-
posed by [44] and called as IPSO. Initially, we define a growth
indicator b for each particle, which will be increased if the cur-

rent fitness value of particle is smaller than that of the previous
iteration. When the personal bests of all particles are updated
in each generation, we consider personal bests having smaller

fitness values than the global best as the candidate global best.
Finally, the global best will be replaced by the candidate per-
sonal best with the highest growth indicator b.

3.3. Hybrid BB–BC algorithm

As mentioned above, the HBB–BC algorithm uses the PSO

capacities and also mutation operator to have better efficiency.
This operator reduces the problem of trapping into the local
optimum. As we know the PSO algorithm uses a swarm of par-
ticles as candidate solutions for the optimization problem in

which each particle tunes its trajectory toward the best local
and global positions found. Eq. (13) for the HBB–BC algo-
rithm is expressed as follows, so that in addition to the center

of mass the best local and global positions are also used to gen-
erate the new candidates.

A
ðkþ1;jÞ
i ¼ a2A

cðkÞ
i þ ð1� a2Þða3AgbestðkÞ

i þ ð1� a3ÞAlbestðk;jÞ
i Þ

þ rja1ðAimax � AiminÞ
kþ 1

i ¼ 1; 2; . . . ;D

j ¼ 1; 2; . . . ;N

(

ð16Þ
In (16), parameters of a2 and a3 are used for controlling the

effect of the best global and local positions on the new position

of the candidates respectively, and A
lbestðk;jÞ
i and A

gbestðkÞ
i repre-

sent the best position of the jth particle and the best global
position for variable control ith up to iteration k, respectively.

To obtain the discrete solution, the function of round(X) is
used, which rounds the elements of X to the nearest integers.
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Define the network data and HBB-BC parameters

Generate the initial population randomly

Check the radiallity of the network and being all 
loads in service for each particle

Is radiallity constraint 
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Figure 2 Flowchart of proposed HBB–BC algorithm.
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A
ðkþ1;jÞ
i ¼ round a2A

cðkÞ
i þð1� a2Þ a3A

gbestðkÞ
i þð1� a3ÞAlbestðk;jÞ

i

� ��
þ rja1ðAimax �AiminÞ

kþ 1

�
ð17Þ

Furthermore, as mentioned before, the mutation operator
is used to avoid trapping into the local optimum. In (18)
rand() is a number generated between zero and 1, and if this

number is smaller than the mutation probability, the new can-

didate for the next iteration (A
ðkþ1;jÞ
i ) is expressed as follows:

A
ðkþ1;jÞ
i ¼ roundðAiminþ randðÞ�ðAimax�AiminÞÞ if randðÞ<Pm

ð18Þ
Note that Pm is a mutation probability.

4. Implementation of the HBB–BC Algorithm

In the proposed algorithm, the number of switchs to be opened

to maintain a feasible radial configuration and the capacitors

that should be placed in candidate buses are considered as con-
trol variables. So control variables are integer numbers, and
the number of those is the sum of the number of tie switches

and the number of buses that is candidate for capacitor place-
ment, which is expressed as follows:

Ncv ¼ NL þNbusc ð19Þ

where Ncv is the number of control variables, NL is the number
of tie switches and Nbusc is the number of network buses that
are candidates for capacitor placement. Due to practical and

economical considerations, some researchers of distribution
systems have not considered all of network buses as candidates
for capacitor installation [45]. However, in many research, all

network buses except the slack bus are candidate places for
capacitor installation [16,18–21,30,33,48]. The latter case is
considered in this paper. The number of tie switches is

obtained as follows [6]:

NL ¼ Nbr �Nbus þ 1 ð20Þ
where NL is the number of tie switches, Nbr is the total number
of network branches and Nbus is the number of network buses.

