
J. King Saud Univ., Vol. 19, Comp. & Info. Sci., pp. 39-59, Riyadh (1427H./2007)

39

An Efficient Overlay Infrastructure for Privacy-Preserving
Communication on the Internet

Jalal Al-Muhtadi

College of Computer and Information Sciences,
King Saud University,

Riyadh, Kingdom of Saudi Arabia
jalal@ccis.edu.sa

(Received 16 September 2006; accepted for publication 13 December 2006)

Abstract. This paper presents Mist2 (Mist 2nd generation), an overlay infrastructure for privacy-preserving
communication. Nodes are arranged in concentric rings, which reduce average overlay hop latencies. Mist2
builds on the strengths of previous work on Mist, and significantly improves on the communication overhead,
resilience to router failures, and the distributed nature of the algorithm. Mist2 provides sender, receiver, and
sender-receiver anonymity for communicating end users. Compared to previous approaches, Mist2
significantly improves the communication efficiency in latency without sacrificing the level of anonymity. This
paper proposes an enhancement to the original Mist, and improves this solution using rings resulting in Mist2.
The simulation results clearly demonstrate the improved performance of anonymous communication in Mist2
compared to relevant systems, while maintaining anonymity. Since the proposed ring-based approach
optimizes path latencies, it performs better than the other proposed solutions where the overlay hops can
potentially traverse large distances.

Keywords: Privacy, Anonymous Communication, Routing protocol, Overlay network, Mist.

1. Introduction

The importance of preserving the privacy of an individual on the Internet can only be
understated. Cyber-stalkers are able to collect vast amounts of information about
unsuspecting users through the use of trojans such as network sniffers and spyware.
Parents worry about their children’s privacy in Internet chat-rooms and online forums.
Through the use of cookies, web servers are able to infringe on a user’s privacy by
collecting information on the user’s browsing patterns and identity. Many researchers
have focused their attention on the problem of user anonymity. The attributes of

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82209782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Jalal Al-Muhtadi

40

user anonymity include identity privacy which implies protecting the identity
information about a user such as name, passwords, email addresses, telephone numbers,
credit card numbers, private keys, geographic location, etc., from inadvertent exposure.

 In order to preserve the anonymity of a user, researchers have focused on different
aspects of the problem. Specifically, they focus their attention on sender anonymity, receiver
anonymity, and sender-receiver anonymity [1]. A system provides sender anonymity if and
only if it is not possible for the recipient of a message to identify the original sender. In
receiver anonymity, it is not possible to ascertain who the receiver of a particular message
is, even though the receiver may be able to identify the sender. Sender-receiver anonymity is
the combination of both properties. Some of the proposed solutions place implicit trust on
the communication infrastructure [2, 3], whereas in other solutions the infrastructure is
oblivious to identity information of the endpoints of a communication [1, 4-8].

This section briefly reviews related research and situates this work in this context.
One of the earliest efforts to provide anonymity was [8], where the focus was on hiding
traffic patterns to foil traffic analysis using a technique called mixing. Routers
communicate with each other using fixed length packets that are sent out at uniform
intervals. Protocol messages are mixed in randomly with dummy packets to keep a
constant flow of traffic in and out of the routers. In addition, all messages are encrypted
with multiple router-specific keys by the sender of the message, who also picks the path
the message follows through the network. The causality relationships between messages
are not preserved. Onion routing implements this idea by forming an overlay network of
Onion routers that do the mixing [6]. Encrypted layers are peeled off (like an onion) at
each hop, hiding all routing information except the previous and next hop. Tor [9] is a
second-generation Onion Routing system that addresses limitations in the original design
by adding congestion control, directory servers, integrity checking, and other
enhancements. These schemes provide anonymity to both the sender and receiver of the
communication.

Crowds [4], on the other hand, is a solution that specifically targets anonymous
web browsing. Crowd routers are dispersed across the Internet and communicate with
each other using overlays forming a fully connected graph. Web requests from a sender
are routed to a Crowds router and each Crowds router can decide to probabilistically
forward them to another Crowds router or send it directly to the web server. If the
request is forwarded, some state is stored on the router so that a reverse path is set up for
the response from the server to the sender using a mechanism similar to virtual circuits.
Using this protocol, the server only sees the IP address of the last Crowd router. The
anonymity of the sender is preserved in this case because the originator of the message
could equally likely be any one from the whole set of Crowds’ users. While Crowds
provides sender-anonymity, the overall path latencies are high, since the message can be
routed across the Internet many times.

