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Abstract

A differential equation model of HIV infection of CD4+ T -cells with cure rate is studied. We prove that if the basic reproduction
number R0 < 1, the HIV infection is cleared from the T -cell population and the disease dies out; if R0 > 1, the HIV infection
persists in the host. We find that the chronic disease steady state is globally asymptotically stable if R0 > 1. Furthermore, we also
obtain the conditions for which the system exists an orbitally asymptotically stable periodic solution. Numerical simulations are
presented to illustrate the results.
© 2008 Elsevier Inc. All rights reserved.

Keywords: HIV; Globally asymptotical stability; Periodic solution

1. Introduction

Although the correlates of immune protection in HIV infection remain largely unknown, our knowledge of viral
replication dynamics and virus-specific immune responses has grown. Concurrent with these advances, there has been
an abundance of mathematical models that attempt to describe these phenomena [1–11]. The models proposed have
principally been linear and nonlinear ordinary differential equation models, both with and without delay terms. These
models focus on the interactions of susceptible cells, infected cells, viruses, and immune cells. Simple HIV models
have played a significant role in the development of a better understanding of the disease and the various drug therapy
strategies used against it.

The simplest HIV dynamic model is

dV

dt
= P − cV,
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where P is an unknown function representing the rate of virus production, c is a constant called the clearance rate
constant, and V is the virus concentration.

The population dynamics of CD4+ T cells in humans is not well understood. Nevertheless, a reasonable model for
this population of cells is

Ṫ = s − dT + aT

(
1 − T

Tmax

)
,

where s represents the rate at which new T cells are created from sources within the body, such as the thymus,
d is the death rate per T cell. T cells can also be created by proliferation of existing T cells. Here we represent the
proliferation by a logistic function in which a is the maximum proliferation rate and Tmax is the T cell population
density at which proliferation shuts off. The human immune system can mount a highly specific response against
virtually any foreign substance, even those never seen before in the course of evolution.

Like most viruses, HIV is a very simple creature. Viruses do not have the ability to reproduce independently.
Therefore, they must rely on a host to aid reproduction. Most viruses carry copies of their DNA and insert this into
the host cell’s DNA. Then, when the host cell is stimulated to reproduce, it reproduces copies of the virus. When HIV
infects the body, its target is CD4+ T cells. Since CD4+ T cells play the key role in the immune response, this is
cause for alarm and a key reason for HIV’s devastating impact. A protein on the surface of the virus has a high affinity
for the CD4+ protein on the surface of the T cell. Binding takes place, and the contents of the HIV is injected into
the host T cell. HIV differs from most viruses in that it is a retrovirus: it carries a copy of its RNA which must first be
transcribed into DNA. One of the mysteries to the medical community is why this class of virus has evolved to include
this extra step. After the DNA of the virus has been duplicated by the host cell, it is reassembled and new virus particles
bud from the surface of the host cell. This budding can take place slowly, sparing the host cell; or rapidly, bursting and
killing the host cell. The course of infection with HIV is not clearcut. Clinicians are still arguing about what causes
the eventual collapse of the immune system, resulting in death. What is widely agreed upon, however, is that there are
four main stages of disease progression. First is the initial innoculum when virus is introduced into the body. Second
is the initial transient—a relatively short period of time when both the T cell population and virus population are
in great flux. This is followed by the third stage, clinical latency—a period of time when there are extremely large
numbers of virus and T cells undergoing incredible dynamics, the overall result of which is an appearance of latency
(disease steady state). Finally, there is AIDS—this is characterized by the T cells dropping to very low numbers (or
zero) and the virus growing without bound, resulting in death. The transitions between these four stages are not well
understood, and presently there is controversy concerning whether the virus directly kills all of the T cells in this final
stage or if there is some other mechanism(s) at work.

Current combination antiretroviral therapies are widely used to treat HIV. The development of the drugs that are
effective against HIV is a shining example of how understanding the basics of the genesis of HIV infection has led
to the rapid development of drugs to combat the disease. And the principles for the treatment of HIV infection were
developed simultaneously as a result of large, randomized, clinically controlled trials and because of the increasing
understanding of the dynamics of HIV replication. Chemotherapy affects the virus once it enters the cell. Through
chemotherapy, a part of infected cells can transform to target cells.

