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Abstract - -Numerical  experiments of the model for image filtering proposed in [1] by Crandall, 
Lions and others show that, given the PDE, the differential problem which is correct to solve is the 
Dirichlet one, on a domain f~ convex with holes. The aim of this paper is to produce a result of 
existence and uniqueness of the viscosity solution for this problem. The result is stated for convex 
domains and for nonconvex ones, we propose an easy example in order to show that an existence 
theorem has not been expected. (~) 1999 Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

In the last few years, a big effort has been given to the mathematical modeling of image processing. 

The problem of obtaining an automatic recognition of objects in a picture is growing important 

in the latest technological developments. 

We study the model for image filtering proposed by Alvarez, Crandall, Lions and Morel in [ll. 
If we call u0 : R 2 ---* R the grey levels of the image extended to R 2 by reflection, they propose 

to solve the Cauchy problem 

O_.u_u = iDul(curv (U)) 1/3, U(X, O) = Uo(X), (1) 
& 

where curv (u) = div (Du/IDul) is the scalar mean curvature of the level sets of u and u is, at 

each time, a different filtered image. The parameter t plays the role of scale of microscopic details 

which are eliminated. 
Later numerical experiments have shown (see [2]) that,  on one hand, reflections cause false 

symmetries which damage the quality of the filtered image and, on the other hand, there are 

special points in a neighbourhood in which we do not want the filter to act. Such points are 

called X-junctions and T-junctions and take account of the superimposition of different objects. 

Mainly because of these results, we have studied the Dirichlet problem which reads 

Ou 
= IDu lG (cu rv  (u)), f l x  (0, T) = f l,, (2) 

u(x,t) = uo(x), { 0 ~  x [0,T)} U {~ x {0}} = Op f~t, 

where G : R ---* R is a nondecreasing continuous function with G(0) = 0. 
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Looking at the application, we would like to solve this problem on a Lipschitz convex (nonnec- 
essarily strictly) domain with holes. Holes eliminate the neighbourhood of singular points from 
the domain of the filter. 

From a mathematical  point of view, the equations we are dealing with are fully nonlinear 
degenerate parabolic PDEs whose weak solutions are well defined in the theory of viscosity 
solutions introduced by Crandall, Ishii and Lions in [3]. This means we ask the initial data to be 
continuous and we look for continuous solutions. We study the existence and uniqueness of the 
viscosity solution of problem (2) on a bounded domain fl under the following assumptions. 

We analyse four different cases: smooth strictly and nonstrictly convex domain, a nonsmooth 
convex one, and finally, a nonconvex one. Indeed, in this last case, we present a negative result, 
that  is, an existence theorem cannot be expected in the nonconvex case. 

2.  P R E L I M I N A R I E S  

From now on, the set ~ is supposed to be an open set in R 2 with C 2 boundary. 

Let a E R+;  we set 
Na = {z • ~ :  0 < dist (x, 0 f~) < a} (3) 

and we give some definitions. 

DEFINITION 2.1. Let  f~ C a 2 be as above and a • R +. A continuous function f : 1Va -* R is a 
static subbarrier for (2) i[ it is a viscosity subsolution of (2) in Na and ff 

V x e O ~ ,  f ( z ) = u o ( x ) A V x e Y a ,  f ( x ) < u o ( x ) .  

A static superbarrier is obviously defined in a similar way, and we call static barrier a couple of 
a static superbarrier and static subbarrier. 

DEFINITION 2.2. A continuous nontime-increasing function b- : f~ x [O,T] -* R is a local 
dynamic subbarrier for (2) i f  it is a viscosity subsolution of (2) and if  

3 ~ e f ~ : b - ( ~ , O ) = u o ( ~ ) A b - ( x , t ) < u o ( x ) ,  V x # ~ ,  V t e  [0, T]. 

A local dynamic superbarrier is obviously defined in a similar way, and we call local dynamic 
barrier a couple of a dynamic superbarrier and dynamic subbarrier which acts at the same point. 

The attention is focused on the construction of a subsolution f and a supersolution g in the 
hypotheses 

f(x,t)~_g(x,t), --c~<f.(x,t), g*(x,t)<+oo, 'v'(x,t) Ef'4, 
f . ( x , t )  = g*(x,t)i  V(x, t )  e 0p~t ,  (4) 

(where f .  and g* are the lower and upper semicontinuous relaxations of f and g, respectively) 
which allows us to use the Perron Method to obtain the existence result. 