 An Efficient Overlay Infrastructure for . . .

41

In Hordes [7], the authors augment Crowds by multicasting responses from a web
server to all Crowds senders to provide a more efficient solution that results in shorter
transmission latencies and requires less work from protocol participants in terms of
messages processed. Crowds routers in Hordes need not store state information for
reverse path forwarding of responses. In both Crowds and Hordes, the infrastructure is
not aware of the sender of the Internet requests.

In P5 [1], the authors generalize the multicast idea to provide sender, receiver,
and sender-receiver anonymity. Their overlay network solution organizes its subscribers
in a hierarchy of broadcast groups. All communication is sent to broadcast addresses,
providing receiver anonymity. Sender anonymity is provided by using mixes. However,
instead of having one broadcast group, users use hierarchical group addresses. This
provides sender-receiver anonymity, i.e. senders and receivers cannot determine the
location of each other. A user reveals a “bit-mask” that specifies their position in a tree-
like hierarchy. A user receives messages that are broadcast to all groups at their level as
well as lower down in the hierarchy. Messages broadcast to groups lower down in the
hierarchy have fewer subscribers and lesser privacy, whereas specifying a higher address
adds to communication costs. This allows users to customize trade-off between
anonymity and communications efficiency. The P5 infrastructure is oblivious to identity
and location information of either or both endpoints of a communication.

Mist (first generation) [5] proposes a hierarchical solution for privacy-preserving
communication. In some sense, the architecture creates a “mist” through which users
could communicate while obscuring their location and identity information. Users at the
leaves of the tree-like hierarchy register with Lighthouses (nodes higher up in the tree)
through a series of Mist Routers along the path. Lighthouses serve as proxies for
communication with a particular user. The higher a Lighthouse is in the hierarchy, the
greater is the privacy of the user. Lighthouses are tied to geographical locations and
choosing different Lighthouses at different levels allows users to trade privacy for
communication efficiency.

This paper addresses the shortcomings in the original Mist architecture by
proposing a self-organizing overlay network of infrastructure nodes called Rings. In the
proposed solution, participating nodes form an overlay network of multiple concentric
rings. The innermost ring consists of Lighthouses that are maximally connected to each
other using overlays. Mist Routers arrange themselves around the Lighthouses into rings
that reflect their latency distance from the Lighthouses. All Mist Routers within a ring
are within a specific latency range from their Lighthouses. When a user decides to
connect to a Lighthouse, the user sets up a route of desired hop-count 1 to the Lighthouse
traversing several Mist Routers through adjacent rings. This option allows the user to

1 Unless otherwise specified, the hop-count refers to hops along the overlay, and not the underlying network

layer hops.

Jalal Al-Muhtadi

42

customize the trade-off between communication efficiency and privacy. This system is
referred to as Mist2 (Mist 2nd generation) to distinguish it from the previous work on
Mist. Mist2 provides more resilience to route failures in the overlay since routers are not
restricted to a fixed hierarchy. The average per-hop latency is low since packets are
routed between adjacent rings. Rings also provide scalability since Mist2 Routers only
need to keep track of neighbors in adjacent rings, as opposed to a Crowds-like approach
in which members need to know all other members in the crowd.

Rings expose the underlying latency and topological information and allow users
of the system to increase the efficiency of anonymous communication without
sacrificing privacy. The proposed approach differs from existing protocols in two
important ways. One of the major problems with existing privacy-preserving
communication protocols is the excessive overhead in terms of latency and bandwidth
[1, 4, 6]. First, by exposing the topology to the protocols and users in Mist2, it is possible
to reduce communication overheads significantly (by more than 50% in comparison to a
Crowds-like implementation in the simulations). Second, the proposed system focuses
on user-to-user communication in the design, which is often overlooked in other
protocols that take advantage of group-oriented communication for anonymity. The
overhead of implementing user-to-user communication in Crowds and P5 can be
extremely prohibitive. Like P5, the proposed system’s infrastructure nodes are also
oblivious to the identity and location information of communication endpoints.

The rest of the paper is organized as follows. Section 2 presents the Mist2
architecture in detail and shows how Rings are formed. Section 3 presents the user-to-
user privacy-preserving communication protocol that is layered on Mist2. Section 4
presents simulation results using CAIDA data and compares the overhead with a
Crowds-like implementation. Section 5 concludes the paper.