As with a single drug, the virus concentration in plasma fell dramatically for one to two weeks. However, under
continued therapy, after this initial “first phase” of decline, the virus continued to fall but at a significantly slower
rate. This variation may have been present in previous studies. In the work of Alan S. Perelson et al. [12], the results
from Fig. 7.1 in [12] show a fast phase followed by what could be a flat second phase. The reason for this variation
among individuals may lie in the important immunologic component of HIV infection. HIV is thought to be primarily
a noncytopathic virus, and infected cells are lost either through death, mainly immune-mediated killing, or via “cure,”
i.e., loss of cccDNA. The second-phase decay has been associated with the rate of loss of productively infected cells.
Antiviral therapy partially blocks the production of new virions and there is a rapid decline of plasma HIV RNA,
but a vigorous immune response may be needed to drive second-phase decline, which involves the loss of cells still
producing virus. Thus, some process may be slowing HIV clearance. We show that the pattern of HIV RNA decay can
be more complex than the typical biphasic pattern, with some patients exhibiting additional phases, raising questions
about the need to improve the basic viral dynamic model. We suggest that including both cytolytic and noncytolytic
mechanisms of infected cell loss will make models more realistic as well as more accurate.
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Fig. 1. Diagrammatic representation of the mathematical model for HIV treatment, where S1 = s + aT (1 − T
Tmax

).

In this paper, we shall investigate a differential equation model of HIV infection of CD4+ T -cells with cure rate.
The transfer diagram is depicted in Fig. 1. The model considers a set of cells susceptible to infection, that is, target
cells, T , which, through interactions with virus, V , become infected. In addition, infected cells may also revert to the
uninfected state by loss of all cccDNA from their nucleus at a certain rate per infected cell, which is always omitted
in many virus models, such as Alan S. Perelson et al. [12].

From Fig. 1, we can get a differential equation model of HIV infection of CD4+ T -cells with cure rate:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ṫ = s − dT + aT

(
1 − T

Tmax

)
− βT V + ρI,

İ = βT V − δI − ρI,

V̇ = qI − cV,

(1.1)

where T is the number of target cells, I is the number of infected cells, V is the viral load of the virions. The simplest
and most common method of modeling infection is to augment (1.1) with a “mass-action” term in which the rate
of infection is given by βT V , with β being the infection rate constant. This type of term is sensible, since virus
must meet T cells in order to infect them and the probability of virus encountering a T cell at low concentrations
(when V and T motions can be regarded as independent) can be assumed to be proportional to the product of their
concentration, which is called linear infection rate. Thus, in what follows, the classical models assume that infected T

cells at rate −βT V and the generation of infected T cells at rate βT V . In model (1.1), s represents the rate at which
new T cells are created from sources, a is the maximum proliferation rate of target cells, Tmax is the T population
density at which proliferation shuts off, d is death rate of the T cells, β is the infection rate constant, δ is the death rate
of the infective cells, q is the reproductively rate of the infected cells, c is the clearance rate constant of virions, ρ is
the rate of “cure,” i.e. noncytolytic loss of infected cells. Thus the total rate of disappearance of infected cells is δ +ρ.
The average lifespan of a productively infected cell is 1

δ
, and so if an infected cell produces a total of q

δ
virions during

its lifetime, the average rate of virus production per cell, q . Standard and simple arguments show that the solutions of
system (1.1) exist and stay positive.

System (1.1) needs to be analyzed with the following initial conditions:

T (0) > 0, I (0) > 0, V (0) > 0. (1.2)

We denote

R3+ = {
(T , I,V ) ∈ R3, T � 0, I � 0, V � 0

}
.

2. Equilibria and their local stability

The nonnegative equilibria of system (1.1) are Ê = (T̂ ,0,0), Ē = (T̄ , Ī , V̄ ), where T̂ = Tmax
2a

(a − d +√
(a − d)2 + 4as

Tmax
), T̄ = c(δ+ρ)

βq
, Ī = 1

δ
[s − dT̄ + aT̄ (1 − T̄

Tmax
)], V̄ = q

c
Ī .

Let R0 = T̂

T̄
. It is well known the importance of the value, R0, which is called as the basic reproductive ratio

of system (1.1). It represents the average number of secondary infection caused by a single infected T cells in an
entirely susceptible T cells population throughout its infectious period. And it determines the dynamical properties of
system (1.1) over a long period of time.

Now, we will begin to analyze the geometric properties of the equilibria of system (1.1).
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Since T̂ and T̄ satisfy

s − dT̂ + aT̂

(
1 − T̂

Tmax

)
= 0,

s − dT̄ + aT̄

(
1 − T̄

Tmax

)
= 1

qα

[
qβT̄ − c(δ + ρ)

]
,

we can get

T̄ >
c(δ + ρ)

βq
⇒ s − dT̂ + aT̂

(
1 − T̂

Tmax

)
> 0 ⇒ T̂ > T̄

and

T̄ <
c(δ + ρ)

βq
⇒ s − dT̂ + aT̂

(
1 − T̂

Tmax

)
< 0 ⇒ T̂ < T̄ .