For example in 33-bus system shown in next section, the
number of tie switches is 5 and the number of buses for capac-
itor placement is 32 (the bus zero is slack bus and is ignored for
capacitor placement). So the total number of control variables

is 37. Each candidate solution or individual has 37 sections.
In the first step, loop and capacitor vectors should be

defined. In the proposed algorithm each loop vector consists

of switches that form a loop in network. In other words, the
number of loop vectors is equal to the number of fundamental
loops or tie switches. In 33-bus system the number of funda-

mental loop is five, and so the number of loop vectors is five
too.

loop vectors 1 ¼ ½s2; s3; s4; s5; s6; s7; s33; s20; s18; s19�
loop vectors 2 ¼ ½s8; s9; s10; s11; s35; s21; s33�
loop vectors 3 ¼ ½s9; s10; s11; s12; s13; s14; s34�
loop vectors 4 ¼ ½s22; s23;s24; s37; s28; s27; s26; s25; s5; s4; s3�
loop vectors 5

¼ ½s25; s26; s27; s28; s29; s30; s31; s32; s36; s17; s16; s15; s34; s8; s7; s6�
To define the capacitor vectors for one bus, six sizes of

capacitors 300, 600, 900, 1200, 1500 and 1800 kvar are used

[33]. In this paper it is assumed that for each bus of system a
capacitor is selected and placed from capacitor vectors as
follows:

capacitor vector ¼ ½0; 300; 600; 900; 1200; 1500; 1800�
This capacitor vector is repeated for all buses that should be

candidate for capacitor placement. For example in 33-bus sys-
tem the number of capacitor vectors is 32 because capacitor
vectors are not considered for slack bus. The main vector con-

sisting of loop and capacitor vectors is expressed as follows:

main vectors ¼

s2s3s4s5s6s7s33s20s18s19000000;

s8s9s10s11s35s21s33000000000;

s9s10s11s12s13s14s34000000000;

s22s23s24s37s28s27s26s25s5s4s300000;

s25s26s27s28s29s30s31s32s36s17s16s15s34s8s7s6;

0300600900120015001800000000000;

0300600900120015001800000000000;

0300600900120015001800000000000;

0300600900120015001800000000000;

�
�
�

2
666666666666666666666664

3
777777777777777777777775

For the initialization of each individual, one switch is ran-
domly chosen from each loop vector to be opened and one
capacitor is also chosen from each capacitor vector to be

allocated.
The HBB–BC algorithm is applied to the problem of the

multi-objective network reconfiguration and capacitor place-
ment as follows:



Table 1 Results obtained by optimizing the real power losses for case study 1.

Methods Power

losses (kW)

Loss

reduction (%)

Minimum

voltage (p.u.)

LBI Open switches Capacitor located at (buses) CPU time (sec)

Initial state 202.677 – 0.9130905 0.1575671 33-34-35-36-37 – –

HBB–BC 92.5757 54.32 0.95858745 0.0448190 7-11-14-37-32 300 (2-4-10-11-18-24-28-29-30) 7.125

PSO 95.38 52.93 0.9635100 0.046994 7-10-14-37-36 300 (9-10-31) 6.247

600 (6-29)

IPSO 98.834 51.23 0.965607 0.0400872 11-28-33-34-36 300 (5-13-32) 7.065

1200 (28)

IBPSO [33] 93.061 54.08 0.9585 0.0433806 7-9-14-32-37 300 (11-24-32) –

600 (6-29)

ACO [47] 95.79 52.73 0.9656 0.0469611 7-9-14-32-37 450 (28) –

600 (20-29)

Table 2 Results obtained by optimizing the voltage violation of the buses for case study 1.

Methods Power

losses (kW)

Loss

reduction (%)

Minimum

voltage (p.u.)

LBI Open switches Capacitor located at (buses) CPU time (sec)

Initial state 202.677 – 0.9130905 0.1575671 33-34-35-36-37 – –

HBB–BC 187.3618 7.55 0.98441113 0.0946266 6-35-13-37-17 300 (1-2-12-16-17-18-19) 7.267

600 (13-24)

900 (24)

1200 (30)

PSO 103.1509 49.105 0.96942101 0.0432883 7-11-34-28-36 300 (9-14-19-25) 6.984

600 (28)

900 (31)

IPSO 183.073 9.67 0.98617336 0.10167143 7-9-34-37-36 300 (1-9-14-15-20-22-32) 7.168

1200 (23)

1500 (28)

600 (29)

Table 3 Results obtained by optimizing the load balancing for case study 1.

Methods Power

losses (kW)

Loss

reduction (%)

Minimum

voltage (p.u.)