2. Bootstrapping and Infrastructure

Overlay networks or peer-to-peer networks are becoming increasingly popular for
application layer routing in the Internet. Pure peer-to-peer or unstructured peer-to-peer
networks [10, 11] tend to show large variances in communication latency, available
bandwidth, and throughput. To restrict such unpredictable behavior, structured peer-to-
peer routing solutions have been proposed, e.g. Chord [12] and CAN [13].

In the context of anonymous routing, Crowds, Hordes and Tor use unstructured
peer-to-peer networks. In Crowds, packets are probabilistically routed between
members, and eventually to a web server. Mist [5] proposes a structured anonymous
routing architecture, assuming a rigid tree hierarchy that could be too restrictive. To
remedy this, a two-way Crowds solution with Lighthouses is considered. Hence, a user

 An Efficient Overlay Infrastructure for . . .

43

can set up a connection to a Lighthouse just as a Crowds member could set up a reverse
path to a web server. Lighthouses would then serve as a communication beacon for that
particular user. Tarzan uses a similar approach, where they use a more structured route to
NAT boxes, which are similar to our Lighthouses. Hop latencies in Tarzan can be
arbitrary as peers are chosen based on the structure of IP addresses, which may or may
not correspond to “close” peers.

Mist2 proposes a more flexible architecture by employing the rings as its basic
structure. Mist2 networks consist of multiple rings. At bootstrap time, a large number of
Lighthouses that belong to different administrative domains and lie within a radius of R
ms latency form a special ring. This ring is referred to as the Mist2 Center (Ring 1).
Additional rings are defined based on their members’ latencies from the innermost ring
(see Fig. 1). Assuming the use of R as the radius of a ring, the radius of Ring 1 is R, the
radius of Ring 2 is 2R, and so on. Each Mist2 Router is associated with a particular ring.
Mist2 Routers maintain a list of “close” Mist2 Routers in the neighboring rings. While
routing packets between rings, Mist2 Routers pick a random router from their neighbor
sets. Users decide on a specific route to the Mist2 Center based on a desired hop-count.
For example, a user in Ring 4 may choose the following route to Ring 1: 4-3-2-3-4-5-4-
3-2-1. Since each hop is constrained in latency as an artifact of the rings, the overall hop
latency is expected to be low. Compared to a Crowds-like approach where each hop is
half the diameter of the Internet on the average, Mist2 provides significantly more
efficient communication.

2.1. Ring formation

Every entity in Mist2 including the Lighthouses and the Mist2 Routers has a pair
of public/private keys. Also, every entity is issued an identity certificate containing its
identity and its public key. Mist2 depends on PKI or other equivalent key management
support. Based on the public key certificates, any entity in Mist2 can be verified by any
other entity with a simple cryptographic signature verification.

Our infrastructure allows Mist2 Routers to join the overlay network at any point
in time. To join, a Mist2 Router must first prove that it is located in the latency space of
a specific ring in the Mist2. Mist2 employs an “anchor” Lighthouse for this purpose. The
Mist2 Router that wishes to join the network contacts the anchor Lighthouse with a join
request. The anchor Lighthouse then pings the Mist2 Router to find the latency to it and
issues a latency certificate containing the identity of the Mist2 Router, and the ring
number where the Mist2 Router belongs to, based on the measured latency. All latency
certificates issued by the anchor Lighthouse are signed with the private key of the anchor
Lighthouse so that the validity of the certificates can be easily checked by other Mist2
Routers. Latency from the anchor Lighthouse to a Mist2 Router may change over the
course of the time due to traffic fluctuation or network topology changes. Therefore, all
Mist2 Routers are required to renew their latency certificates periodically.

Jalal Al-Muhtadi

44

 At the same time, the anchor Lighthouse also provides the Mist2 Router with the list
of other Mist2 Routers in the neighboring rings. Using this information, the newly joined
Mist2 Router can ping other neighboring Mist2 Routers and choose a subset of close
neighbors.

Figure 1 shows an example of a Mist2 Router N joining the network. First, N
acquires its identity certificate externally. Using that certificate, N contacts the anchor
Lighthouse in Ring 1 to get a ring certificate. The anchor Lighthouse pings N and
determines that N belongs to Ring 3. The anchor Lighthouse returns a ring certificate to
N with the list of Mist2 Routers in Rings 2 and 4. Using this information, N pings these
Mist2 Routers in Rings 2 and 4 and decides to store nodes {A, E, F} from Ring 2, and
nodes {B, D, G, H} from Ring 4 in its neighbor list.