Thus, if R0 > 1, then the positive equilibrium Ē = (T̄ , Ī , V̄ ) exists.
The Jacobian matrix of system (1.1) is

J =
⎛
⎝

a − d − 2aT
Tmax

− βV ρ −βT

βV −(δ + ρ) βT

0 q −c

⎞
⎠ .

Let E∗(T ∗, I ∗,V ∗) be any arbitrary equilibrium. Then the characteristic equation about E∗ is given by∣∣∣∣∣∣
λ − (a − d − 2aT ∗

Tmax
− βV ∗) −ρ βT ∗

−βV ∗ λ + δ + ρ −βT ∗

0 −q λ + c

∣∣∣∣∣∣ = 0. (2.1)

For equilibrium Ê = (T̂ ,0,0), (2.1) reduces to(
λ − a + d + 2aT̂

Tmax

)[
λ2 + (c + δ + ρ)λ + c(δ + ρ) − qβT̂

] = 0. (2.2)

Hence, Ê = (T̂ ,0,0) is locally asymptotically stable for R0 < 1. And it is a saddle with dimWs(Ê) = 2,
dimWu(Ê) = 1 for R0 > 1. Then we have the following theorem.

Theorem 2.1. If R0 < 1, Ê = (T̂ ,0,0) is locally asymptotically stable; if R0 > 1, Ê = (T̂ ,0,0) is unstable.

Theorem 2.2. There is M > 0 such that, for any positive solution (T (t), I (t),V (t)) of system (1.1), T (t) � M ,
I (t) � M and V (t) � M , for all large t .

Proof. Let L1(t) = T (t) + I (t). Calculating the derivative of L1(t) along the solution of system (1.1), we find

L̇1(t)|(1.1) = Ṫ (t) + İ (t)

= s − dT + aT

(
1 − T

Tmax

)
− δI

= −dT − δI + aT − a

Tmax
T 2 + s

� −hL1(t) + M0,

where M0 = Tmaxa
2+4as

4a
, h = min(d, δ). Then there exists M1 > 0, depending only on the parameters of system (1.1),

such that L1(t) < M1, for all t large enough. Then T (t) and I (t) have ultimately above bound. It follows from
the third equation of system (1.1) that V (t) has an ultimately above bound, say, their maximum is M . The proof is
complete. �

Define D = {(T , I,V ) ∈ R3: 0 < T � M, 0 < I � M, 0 < V � M}. Obviously, D is convex.
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Theorem 2.3. Suppose that

(i) R0 > 1;
(ii) (c + δ + ρ + d − a + 2aT̄

Tmax
+ βV̄ )[(−d + a − 2aT̄

Tmax
)(c + δ + ρ) + βV̄ (c + δ)] > 0.

Then the positive equilibrium Ē(T̄ , Ī , V̄ ) is locally asymptotically stable.

Proof. For equilibrium Ē(T̄ , Ī , V̄ ), (2.1) reduces to

λ3 + a1λ
2 + a2λ + a3 = 0, (2.3)

where

a1 = c + δ + ρ + d − a + 2aT̄

Tmax
+ βV̄ > 0,

a2 =
(

d − a + 2aT̄

Tmax
+ βV̄

)
(c + δ + ρ) − ρβV̄ > 0,

a3 = cδβV̄ > 0.

We also have

a1a2 − a3 =
(

c + δ + ρ + d − a + 2aT̄

Tmax
+ βV̄

)[(
−d + a − 2aT̄

Tmax

)
(c + δ + ρ) + βV̄ (c + δ)

]
> 0.

By Routh–Hurwitz criterion [13], we have that Ē(T̄ , Ī , V̄ ) is locally asymptotically stable. �
3. The permanence of system (1.1)

In this section, we shall present the permanence of the system (1.1).

Definition 3.1. System (1.1) is said to be persistent if there are positive constants m, M such that each positive solution
(T (t), I (t),V (t)) of system (1.1) with initial conditions (1.2) satisfies

m � lim
t→+∞ infT (t) � lim

t→+∞ supT (t) � M,

m � lim
t→+∞ inf I (t) � lim

t→+∞ sup I (t) � M,

m � lim
t→+∞ infV (t) � lim

t→+∞ supV (t) � M.

Definition 3.2 (Metzler matrix). (See [14].) Matrix A is a Metzler matrix iff all its off-diagonal elements are nonneg-
ative.

Lemma 3.1 (Perron–Frobenius theorem). (See [14].) Let A be an irreducible Metzler matrix. Then, λM , the eigen-
value of A of largest real part is real, and the elements of its associated eigenvector vM are positive. Moreover, any
eigenvector of A with nonnegative elements belongs to span vM .