LBI Open switches Capacitor located at (buses) CPU time (sec)

Initial state 202.677 – 0.9130905 0.1575671 33-34-35-36-37 – –

HBB–BC 127.472 37.10 0.96323607 0.039968 7-35-34-37-32 300 (5-19-23) 7.254

600 (16-18)

1200 (31)

PSO 149.534 26.22 0.9703912 0.0282468 7-35-34-37-32 300 (7) 6.342

600 (29-31)

900 (32)

IPSO 135.541 33.12 0.9601967 0.030369 33-11-34-28-36 300 (25-26-27) 7.167

900 (16-32)
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1. Defining the input data. In this step, the input data are
defined including the initial network configuration, line
impedance, the total number of fundamental loops and
capacitor vectors for each bus, the number of switches in

each loop, the number of population, the limiting parameter
of the sizeof the search space (a1), adjustable parameters (a2,a3),
mutation probability (Pm), and the number of iterations.

2. Generating the initial population. For the initialization of
each individual, one switch from each fundamental loop
or loop vector to be opened and one capacitor from capac-

itor vector to be placed is randomly chosen.
3. Checking the radiality of the network and all loads
being in service for each individual. If the network is
not radial or that at least one load has been isolated.
In this state, the value of fitness function is considered

to be zero.
4. Performing the load flow. By allocating capacitors that are

determined by each individual in candidate buses a direct

approach proposed in [46] is used for load flow solution.
The value of the fitness function (lf ) is calculated using

the results of distribution load flow for each radial
structure.



Table 4 Results obtained by optimizing the multi-objective fitness function for case study 1.

Methods Power

losses (kW)

Loss

reduction (%)

Minimum

voltage (p.u.)

LBI Open switches Capacitor located at (buses) CPU time (sec)

Initial state 202.677 – 0.9130905 0.1575671 33-34-35-36-37 –

HBB–BC 98.4 51.45 0.95418166 0.0464988 7-10-14-37-32 300 (10-12-26) 7.354

600 (3)

900 (29)

PSO 100.05 50.63 0.9616666 0.046695 7-11-34-37-36 300 (16-25-30-32) 6.752

600 (1-5)

IPSO 101.11 50.11 0.9706953 0.04698 7-10-14-37-36 300 (11-17-25) 7.225

600 (28-32)

900 (2)

Figure 4 Voltage profiles before and after optimal reconfiguration and capacitor placement in 33-bus system.

Figure 5 Branches current profiles before and after optimal reconfiguration and capacitor placement in 33-bus system.
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5. Calculating the center of mass (AcðkÞ
i ) using Eq.(12) and

determining the best position of each particle (Albestðk;jÞ
i )

and the best global position (AgbestðkÞ
i ).

6. Calculating new candidates according to (17). Then, the

mutation operation is used to prevent the HBB–BC from
trapping into the local optimum according to (18).
7. Repeating Steps 3–6 until a termination criterion is satis-
fied. In this paper, the termination criterion is considered
to be the number of iterations. Furthermore, if the maximal

iteration number is satisfied, the algorithm is terminated.

Fig. 2 shows the flowchart of the proposed algorithm.



Figure 6 Convergence characteristic of the HBB–BC for the multi-objective function for case study 1.

Figure 7 94-bus distribution test system.

Table 5a Results obtained by the HBB–BC algorithm for case stud

Item Initial state Only optimizing real

power losses

Only

voltag

Power losses

(kW)

531.99 296.47 491.82

Loss reduction

(%)

– 43.6 7.55

Minimum

voltage (p.u.)

0.9285191 0.9850667 0.9929

LBI 0.0329944 0.0180701 0.0320

Open switches 84-85-86-87-88-89-90-

91-92-93-94-95-96

55-7-86-72-13-89-90-

83-92-39-34-95-63

55-4-8

91-28-
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5. Simulation results

To demonstrate the performance of the proposed algorithm,
three Case study systems consisting of two balanced distribu-
tion systems (33-bus system and 94-bus system) and one unbal-

anced distribution systems (25-bus system) are investigated
and numerical results are compared with another algorithm
such as the PSO and IPSO. These methods have been imple-
mented using MATLAB 7.10.0 (R2010a; The MathWorks,

Natick, Massachusetts, USA) on an Intel(R) Core(TM)2
2.67-GHz PC with 2-GB RAM.