RRRR

A

N

BCRing 2

Ring 3

Ring 4

D

F

E

H

G

T

Ring 1

Fig. 1. Ring formation in Mist2.

 An Efficient Overlay Infrastructure for . . .

45

3. Communication in the Mist2

This section describes how two parties, Alice and Bob, can communicate through
the Mist2. Alice and Bob independently register with Lighthouses. The term
Lighthouse Bob is used to refer to the Lighthouse that Bob is registered with. When Alice
and Bob want to communicate, each has to establish a Mist2 Circuit to her or his
Lighthouse. The Mist2 circuit is a special communication channel that provides the
required privacy guarantees. When Alice communicates with Bob, they form an end-to-
end Mist2 Connection that allows communication to take place over the path Alice –
Lighthouse Alice – Lighthouse Bob – Bob.

3.1. Lighthouse registration and Mist2 circuit establishment

Registration with a Lighthouse is the first step to communicate in Mist2. The path
established from Alice to her Lighthouse must provide her with anonymity. It should be
infeasible for Lighthouse Alice and Mist2 Routers along the path to deduce Alice’s
location or ring number.

Mist2 uses a route establishment technique that resembles the tunnel setup
protocol in Tarzan [14]. This routing technique serves two purposes. First, it allows the
user to register with a Lighthouse. Second, it allows the establishment of a Mist2 Circuit
between the user and its Lighthouse. Alice, for example, can register with a Lighthouse
using the following five steps.

Step 1: Alice picks the desired number of hops, H, based on her privacy needs (Step 2

will illustrate that the value of H is constrained to either even or odd numbers
based on Alice’s ring). Longer paths will make it harder for Lighthouse Alice to
collude with intermediate routers to determine Alice’s location. However, longer
paths also increase the latency, trading off lower latencies for a higher degree of
privacy.

Step 2: Alice computes a route from her ring, Ring N, to the inner-most ring, Ring 1,

based on the number of hops selected in Step 1. Each hop must be to a
neighboring ring. For example, a 7-hop route from Ring 4 to Ring 1 could look
like <4,3,4,5,4,3,2,1>. Note that H = N + 2n-1, for some non-negative n. In this
example, N=4, so the only possible values for H are {3, 5, 7, 9, …}.

Step 3: Based on the route computed in Step 2, Alice sets up a path to a Lighthouse in

Ring 1. This step is similar to the tunnel setup in Tarzan. Alice iteratively
advances the Mist2 Circuit to the Lighthouse by contacting successive Mist2
Routers.

Jalal Al-Muhtadi

46

In general, all packets in Mist2 have the format shown in Fig. 2. The ‘Handle ID’
field represents a handle that is unique per Mist2 Router that helps identify the next hop of a
particular Mist2 Circuit. The handles are assigned hop-by-hop in order to obfuscate the
complete Mist2 Circuit. A value of 0 in this field indicates that no value is assigned yet.
How the handle is used is described later in this section. The ‘packet type’ identifies the type
of the packet, which tells the intermediate Mist2 Routers how they should handle the packet.
More specifically, Alice’s Mist2 Circuit establishment packet will contain ‘0’ for the handle
ID, indicating that no handle ID is assigned yet. The type field will contain a value
indicating that this is a Mist2 Circuit establishment packet. The payload is the content of the
message. H(payload) is a cryptographic hash of the payload and is used to verify message
integrity.

 For example, if the path is <4,3,2,1>, Alice first contacts a Mist2 Router from her
inner neighbor list with a circuit establishment message of the first type Ekey_next_hop (TS ||
ring_after_next), where TS is a timestamp (to aid in verifying the freshness of the message),
‘||’ denotes concatenation, and “ring_after_next” is the next ring in the path. This message is
encrypted with the Mist2 Router’s public key “key_next_hop.” The Mist2 Router
“next_hop,” which is in Ring 3 in this case, returns a list of neighbors in Ring 2
(ring_after_next). Alice then picks one at random, and reiterates using the second message
type: Ekey_last_hop (next_hop || Ekey_next_hop (TS || ring_after_next)) where “next_hop” denotes
the selected Mist2 Router in the next ring. “key_last_hop” is the public key of the last Mist2
Router in the established path and “key_next_hop” is the public key of the next Mist2
Router. This process iterates until a complete path from the host to a Lighthouse is
established.