In order to prove permanence of system (1.1), we present the permanence theory for infinite dimensional system
from Theorem 4.1 in [14]. Let X be a complete metric space. Suppose that X0 ∈ X, X0 ∈ X, X0 ∩ X0 = ∅. Assume
that T (t) is a C0 semigroup on X satisfying

T (t) :X0 → X0,

T (t) :X0 → X0. (3.1)

Let Tb(t) = T (t)|X0 and let Ab be the global attractor for Tb(t).
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Lemma 3.2. (See [15].) Suppose that T (t) satisfies (3.1) and we have the following:

(i) there is t0 � 0 such that T (t) is compact for t > t0;
(ii) T (t) is point dissipative in X;

(iii) Āb = ⋃
x∈Ab

ω(x) is isolated and has an acyclic covering M , where

M̄ = {M1,M2, . . . ,Mn};
(iv) Ws(Mi) ∩ X0 = ∅, for i = 1,2, . . . , n.

Then X0 is a uniform repeller with respect to X0, i.e., there is ε > 0 such that, for any x ∈ X0,

lim
t→+∞ infd

(
T (t)x,X0

)
� ε,

where d is the distance of T (t)x from X0.

Theorem 3.1. If R0 > 1, then system (1.1) is permanent.

Proof. The result follows from an application of Lemma 3.2. Let us define X1 be the interior of R3+ and X2 be the
boundary of R3+, i.e., X1 = int(R3+) and X2 = bd(R3+). This choice is in accordance with the conditions stated in this
theorem. We begin by showing that sets X1 and X2 repel the positive solution of system (1.1) uniformly. Furthermore,
note that by virtue of Theorem 2.2, there exists a compact set B in which all solutions of system (1.1) initiated in R3+
ultimately enter and remain forever after. The compactness condition is easily verified for this set B . Denoting the ω-
limit set of the solution x(t, x0) of system (1.1) starting in x0 ∈ R3+ by ω(x0), we need to determine the following set:

Ω =
⋃
y∈Y2

ω(y), where Y2 = {
x0 ∈ X2

∣∣ x(t, x0) ∈ X2, ∀t > 0
}
.

From the system (1.1), it follows that all solutions starting in bd(R3+) but not on the T -axis leave bd(R3+) and that the
T -axis is an invariant set, implying that Y2 = {(T , I,V )T ∈ bd(R3+) | I = V = 0}. Furthermore, it is easy to see that
Ω = {Ê} as all solutions initiated on the T -axis converge to Ê. In fact, in the set Y2, system (1.1) becomes

Ṫ = s − dT + aT

(
1 − T

Tmax

)
.

It is easy to see that Ê is globally asymptotically stable. Hence, any solution (T (t), I (t),V (t)) of system (1.1) initi-
ating from Y2 is such that (T (t), I (t),V (t)) → Ê(T̂ ,0,0). Obviously, Ê are isolated invariant, {Ê} is isolated and is
an acyclic covering. Next, we show that Ws(Ê) ∩ X1 = ∅, i.e., Ê is a weak repeller for X1.

By definition, Ê is a weak repeller for X1 if for every solution starting in x0 ∈ X1,

lim
t→+∞d

(
x(t, x0), Ê

)
> 0. (3.2)

We claim that (3.2) is satisfied if the following holds:

Ws(Ê) ∩ int
(
R3+

) = ∅. (3.3)

To see this, suppose (3.2) does not hold for some solution x(t, x0) starting in x0 ∈ X1. In view of the fact that the
closed positive orthant is positively invariant for system (1.1), it follows that limt→+∞ d(x(t, x0), Ê) = 0 and thus
that limt→+∞ x(t, x0) = Ê, which is clearly impossible if (3.3) holds. What remains to be shown is that (3.3) holds.
The Jacobian matrix of system (1.1) at Ê is given in the following:

J0 =
⎛
⎜⎝

−d + a − 2aT̂
Tmax

ρ βT̂

0 −δ − ρ −βT̂

0 q −c

⎞
⎟⎠ .

It is easy to see that J0 is unstable if R0 > 1. In particular, J0 possesses one eigenvalue with positive real part, which

we denote as λ+, and two eigenvalues with negative real part, −
√

(a − d)2 + 4as , and an eigenvalue which we

Tmax
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denote as λ−. We proceed by determining the location of Es(Ê), the stable eigenspace of Ê. Clearly, (1,0,0)T is

an eigenvector of J0 associated to −
√

(a − d)2 + 4as
Tmax

. If λ− 
= −
√

(a − d)2 + 4as
Tmax

, then the eigenvector associated

to λ− has the following structure: (0,p2,p3)
T , where p2, p3 satisfy the eigenvector equitation(−(δ + ρ) βT̂

q −c

)(
p2

p3

)
= λ−

(
p2

p3

)
. (3.4)

If λ− = −
√

(a − d)2 + 4as
Tmax

, then λ− is a repeated eigenvalue, and associated generalized eigenvector will possess the

following structure: (∗,p2,p3)
T , where the value of ∗ is irrelevant for what follows and p2 and p3 also satisfy (3.4).