Case study 1: The Baran and Wu [47] distribution test sys-

tem is used as first example with 3 feeders which is shown in
Fig. 3. The system consists 32 sectionalizing switches (normally
closed switches), and 5 tie switches (normally open switches)

and 37 branches. The total real and reactive power loads on
the system are 3715 kW and 2300 kvar, respectively. In this
network, different copper cables are used. These cables are

185 mm2, 120 mm2, 70 mm2 and 35 mm2 [6]. The initial power
loss is 202.677 kW and minimum bus voltage is 0.913 p.u. To
optimize the multi objective fitness function using HBB–BC
algorithm, parameters were selected as follows: the number

of population was set at 30 and a1, a2 and a3 were set at 1,
0.4 and 0.8 respectively, and mutation probability and maxi-
mum iterations were set at 0.2 and 50 respectively. The param-

eters for PSO and IPSO algorithms are as follows: the number
of population was set at 30 and c1, c2 and w were set at 0.6, 0.6
and 1 respectively. In the first step, the objective functions,
y 2.

optimizing

e violation

Only optimizing load

balancing

Optimizing the multi-

objective fitness function

474.06 317.836

10.89 40.25

76 0.9921594 0.9890495

2964 0.0101664 0.0141092

6-87-76-89-90-

39-94-40-64

54-7-86-72-13-89-90-

91-92-93-34-40-61

55-7-86-72-13-89-90-91-

92-39-34-42-64



Table 5b Results obtained by the HBB–BC algorithm for case study 2 (capacitor size).

Only optimizing real power

losses

Only optimizing voltage

violation

Only optimizing load

balancing

Optimizing the multi-objective fitness

function

Bus Capacitor (kvar) Capacitor (kvar) Capacitor (kvar) Capacitor (kvar)

Slack(0) 43 0 0 0 0 0 600 0 0

1 44 300 300 300 0 600 600 300 300

2 45 0 600 300 300 0 0 900 300

3 46 0 0 0 900 0 0 0 0

4 47 300 0 600 900 300 600 300 300

5 48 300 300 0 300 900 300 300 300

6 49 600 300 1200 300 300 0 300 300

7 50 0 0 600 300 300 300 0 0

8 51 300 300 300 300 900 300 600 0

9 52 300 600 300 0 600 0 300 300

10 53 300 300 300 0 900 300 0 600

11 54 0 300 1800 300 900 900 0 0

12 55 300 300 900 0 300 300 600 300

13 56 600 0 600 0 1500 900 900 0

14 57 900 0 300 600 1500 0 0 300

15 58 300 900 300 0 600 0 300 0

16 59 300 0 300 0 300 300 600 600

17 60 300 0 1500 300 0 0 300 0

18 61 600 0 300 0 0 600 0 300

19 62 300 0 0 0 0 600 300 300

20 63 900 0 600 600 600 600 300 0

21 64 600 300 300 1200 300 300 0 600

22 65 0 0 600 300 300 1500 900 1200

23 66 0 300 0 300 300 600 300 300

24 67 0 0 300 300 1500 300 0 600

25 68 0 0 300 900 300 300 0 300

26 69 300 600 600 300 300 1200 300 600

27 70 600 300 300 900 600 300 300 600

28 71 600 900 1800 300 900 300 0 300

29 72 300 300 600 600 1200 1200 300 900

30 73 600 0 600 900 1800 900 0 0

31 74 900 300 300 300 300 300 900 0

32 75 0 600 600 300 900 300 900 600

33 76 600 300 0 600 1500 600 300 300

34 77 600 0 600 300 300 600 600 300

35 78 0 1200 600 600 0 0 0 300

36 79 0 300 0 300 0 600 300 600

37 80 0 300 0 1200 300 600 0 300

38 81 300 300 0 900 300 0 300 900

39 82 0 300 300 300 300 300 0 600

40 83 0 0 300 0 1500 1200 300 0

41 300 0 0 300

42 0 300 300 600
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including loss reduction, minimization of voltage violation,
and load balancing, are separately optimized. The results for

these three objectives are respectively shown in Tables 1–3.
Results obtained by optimizing the multi-objective fitness
function for case study 1 are shown in Table 4. The results

indicated for all three objectives and also multi objectives are
the best results obtained after 50 times of running the proposed
method and other algorithms.