Such subsolution (supersolution) will be obtained by taking the supremum (infimum) of a 
suitable family of subbarriers (superbarriers). We shall construct one static barrier which is 

supposed to keep the solution equal to the data  on the boundary 0 f~ for all t < T and a family 
of dynamic barriers which must keep the solution equal to the data  in f~ only for t = 0. 

3.  C O N S T R U C T I O N  O F  S U B S O L U T I O N S  

A N D  S U P E R S O L U T I O N S  

3.1. T h e  Case  o f  S t r i c t l y  C o n v e x  D o m a i n  

Let f~ be a strictly convex, C 2 open set in R 2. We set 1C : a ~ --* R + the function which gives the 
curvature of the manifold 0 f/. We choose a positive real number ~ such that  (~ m a x ~ o n / C ( y ) )  < 
1/2 and this condition ensures that  dist(., 0f~) e C2(~ra). 

We construct a subsolution under hypothesis (4) being the supersolution exactly symmetric. 
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Stat ic  b a r r i e r  

The static subbarrier must be a subsolution for the associated elliptic problem 

-a(cu  (u)) = 0. (5) 

As in [4], we define the static barrier b in a set of the form (3) with a < a of the type 

b(x) = Uo(X) - f (d(x)) ,  x • N  a, (6) 

for d(x) =dist  ( x , 0 ~ )  and f : [0,a) --* R defined as 

f(~) = l ( l n (1  + k~)), • [0, a), (7) 

where # > 0, k > 0, and a < ~ are parameters to be fixed suitably. 
We ask b to be a subsolution for (5) in Na and, thanks to the monotonicity of G, it means 

we ask curv (b(x)) > O, Vx  • Na. After some algebraic computations, we obtain that  for every 
fixed/~, we can choose a value kl = kl(#) such that ,  for every k > kl, b is a subsolution in N~ 
with a < min{a, 1/kl} .  For every #, let a = min{a, 1/k l }  and k = 1/a be the values which 
define b (see [5] for details). We have, in this way, a family b~ of static subbarriers. 

Note that  the symmetric family of static superbarriers is 

b+(x, t) = Uo(X) -4- f (d(x)) ,  x • Na. 

D y n a m i c  b a r r i e r  

Lemma 6.1 in [6] provides the existence of radial subsolutions (supersolutions) for the PDE 

in (2) which are decreasing (increasing, respectively) in time and space and verify Ou~: = ±1  
and u + (0, 0) = 0. We call u - ( x ,  t) the subsolution and u+(x, t) = - u - i x ,  t) the supersolution, 
respectively. If h : R --* R is a nondecreasing function, then h(u-)(h(u+))  is a subsolution 
(super) provided that  the differential operator is geometric (see [6]). 

For every ~ • ~2, we consider the function h¢(u- (x  - ~, t)), where h~ is chosen so that  

hd0)  = 

h ~ ( u - ( x - ~ , t ) ) < u o ( x ) ,  V x E ~ ,  V t e  [0, T]. 

3 m U  > 0 : 0  < h'~(l) < U, V l e  It. 

The existence of these h~ is proved in [6] and now we have a family of local dynamic subbarriers 
for the PDE in (2). 

As a compatibility condition with the static barrier, we ask 

Vxe nONa, Vt e (0,T),  3~e~:h~(u-(x-~,t))>_b~(x); (8) 

note that  what we want is ' to hide' (when taking the supremum) the internal boundary of the 
set Na. 

Condition (8) is verified with the choice # = In 2/2UT.  
The symmetric local dynamic superbarriers are obviously defined for each point ~ E 12 as 

h d u + ( z  - t)). 
Finally, we consider the subsolution f -  defined as 

{ s u p { b ; ( x ) , h i ( u - ( x - ~ , t ) ) , V ~ 6 ~ } ,  (x,t)  6 N~xlO, T], 

f - ( z , t )  = sup{h~(u- (x  - ~ , t ) ) ,  V~ 6 ft}, (x, t)  6 {12 \ Na}x]0,  T], 
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and its symmetric supersolution f + ( x ,  t); thanks to (8), the functions f -  and f +  are continuous 
both in time and space. 