 The final registration message with the Lighthouse is Ek (M) where:
M = (Alice || TS || K

session || TKN || PP), where:
Alice is Alice’s unique ID in the active information space.
TS is a timestamp to prevent replay attacks.
Ksession is a random session key to encrypt further communication between the user and her

or his Lighthouse. It is also used to add some additional randomness into the
encrypted message.

TKN: A token that is used to prove that the user’s request to register with a Lighthouse is
authentic. The details of this token will be mentioned later.

Handle ID Packet
Type

Payload
Size Payload H(payload)

Fig. 2. General format for Mist2 packets.

 An Efficient Overlay Infrastructure for . . .

47

PP: A predetermined fixed phrase. This is used to ensure that the decryption was
indeed successful. Fig. 3 illustrates the three types of Mist2 Circuit
establishment messages. Figure 4 illustrates how handles are generated in Mist2.

Step 4: To complete the Mist2 Circuit establishment, the Lighthouse confirms the

registration of Alice by sending back a reply packet. The format of this is:
 <handle_id, Mist2_COMM, E Ksession(“OK” || TS2) >

where K session is the secret key established between Alice and her Lighthouse in Step 3. TS2
is a timestamp to prevent replay attacks. The packet type is marked as an “Mist2
Communication” packet to distinguish it from circuit establishment messages.

3.2. Authenticating the registration

In order to thwart malicious Lighthouses from falsely claiming that some user
registered with them, the user constructs a special token (TKN) signed by the user’s
private key. This token will contain a timestamp and the unique ID of the chosen
Lighthouse. This token is sent to the Lighthouse during the Mist2 Circuit setup as
described in the previous section. Once the Mist2 Circuit has been established, the
Lighthouse uses this token to show that the registration is legitimate. If the timestamp
has already been seen before, or if it has expired, the token will be discarded. Naturally,
if the signature cannot be verified, the token is also discarded. The format of this token,
TKN, is as follows:

0

Mist2 Cicuit
Establishment

type
Payload size, payload,

and payload hash

Ek(M)………………………...……..for a Lighthouse
Payload = Ekey_next_hop (TS || ring_after_next) ... for the 1st Mist2 Router

Ekey_last_hop(next_hop || Ekey_next_hop (TS || ring_after_next))

where M = (Alice || TS || K || TKN || PP)
session

{
Fig. 3. Alice’s Mist2 circuit establishment packet. Three types of messages are used here.

Jalal Al-Muhtadi

48

TKN = (User ID || Lighthouse ID || Timestamp || Expiration Time || SUser(User ID ||
 Lighthouse ID|| Timestamp || Expiration Time))

The TKN contains the unique user ID, the Lighthouse ID (this could be the DNS
name), the timestamp (to prevent replay attacks), and an expiration time after which the
TKN is not valid. The TKN is signed by the user’s private key. TKN contents do not need
to be encrypted because the contents are already known by the Lighthouse anyway. This
token can now be used when a Lighthouse shares the registration information with other
Lighthouses, to prove the authenticity of a registration.

3.3. Connection between two parties

Connecting between two parties in Mist2 is similar to the original Mist in the
most part. Alice and Bob independently register with Lighthouse Alice and Lighthouse Bob
respectively. All communication between Alice and Bob must go through their
Lighthouses. This communication channel between Alice and Bob is called a Mist2
Connection. Assuming that Bob is trying to initiate communication with Alice, Bob then
generates the following message for his Lighthouse:

M Lighthouse = E K session(COMM_SETUP || Alice’s ID || TS)

Unlike the original Mist, communicating parties do not need to access lookup servers

to figure out the Lighthouse of the other party. This will be carried out by Lighthouses.
Since handles have been set up in both directions during the Mist2 Circuit Setup phase, this

A

CB

DE

515

515

192

192
201

201

314

314

718

718

Ring 1

Ring 2

Ring 3

Ring 4

Alice
Fig. 4. Handle setup.

 An Efficient Overlay Infrastructure for . . .