We claim that in both cases, the vector (p2,p3)
T /∈ R2+. Obviously, the matrix in (3.4) is an irreducible Metzler

matrix. From Definition 3.1, we know that it is a matrix with nonnegative off-diagonal entries. By using Lemma 3.1
(Perron–Frobenius theorem), we get that the matrix in (3.4) possesses a simple real eigenvalue which is larger then
the real part of any other eigenvalue, also called the dominant eigenvalue. Clearly, the dominant eigenvalue here is
λ+. But the Perron–Frobenius theorem also implies that every eigenvector that is not associated with the dominant
eigenvalue does not belong to the closed positive orthant. Applied here, this means that (p2,p3)

T /∈ R2+. Consequently,
Es(Ê) ∩ int(R3+) = ∅, and therefore also Ws(Ê) ∩ int(R3+) = ∅, which concludes the proof. �
4. Global asymptotic stability of the disease steady state

In this section we provide sufficient conditions leading to a globally asymptotically stable disease steady state.

Definition 4.1. System (1.1) is said to satisfy the Poincare–Bendixson property if any nonempty compact ω-limit set
of (1.1) that contains no equilibria is a closed orbit.

Definition 4.2. The autonomous system (1.1) is said to be competitive in D if, for some diagonal matrix H =
diag(ε1, ε2, . . . , εn) where each εi (i = 1,2, . . . , n) is either 1 or −1, H

∂f
∂x

H has nonpositive off diagonal elements
for all x ∈ D.

Theorem 4.1. System (1.1) is a competitive system.

Proof. By looking at the Jacobian matrix of system (1.1) and choosing the matrix H as

H =
⎛
⎝

1 0 0

0 −1 0

0 0 1

⎞
⎠ ,

we see that system (1.1) is competitive in D, with respect to the partial order defined by the orthant K =
{(T , I,V ) ∈ R3: T � 0, I � 0, V � 0}. In fact, by simple calculating, we obtain

H
∂f

∂x
H =

⎛
⎝

a − d − 2aT
Tmax

− βV −ρ −βT

−βV −δ − ρ −βT

0 −q −c

⎞
⎠ . �

Remark 4.1. Because D is convex and system (1.1) is competitive in D. Then system (1.1) satisfies the Poincare–
Bendixson property.

Lemma 4.1. (See [16].) Assume that n = 3 and D is convex. Suppose (1.1) is competitive in D and L is a nonempty
compact omega limit set of (1.1). If L contains no equilibria, then L is a closed orbit.

From Remark 4.1 and Lemma 4.1 we know that system (1.1) has nontrivial periodic orbits.
Let A be a linear operator on Rn and also denote its matrix representation with respect to the standard basis of Rn.

Let
∧2

Rn denote the exterior product of Rn. A induces canonically a linear operator A[2] on
∧2

Rn for u1, u2 ∈ Rn,
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define

A[2](u1 ∧ u2) := A(u1) ∧ u2 + A(u2) ∧ u1

and extend the definition over
∧2

Rn by linearity. The matrix representation of A[2] with respect to the canonical basis
in

∧2
Rn is called the second additive compound matrix of A. This is an

( n
2

)( n
2

)
matrix and satisfies the property

(A + B)[2] = A[2] + B[2]. In the special case when n = 2, we have A
[2]
2×2 = trA. In general, each entry of A[2] is a

linear expression of those of A. For instance, when n = 3, the second additive compound matrix of A = (aij ) is

A[2] =
⎛
⎝

a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33

⎞
⎠ .

Let σ(A) = {λ1, . . . , λn} be the spectrum of A. Then, σ(A[2]) = {λi + λj : 1 � i � j � n} is the spectrum of A[2].
Let x �→ f (x) ∈ R2 be a C1 function for x in an open set D ∈ Rn. Consider the differential equation

x′ = f (x).

Denote by x(t, x0) be the solution to system (1.1) such that x(0, x0) = x0. A set K is said to be absorbing in D for (1.1)
if x(t,K1) ⊂ K for each compact K1 ⊂ D and t sufficiently large. We make the following two basic assumptions:

(H1) There exists a compact absorbing set K ⊂ D.
(H2) Eq. (1.1) has a unique equilibrium x̄ in D.