By using (8), for every x there exists a ball Bp(x)  (p > 0) such that ,  for every time t, the 
function f -  can be presented as the supremum, in Bp, of functions which are subsolutions of (2) 
in Bp. The same is valid for f +  and this means they are a couple of sub and supersolutions which 
verifies conditions (4). 

We can then conclude that  the viscosity solution of (2) exists and it is unique for an initial 
data  u0 • C2'1(~). Stability results under uniform convergence together with the uniqueness 
theorem for viscosity solution of (2) (see [6,7]) ensure the solvability of problem (2) for every 

data  Uo • C°'1(~). 

3.2. T h e  C a se  o f  Nonstrictly Convex Domain 

All results concerning dynamic barriers can be applied to the case of nonstrictly convex domain 
because only the construction of the static barrier deals with the shape of the domain. 

S t a t i c  b a r r i e r  

In the proof of the previous result, the hypothesis/C(y) > 0, Vy • 0 n  is a key argument. In [5], 
we are able to construct a uniform approximation of u0, tha t  we call w0, which allows us to apply 
the same reasoning as before. We first approximate uolon with a function, say u0[on, whose 
first derivative has only isolated zeros with the following properties. They are only maximum 
or minimum points (we eliminate flexes) and the second derivative calculated at these points is 
always nonzero. We extend u01oa in ~ as fi0 and we construct the following barrier: 

b(x) = ~o(x) - f ( d ( x ) ) ,  x • Na, 

where f is now f(~) = M k ~  1/k, ~ E [0, a) and the parameters M > 0, k > 0, 0 < a < ~ are to be 
fixed. However, b will not, in general, be a subsolution in neighbourhoods of maximum points of 
u0 Io a- We have then to construct suitable cut-offs of b near those points. The t runcated barrier b, 
obtained in tha t  way, can be viewed as static barrier for a further approximation, say w0, of u0. 
The barrier b reads b(x) = wo(x) - f ( d ( x ) ) ,  x • Na. 

Condition (8) now reads 

v z e O Y a \ O a ,  Wo(Z) - U T  > b(z), (9) 

and there exists a choice of M, k, and a which let b be a subsolution in N~ (see [5] for details). 

3.3. T h e  C a se  o f  Nonsmoothness 

We assume now that  f~ is a convex domain whose boundary 0 f~ is piecewise C 2 and that  the 
number of corners is finite. As in the previous case, we have to construct only a suitable static 
barrier. 

Let Fi for i = 1 . . .  nn be the nn smooth open manifolds which are subsets of the boundary 0f~ 
and we define a new distance function from Fi as 

dist0(x, Fi) = min Ix - Yl, x E ~. 
yEF~ 

When the minimum does not exist, our distance function is not defined. 
Let us rename d~(x) = dist0(x, Fi), Vx E f~. 
We set 

]Via = {x  E f~ : di(x)  exists and 0 < di(x)  < a} 

roughly speaking, these sets are like rectangles inside f~ in front of F~. 
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On each of these sets, we define a function bi as 

bi(x) = wo(x) - f (di(x)) ,  Vx  E N~a, 

where w0 is a suitable approximation of the initial data  u0 (as we did in the previous case), f ,  
as before, is given by f(~) = Mk~ 1/k, ~ E [0, a) and the parameters are chosen to make each b~ 
a static barrier in N~. 

We define b(x) = sup{b~(x); i such that  x E N~ } ,x  E Na and in [5], we prove that  b is a static 
barrier with a suitable choice of parameters. 

This means we obtain existence and uniqueness in this case as well. 

3.4. T h e  C a se  o f  N o n c o n v e x  D o m a i n  

This is a negative result and with an easy example, we show that ,  in general, the existence of 
the viscosity solution was not to be expected. 

We consider the equation given in [1] and we t ry  to solve the Dirichlet problem (2) in a domain 
~) = B2(0)  \ BI(0) and with uo(p) = max{0, - 2 p  + 3} 1 < p < 2 (in polar coordinate) as initial 
data. The solution of this problem does not exist. Actually, one can verify that  there exists a 
unique solution of the evolution equation in ~t  that  satisfies the initial condition and the Dirichlet 
condition on OB2 × [0, T),  but  this solution fails to match the Dirichlet datum on OB1 x (0, T). 
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