49

message will traverse the Mist2 Circuit to Lighthouse Bob. This message is encrypted to
preserve the integrity and confidentiality of Bob’s specific communication request. When
the message arrives at Lighthouse Bob, it is able to uniquely determine that the message is
from Bob based on the arriving handle. It decrypts the message with session key K Session and
determines from the COMM_SETUP message type that communication must be set up with
Alice. It is assumed here that the Lighthouses have a mechanism to communicate
information with other Lighthouses. For example, the Lighthouses could form a multicast
group to exchange information about registered users. Optionally, lookup services could be
used which are accessed and updated by the Lighthouses. The timestamp TS is used to
prevent replay attacks.

Lighthouse Bob uses asymmetric key encryption to communicate with Lighthouse Alice

to determine Lighthouse Alice’s handle for Alice. Since this is straightforward, the details of
this communication are omitted from this paper. The aforementioned handle can be referred
to as dest_handle Alice. In Fig. 5, Lighthouse Bob determines dest_handle Alice = 254.
Lighthouse Bob then generates a unique handle that Bob can use to address Alice. This handle
is referred to as src_handle Alice. In Fig. 5 src_handleAlice = 689. LighthouseBob sets up a
binding of the form <src_handleAlice, dest_handleAlice, LighthouseAlice>. Fig. 5 shows the
binding <689, 254, Y>. All messages from Bob that arrive for src_handle Alice (689) will be
tunneled to Lighthouse Alice (Y) and indexed with dest_handle Alice (254). Similarly,
Lighthouse Bob will supply the handle for Bob to Lighthouse Alice that will set up a binding of
the form <src_handle Bob, dest_handle Bob, Lighthouse Bob> in the same way. Fig. 5 shows
this binding as <412, 100, X>. Once Lighthouse Bob and Lighthouse Alice have setup their
bindings, they need to inform Bob and Alice of the source handles. Lighthouse Bob sends
src_handle Alice to Bob in the following message: M Handle = E K session(HANDLE_MSG ||
Alice’s ID || src_handle Alice || TS). In Fig. 5. this message corresponds to “For Alice use
689.” Similarly, Lighthouse Alice sends src_handle Bob to Alice.

Now Bob can send Lighthouse Bob messages destined to Alice by simply using
src_handle Alice (689), and Alice can send Lighthouse Alice messages destined for Bob using
src_handle Bob (412). This is done to hide Alice’s identity from intermediate routers. These
intermediate routers are hence unaware of both the endpoints of the communication. To
communicate with Alice, Bob constructs messages of the following form, where ‘M’ is the
message for Alice: M For_Alice = (COMMUNICATION_MSG || src_handle Alice || M) and
sends it towards his Lighthouse. Note that the message passes in the clear, and the use of
handles does not disclose the endpoints of the communication. Alice and Bob are now free
to choose an end-to-end encryption scheme if desired. Using this method, there is no
duplication of encryption by the Mist2. Furthermore, Bob and Alice can have multiple
connections open, where each connection is associated with a set of src_handles.

Jalal Al-Muhtadi

50

3.4. Hiding from Lighthouses

In the protocol presented so far, Alice and Bob’s communication is not
anonymous to the Lighthouses. This section describes an enhancement to the protocol to
achieve this. This enhancement requires a lookup server in the system that is a member
of the Lighthouse multicast group. Hence, the lookup server is aware of all the users
registered with Lighthouses in the Mist2. Just like the original Mist [5], the message M
Lighthouse, which Bob sends to his Lighthouse, needs to include an encrypted token, TAlice,
with Alice’s ID. This token is encrypted with the lookup server’s public key. Hence,
Lighthouse Bob is not aware of the identity of Alice.

 MLighthouse = EKsession (COMM_SETUP || TAlice || TS)

When LighthouseBob sends TAlice to the lookup server, the lookup server retrieves
Alice’s ID from TAlice and determine LighthouseAlice. The lookup server generates another
token TLighthouse-Alice, encrypted with LighthouseAlice’s key, which contains Alice’s identity.
LighthouseBob uses this token instead of Alice’s ID with LighthouseAlice to determine
dest_handleAlice. The rest proceeds as before. Hence, Bob can route packets to Alice without

'X'
Lighthouse

of Bob

...

00
0

'Y'
Lighthouse

of Alice

...

BobAlice

UserHandle ID

102 Charlie
254 Alice
233 Elizah

UserHandle ID

100 Bob

LighthouseSource Dest.