The equilibrium x̄ is said to be globally stable in D if it is locally stable and all trajectories in D converge to x̄.
The assumptions (H1) and (H2) are satisfied if x̄ is globally stable in D. For virus models and many other biological
models where the feasible region is a bounded cone, (H1) is equivalent to the uniform persistence of (1.1).

Lemma 4.2. (See [17].) A periodic orbit Ω = {p(t): 0 < t < ω} of (1.1) is orbitally asymptotically stable with
asymptotic phase if the linear system

z′(t) = ∂f [2]

∂x

(
p(t)

)
z(t) (4.1)

is asymptotically stable, where ∂f [2]
∂x

is the second additive compound matrix of the Jacobian matrix ∂f
∂x

of f .

Lemma 4.3. (See [17].) Assume that

(1) assumptions (H1) and (H2) hold;
(2) system (1.1) satisfies the Poincare–Bendixson property;
(3) for each periodic solution x = p(t) to (1.1) with p(0) ∈ D, system (4.1) is asymptotically stable;
(4) (−1)n det( ∂f

∂x
(x̄)) > 0.

Then the unique equilibrium x̄ is globally asymptotically stable in D.

Theorem 4.2. Suppose that

(i) R0 > 1;
(ii) d − a + 2aT

Tmax
> 0 for arbitrary T � 0.

Then the positive equilibrium Ē of system (1.1) is globally asymptotically stable.

Proof. Let P(t) = (T (t), I (t),V (t)) be a periodic solution whose orbit Γ is contained in int(R3+). The second com-
pound equation is following periodic linear system:
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Z′(t) = ∂f [2]

∂x

(
P(t)

)
Z(t), (4.2)

where Z = (Z1,Z2,Z3)
T and ∂f

∂x
is derived from the Jacobian matrix of system (1.1) and defined as follows:

∂f [2]

∂x
=

⎛
⎜⎝

−d + a − 2aT
Tmax

− βV − δ − ρ βT βT

q −d + a − 2aT
Tmax

− βV − c ρ

0 βV −(δ + ρ + c)

⎞
⎟⎠ .

For the solution P(t), Eq. (4.2) becomes⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ż1(t) =
(

−d + a − 2aT

Tmax
− βV − δ − ρ

)
Z1 + βT Z2 + βT Z3,

Ż2(t) = qZ1 +
(

−d + a − 2aT

Tmax
− βV − c

)
Z2 + ρZ3,

Ż3(t) = βV Z2 − (δ + ρ + c)Z3.

(4.3)

To prove that (4.3) is globally asymptotically stable, we shall use following Lyapunov function:

L
(
Z1,Z2,Z3;T (t), I (t),V (t)

) = sup

{
|Z1|, I

V

(|Z2| + |Z3|
)}

. (4.4)

Function (4.4) is positive, but not differentiable everywhere. Fortunately, this lack of differentiability can be reme-
died by using the right derivative of L(t), denoted as D+L(t). Then we have the following equalities:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∣∣Ż1(t)
∣∣ �

(
−d + a − 2aT

Tmax
− βV − δ − ρ

)
|Z1| + βT |Z2| + βT |Z3|,

∣∣Ż2(t)
∣∣ � q|Z1| +

(
−d + a − 2aT

Tmax
− βV − c

)
|Z2| + ρ|Z3|,

∣∣Ż3(t)
∣∣ � βV |Z2| − (δ + ρ + c)|Z3|.

(4.5)

Therefore,

D+
(

I

V

(∣∣Z2(t)
∣∣ + ∣∣Z3(t)

∣∣)) =
(

İ

I
− V̇

V

)
I

V

(|Z2| + |Z3|
) + I

V
D+

(|Z2| + |Z3|
)

�
(

İ

I
− V̇

V

)
I

V

(|Ż2| + |Ż3|
) + qI

V
|Z1|

+
(

−d + a − 2aT

Tmax
− c

)
I

V
|Z2| − I

V
(c + δ)|Z3|.

Let α∗ = minT �0(d − a + 2aT
Tmax

). Define

g1(t) = −d + a − 2aT

Tmax
− βV + β

T V

I
− δ − ρ = İ

I
−

(
d + a + 2aT

Tmax
+ βV

)
, (4.6)

g2(t) = q
I

V
+

(
İ

I
− V̇

V
− c − min

(
δ,α∗)) = İ

I
− min

(
δ,α∗).