As demonstrated in Table 1, it is observed that the loss
reduction ratio obtained by the HBB–BC is more than the
PSO, IPSO, IBPSO and ACO algorithms. Thus, the proposed
method has a higher performance compared to the other meth-

ods. It can be seen from Table. 2, that when the only optimiza-
tion objective is improving the voltage profile, the proposed
algorithm by minimum voltage of 0.98441113 is not as
appropriate as IPSO algorithm but it has better performance
compared to the PSO algorithm. On the other hand the total

used capacitance is equal by the ones used in IPSO method
but their arrangement became more distributed. By consider-
ing Table. 3, which shows simulations for a load balancing

of a single objective case, it is shown that LBI index is
0.039968 for proposed algorithm and does not provide the best
result, but is close to PSO and IPSO results. But the weakness

of this method is its capacitance (3300 kvar) versus 2700 kvar
and 2400 kvar of IPSO and PSO algorithms, respectively.
Table 4 shows the results of multi-objective simulations. It
can be seen that for power losses and LBI objectives, the pro-

posed algorithm has better results than PSO and IPSO algo-
rithm results, and for the voltage deviation objective, the
HBB–BC algorithm gives worse results compared to PSO



Table 6 Results obtained by optimizing real power losses with HBB–BC algorithm along with a comparison with SA, GA and ACSA.

Item Power losses (kW) Minimum voltage (p.u) LBI

Original configuration 531.99 0.9285191 0.0329944

HBB–BC Best 296.47 0.9850667 0.0180701

Worst 303.7 0.98378407 0.01724226

Average 300.08 0.9844253 0.01765618

Average loss reduction 43.6 – –

SA [30] Best 309.12 – –

Worst 315.86 – –

Average 312.30 – –

Average loss reduction 41.3 – –

GA[30] Best 295.39 – –

Worst 299.13 – –

Average 297.75 – –

Average loss reduction 44.03 – –

ACSA [30] Best 295.12 – –

Worst 299.46 – –

Average 296.89 – –

Average loss reduction 44.19 – –

Figure 8 Voltage profiles before and after optimal reconfiguration and capacitor placement in 94-bus system.

Figure 9 Branches current profiles before and after optimal reconfiguration and capacitor placement in 94-bus system.
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Figure 10 25 bus unbalanced distribution system.

Table 7 Results obtained by the HBB–BC algorithm for case study 3.

Item Initial state Only optimizing

real power losses

Only optimizing

voltage violation

Only optimizing

load balancing

Optimizing the multi-objective

fitness function

Power losses (kW) 150.13 91.28 146.377 149.973 94.179

Loss reduction (%) – 39.2 2.5 0.104 37.29

Minimum voltage Phase a (p.u.) 0.9284107 0.9640415 0.9877222 0.9740478 0.964586

Minimum voltage Phase b (p.u.) 0.9283703 0.9626266 0.985857 0.9694966 0.963076

Minimum voltage Phase c (p.u.) 0.9365706 0.9695176 0.9932599 0.9804585 0.9725021

LBI 0.1009584 0.0454020 0.0735533 0.0328862 0.0455454

Open switches 25-26-27 22-17-15 20-17-15 5-11-13 25-17-15

Capacitor (kvar) (bus) – 300 (3-4-7) 300 (5-8-11-12-14) 300 (10-16-17-19) 300 (2-3-9)

Optimal multi-objective reconfiguration and capacitor placement of distribution systems 125
and IPSO algorithm. However, the results are close to those of
PSO and IPSO (the minimum voltages in HBB–BC algorithm

is within the allowed range). Yet, the proposed and the PSO
method use the same installed capacitors (2400 kvar), and they
use less capacitors than IPSO method (3000 kvar). Figs. 4 and

5 show the voltage and branches current profiles before and
after optimal reconfiguration and capacitor placement, respec-
tively. Fig. 5 shows line capacity for network branches. As

shown in these figures, the voltage and current branches profile
is obviously improved by using the HBB–BC algorithm. Fig. 6
indicates the convergence characteristic of the HBB–BC for the
multi-objective function for case study 1. It is shown that after

18 iterations HBB–BC algorithm reaches to full convergence
and fitness function value at approximately 0.83 remains
constant.

Case study 2: The second example is a practical distribution
network of the Taiwan Power Company [49]. It is a three-
phase, 11.4-kV system which consists of 94-bus, 96 branches,

11 feeders, 83 sectionalizing switches (normally close switches),
and 13 tie switches (normally open switches). Fig. 7 shows a
diagram of this system which has a total load of 28,350 kW

and 20,700 kvar. Details of the data of this example can be
found in [49]. In this network, an Aluminum Conductor Steel
Reinforced (ACSR) 477 kCmil has been employed for the

overhead lines and a copper conductor 500 kCmil for the
underground lines. The capacities of these conductors are
670 and 840 A, respectively [50].