412 100 X

For Bob
use 412

LighthouseSource
handle_id

Dest.
Handle_id

689 254 Y

For Alice
use 689

Ring 1

Fig. 5. Mist2 communication setup.

 An Efficient Overlay Infrastructure for . . .

51

LighthouseBob knowing that the packets are for Alice. Similarly, LighthouseBob will provide
src_handleBob to LighthouseAlice, but without disclosing Bob’s identity. The anonymity of the
connection relies on there being multiple users registered with a Lighthouse at any given
time. This is because LighthouseBob is aware of all the users registered with LighthouseAlice
even though it does not know the endpoints of each connection. To relax this assumption,
one solution would be to not use a multicast group, and instead rely on a lookup service for
Lighthouses to determine other users’ Lighthouses. The anonymity of the connection is
compromised if the two Lighthouses involved in the communication collude. The
anonymity is also lost if a Lighthouse colludes with the lookup service. However, the
assumption here is that this is not trivial and that Lighthouses are operated by various trusted
individuals or organizations.

4. Implementation

This section describes a proof-of-concept implementation of building a Mist2

communication infrastructure in the context of a Wide Area Network. Specifically, the
implementation assists in studying two aspects of Mist2 communication behavior:

 How does Mist2 compare with a Crowds-like solution in terms of
communication overhead?

 What is the effect of changing the number of rings, as well as changing the ratio
of Mist2 Routers to regular routers in a given topology, with respect to the
overheads?

In addition to developing a feel for the overheads, this work presents an analysis

of privacy properties of the Mist2 framework, specifically in terms of sender anonymity,
receiver anonymity, and sender-receiver anonymity.

Since it is not possible to obtain access to a large number of international hosts on
the Internet that can act as Mist2 Routers and run the Mist2 communication protocol, the
choice was made to simulate the behavior of the proposed system using data that reflects
the connectivity map of the real Internet. Specifically, the data for the Inter-AS
(Autonomous System) connectivity map is used, which is available through CAIDA as a
part of the Skitter project2 [15]. Rings are simulated on this topology map of a snapshot
of the Internet3. To estimate the overheads in a simplified manner, latency is assumed to
correlate with geographic distances, which is justified partly by studies such as [16, 17].

2 The data used in this research was collected as part of CAIDA’s skitter initiative (ITDK0204),

http://www.caida.org. Support for skitter is provided by DARPA, NSF and CAIDA membership.
3 The data available to us provides a snapshot of the whole Internet in April 2002.

Jalal Al-Muhtadi

52

The simulation is described in more detail in Section 4.1, followed by an analysis of
privacy in Section 4.2.

4.1. Simulating Mist2 and Crowds using Skitter data

The simulation uses the data collected by the CAIDA Skitter project as the basis
for studying the overheads of the proposed communication framework and comparing it
with a simulation of a Crowds-like solution. Skitter data reflects 1,224,733 IP addresses
and 2,093,194 IP links, (immediately adjacent addresses in a traceroute-like path). This
data was collected from 21 skitter monitors probing approximately 932,000 destinations
spread across over 75,000 (70%) of globally routable network prefixes.

The Skitter project also provides an aggregate view of the network as a graph of
ASes and their interconnections (or peering sessions). Each AS in this graph
approximately maps to an Internet Service Provider (ISP). Some ISPs administer more
than one AS, but it is not typical according to their findings. Each IP address is mapped
to the AS responsible for routing it. This is done by examining Border Gateway Protocol
(BGP) routing tables collected by the University of Oregon’s “Route Views” project
[18]. Their aggregate graph consists of 11,122 Autonomous System (AS) nodes and
35,752 peering sessions. Since they could not provide a geographic location for 123
ASes, the data used contains 10,999 ASes and 34,209 peering sessions. A partial
visualization of this graph is presented in Fig. 8 and 9, which show routes picked by
Mist2 and a Crowds-like solution for the same host-Lighthouse pair. Using the graph of
ASes and peering sessions, the Mist2 protocol is simulated as follows:

1. First, a “Ring 1” (which will contain the Lighthouses) needs to be selected. To do
this, an AS, that is rich in connectivity, is selected (and referred to as the
“anchor”). Other ASes that are within one ring radius of the anchor are detected.
The anchor Lighthouse and its neighbors form potential candidates for
Lighthouses in the simulation. The simulation designates (uniformly at random) a
subset of these candidates as Lighthouses. Ideally the Lighthouses should be
close to the latency center of the Internet. The rationale behind picking
Lighthouses on “backbones” with high connectivity is to decrease the
communication overheads between Lighthouses. Geographic distances could be a
close approximation of this property. After analyzing the skitter AS graph, two
potential latency centers in the topology are found, one in North America and the
other in Europe. For this simulation, the North American center was chosen as
the anchor.