Thus, we obtain

D+L(t) � sup
{
g1(t), g2(t)

}
. (4.7)

Using the definition of α∗, it follows from (4.6) that g1(t) � İ
I

− α∗ and thus that g1(t) � g2(t). Then (4.7) can be
rewritten as

D+L(t) � g2(t)L(t). (4.8)
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Using the fact that Z(t) is a periodic solution of (1.1), we see that

ω∫
0

g2(t) dt �
ω∫

0

(
İ

I
− min

(
δ,α∗)) = ln I (ω) − ln I (0) − ω min

(
δ,α∗) = −ω min

(
δ,α∗). (4.9)

From (4.8) and (4.9), we have limt→∞ L(t) = 0.

Therefore, (Z1(t),Z2(t),Z3(t)) → (0,0,0) as t → ∞.
Let J (Ē) be the Jacobian matrix of (1.1) at Ē. Then

det
(
J (Ē)

) =

∣∣∣∣∣∣∣
−d + a − 2aT̄

Tmax
− βV̄ −ρ βT̄

−βV̄ λ + δ + ρ −βT̄

0 −q λ + c

∣∣∣∣∣∣∣
=

(
−d + a − 2aT̄

Tmax
− βV̄

)(
c(δ + ρ) − qβT̄

) − βV̄ (−ρc + qβT̄ )

=
(

−d + a − 2aT̄

Tmax

)(
c(δ + ρ) − qβT̄

) − cδβV̄

= −cδβV̄

< 0. (4.10)

This verifies the condition (4) of Lemma 4.3. Hence Ē is globally stable in D by Lemma 4.3. The proof of
Theorem 4.2 is completed. �

From the proof of Theorem 4.2 and [18, Theorem 1.2], we can obtain the following theorem.

Theorem 4.3. Suppose that

(i) R0 > 1;
(ii) (c + δ + ρ + d − a + 2aT̄

Tmax
+ βV̄ )[(−d + a − 2aT̄

Tmax
)(c + δ + ρ) + βV̄ (c + δ)] < 0.

Then system (1.1) exists an orbitally asymptotically stable periodic orbit.

5. Numerical simulations

In the previous sections, we introduced the analytical tools proposed and used them for a qualitative analysis of the
system obtaining some results about the dynamics of the system. In this section, we perform a numerical analysis of
the model based on the previous results.

Clinical data are becoming more available, making it possible to get actual values (or orders of values) directly for
the individual parameters in the model. By this I mean that it is possible to calculate the actual rates for the different
processes described above based on data collected from clinical experiments. For example, it has been shown that
infected CD4+ T cells live less than 1–2 days; therefore, we choose the rate of loss of infected T cells, δ, to be values
between 0.5 and 1.0. When this type of information is not available, estimation of the parameters can be determined
from simulations through behavior studies. Periodic solution and sensitivity analyzes can be carried out for each
parameter to get a good understanding of the different behaviors seen for variations of these values. For example,
the parameter a in the model (representing the maximum proliferation rate of target cells) is not verifiable clinically;
however, since it is a bifurcation parameter, we know that for small values the infection would die out and that for
large values the infection persists. This may be an indication to clinicians that finding a drug which lowers this viral
production may aid in suppressing the disease. In general, this process can be helpful to clinicians, as a range for
possible parameter values can be suggested. A complete list of parameters and their estimated values for this model is
given in Table 1.

First we observe that there exists a unique interior equilibrium point Ē (31.56250000,20.05054525,3208.087240)

with the set of parameter values from Table 1. Positive steady state is locally asymptotically stable, since the eigen-
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Table 1
Variables and parameters for viral spread

Parameters and variables Values

Dependent variables
T Uninfected CD4+ T -cell population size 1000 mm−3

I Infected CD4+ T -cell density 0
V Initial density of HIV RNA 10−3 mm−3

Parameters and constants
s Source term for uninfected CD4+ T -cells 5 day−1 mm−3

d Natural death rate of CD4+ T -cells 0.01 day−1

a Growth rate of CD4+ T -cell population 0.5 day−1

Tmax Maximal population level of CD4+ T -cells 1200 mm3 day−1

β Rate CD4+ T -cells become infected with virus 0.0002 mm−3

ρ Rate of cure 0.01 day−1

δ Blanket death rate of infected CD4+ T -cells 1 day−1

q Reproductively rate of the infected CD4+ T -cells 800 mm3 day−1

c Death rate of free virus 5 day−1

Fig. 2. (A)–(C) show that uninfected cells, infected cells and virus converge to their equilibrium with the parametric values as stated in the
text. (D) shows that the equilibrium Ē (31.56250000,20.05054525,3208.087240) is asymptotically stable. The initial conditions are T (0) = 30,
I (0) = 400, V (0) = 600.