The initial power loss is 531.99 kW and minimum bus volt-
age is 0.9285 p.u. To optimize the multi objective fitness func-
tion, parameters were selected as follows: the number of
population was set at 25, a1, a2 and a3 were set at 1, 0.4 and

0.8 respectively, and the mutation probability and maximum
iterations were set at 0.002 and 200 respectively. The results
indicated for all the three objectives and also the multi objec-

tive function are the best results obtained after 50 times run-
ning the proposed method.

The optimal solutions for minimization of total real power

losses, the minimization of buses voltage violation, and load



Figure 11 Voltage profiles before and after optimal reconfiguration and capacitor placement in 25-bus system.
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balancing and optimal solution for the multi-objective func-

tion are illustrated in Table 5. The optimal solution for the
minimization of total real power losses using the HBB–BC
and SA, GA and ACSA is shown in Table 6 along with a com-

parison with SA, GA and ACSA. As can be seen from Table 6,
the proposed method has better performance compared to the
SA algorithm, but GA and ACSA have better performance

compared to the HBB–BC algorithm. Figs. 8 and 9 show the
voltage and branches current profiles before and after optimal
reconfiguration and capacitor placement for Case study 2,
respectively. Fig. 9 shows line capacity for network branches.
As shown in these Figures, the voltage and current branches

profile is obviously improved by using the HBB–BC algorithm.
Case study 3: the third case study is a 25-bus Unbalanced

Distribution 4.16-kV System consisting of 24 sectionalizing

switches (normally close switches) and 3 tie switches (normally
open switches). Details for the line and load data of the system
can be found in [51]. This system is shown in Fig. 10. The ini-

tial power loss is 150.13 kW and minimum bus voltage in
phases a, b and c is 0.9284107, 0.9283703 and 0.9365706 p.u.
respectively. To optimize the multi objective fitness function,
the parameters were selected as follows: the number of



Figure 12 Convergence characteristic of HBB–BC for the multi-objective function for case study 3.
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population was set at 20, and a1, a2 and a3 were set at 1, 0.4
and 0.8 respectively, and the mutation probability and maxi-

mum iterations were set at 0.01 and 100 respectively. The opti-
mal solutions for only minimizing the total real power losses,
only minimizing the buses voltage violation, only load balanc-

ing and the optimal solution for the multi-objective function
are presented in Table 7. The results indicated for all the three
objectives and also the multi-objective function are the best

results obtained after 50 instances of running the proposed
method. Fig. 11 shows the voltage profiles in phase a, phase
b and phase c of case study 3 before and after optimal
reconfiguration and capacitor placement. Fig. 12 shows the

convergence characteristic of the HBB–BC for case study 3.
As shown in Fig. 12, fitness function after 35 iterations con-
verges to 0.79 and the voltages profile is obviously improved

using the HBB–BC algorithm in each phase.

6. Conclusions

An HBB–BC optimization algorithm as the combination of
the BB–BC algorithm and the capability of the PSO algorithm
for multi-objective reconfiguration and capacitor placement of

balanced and unbalanced distribution systems in a fuzzy
framework has been introduced in this paper. In fact, this algo-
rithm utilizes the PSO’s capabilities to improve the search abil-

ity and also uses a mutation operator to reduce the problem of
the algorithm being trapped into the local optimum problem.
An important property of the proposed approach is solving
the multi-objective reconfiguration and capacitor placement

problem in the fuzzy framework. The objectives considered
are the minimization of total network real power losses, the
minimization of buses voltage violation, and load balancing

in the feeders. To obtain the optimal solution for the multi-
objective fitness function, first each objective is transferred into
the fuzzy domain using the membership function and then the

resultant overall fuzzy satisfaction function is considered as a
fitness function, which is maximized during the optimization
process. The proposed method has been successfully tested in

three case studies (consisting of two balanced and one unbal-
anced system). In case study 1, the HBB–BC has shown better
performance compared to PSO and IPSO algorithms for
power losses and LBI objectives. However, it gives less mini-

mum voltage compared to PSO and IPSO algorithms. In case
study 2, the HBB–BC has shown a better performance com-
pared to the SA, and has shown a performance almost similar

to that of the GA and ACSA. As can be seen from simulation
results, the proposed algorithm is an effective method for find-
ing the optimal solution. It is also a powerful method for solv-

ing optimization problems in the fuzzy framework for
balanced and unbalanced distribution networks.
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