values associated with the characteristic equation (2.3) at Ē, given by

λ3 + 6.187919531λ2 + 1.062880209λ + 3.208087240 = 0,

have negative real parts (λ1 = −6.099892570, λ2 = −0.04401348053 − 0.7238701657I , λ3 = −0.04401348053 +
0.7238701657I ). Simulation of the model in this situation, produce stable dynamics as presented in Fig. 2. Plots
(A)–(C) of Fig. 2 show that uninfected cells, infected cells and virus converge to their equilibrium with the parametric
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Fig. 3. (A)–(C) are the oscillations of uninfected cells, infected cells and virus. (D) shows that there is a periodic solution. The initial conditions are
T (0) = 30, I (0) = 400, V (0) = 600.

values as stated in Table 1. Plot (D) of Fig. 2 shows that the equilibrium Ē (31.56250000,20.05054525,3208.087240)

is asymptotically stable. The initial conditions are T (0) = 30, I (0) = 400, V (0) = 600.

Next, we use a same set of parameter values as those in Table 1, but we vary the value of a (a = 5). Thus the
conditions of Theorem 4.3 are satisfied. Then the system (1.1) exists an orbitally asymptotically stable periodic orbit
(see Fig. 3). Plots (A)–(C) of Fig. 3 are the oscillations of uninfected cells, infected cells and virus. Plot (D) of Fig. 3
shows that there is a periodic solution. The initial conditions are T (0) = 30, I (0) = 400, V (0) = 600.

We also find that the infection would always keep stability when the cure rate ρ is larger. This can be analyzed
from the expression of R0 and the conditions of Theorems 2.3 and 4.2. For example, we know that the oscillations of
uninfected cells, infected cells and virus in Fig. 3. And if we select ρ = 0.3 and a = 5 (the value a is same as Fig. 3)
and the other parameter values are same in Table 1 then the infection would be stale (see Fig. 4). Thus we can claim
that the cure rate ρ is a very important parameter. The results show that if we improve the cure rate, we will control
the disease.

6. Discussion

In this paper, we investigate a differential equation model of HIV infection of CD4+ T -cells with cure rate. In this
model, the basic reproduction number R0 is identified and is established as a sharp threshold parameter. If R0 < 1,
the infected free equilibrium Ê is locally stable in the interior of the feasible region and the virus always dies out. If
R0 > 1, a unique endemic equilibrium Ē exists and is globally stable in the interior of the feasible region and once
the virus appears, it eventually persists at the unique endemic equilibrium level. We also obtain the conditions for the
system (1.1) exists an orbitally asymptotically stable periodic orbit. Biologically, it implies that the some parameter
values can cause the cell and virus population to fluctuate.
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Fig. 4. (A)–(C) show that uninfected cells, infected cells and virus converge to their equilibrium with the parametric values as stated in the text.
(D) shows that the equilibrium Ē is asymptotically stable. The initial conditions are T (0) = 30, I (0) = 400, V (0) = 600.

Mathematically, since Ē can be unstable and periodic solutions may exist for the model (1.1), it is important to
investigate if the basin of attraction of Ē contains all points in the feasible region, namely, if Ē is globally stable.
Clinical data an HIV positive patients do not show sustained oscillations. This suggests that simple model like (1.1),
which ignore features such as chronically infected, latently infected cells, and drug sanctuaries that might damp the
oscillations, are clinically relevant only in the parameter regions for which no oscillations exist, in particular, for which
the chronic-infection equilibrium Ē is globally stable. Therefore, identifying parameter ranges in which Ē is globally
stable is of both mathematical and biological significance.

If ρ = 0, we can find that the system (1.1) becomes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ṫ = s − dT + aT

(
1 − T

Tmax

)
− βT V,

İ = βT V − δI,

V̇ = qI − cV .

(6.1)

Model (6.1) is founded and studied by Alan S. Pereson et al. [19]. And model (6.1) which incorporates delay
is studied by Xinyu Song et al. [20]. From [19,20], we find that R0 = qβ

cδ
T̄ is the basic reproduction number of

system (6.1). Ē1(T̄1, Ī1, V̄1) is the infected steady state of (6.1), where T̄1 = cδ
βq

, Ī1 = 1
δ
[s − dT̄ + aT̄ (1 − T̄

Tmax
)],

V̄1 = q
c
Ī1. Obviously, R0 � R0. Thus, although the threshold behavior and dynamic behavior of system (1.1) in this

paper are similar to those of system (6.1), the basic reproductive ratio R0 of system (1.1) is less than R0, the virus
level of the endemic equilibrium state is less than those of (1.1). Which shows that the infection speed of the virus in
our model is slower than the model without ‘cure’ rate. And the disease can easily be controlled if we improve the
cure rate. Therefore, on the basis of these results, we reject the model (6.1) and favor the model (1.1).
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