2. Second, the number of rings to be simulated is chosen by specifying a geographic
ring-radius. Once the number of rings is fixed, Dijkstra’s algorithm is deployed to
generate “All-Pair-Shortest-Paths” from the Lighthouses to decide to which ring a
given AS belongs. Once this is done, the simulation selects the actual Mist2
Routers. An important point to remember here is that Mist2 Routers and
Lighthouses are implemented on hosts in these ASes and not on actual routers

 An Efficient Overlay Infrastructure for . . .

53

(i.e., application-level routing is used). The ratio of Mist2 to non-Mist2 Routers is
then selected, after which the simulation selects the ASes to contain Mist2
Routers at random uniformly.

3. Each Mist2 Router that was picked in Step 2 now runs Dijkstra’s shortest-path
algorithm to find its neighbors. It makes a list of neighbors in adjacent rings, as
described previously, and stores them in its routing table.

4. In order to simulate communication patterns between a Mist2 sender and
receiver, the average hop length parameter in the simulation is fixed. The average
path-length corresponds to the number of rings a packet visits on its path from the
source or destination, to or from its Lighthouse. The simulation picks a sender
and receiver at random and finds paths between: (1) the sender and its
Lighthouse, and (2) the receiver and its Lighthouse according to the following
algorithm:
The sender (or alternately the receiver) picks a hop length from a geometric
distribution whose average is the path-length. This is the same distribution as
Crowds path lengths. Then, it generates a series of flags that correspond to
whether it should route to a Mist2 Router at one-hop distance in a ring towards
Ring 1, or away from it, so that it eventually ends at a Lighthouse in Ring 1 with
exactly path-length number of hops. Next, the simulation searches the neighbor
lists that were generated in Step 3 and creates a path with Mist2 Routers picked at
random from each ring. If such a path can be found, the simulation computes the
overhead by adding the geographical distances. Otherwise, the simulation tries
again a finite number of times. Sometimes, it is possible not to find a path, as this
depends on the number of Mist2 Routers in the system. In this case, the user may
choose to use a smaller path length and try again. Note that this overhead of
finding a path is only incurred once per session, at route set-up.

5. Once both sender and receiver can find a path to a Lighthouse in Ring 1, the
simulation adds the distances between the Lighthouses to obtain the overhead of
communicating with that path in terms of geographic (great-circle) distance. This
is repeated for many different sender-receiver pairs in the simulation to obtain an
average distance overhead.

Next, Crowds-like behavior is simulated on top of the Mist2 framework as follows:

1. The average path length is fixed to be exactly the same value as in Mist2, and the

probability of whether to forward or not in the Crowds probabilistic forwarding
algorithm is fixed to (1/path_length). This will generate paths with the expected
number of hops as the path-length.

2. The simulation generates sender-receiver pairs at random, as in Mist2, and each
sender and receiver uses Crowds-like probabilistic forwarding to generate a path to
any Lighthouse. This is achieved by making the last hop in the Crowds simulation
path always end in a Lighthouse picked at random. Note that for each corresponding

Jalal Al-Muhtadi

54

sender-receiver pair in the Mist2 and the Crowds simulation, the number of hops
was fixed for that pair. This was done to provide a fair comparison between the two
approaches, and was achieved by using the same pseudorandom generator for both
simulations.

The results of the simulation are as follows. Fig. 6 shows how varying the ring

radius affects average path distances. The ring radius is changed from 100 km to 9000
km to observe the change in the average path distances. For low ring radii (< 500 km),
the number of rings are very high, and this in turn increases the number of hops required
to reach Ring 1 (note that even if the desired number of hops may be 10, a Mist2 Router
in Ring 21, will have to traverse at least 20 hops to reach Ring 1). In the simulation, this
behavior is observed until a ring radius of 500 km. For ring radii beyond 500 km,
increasing the ring radius results in longer inter-ring hops, which is why a general
increase in average path lengths is seen. The drops that appear at some places in graph
(for example, for ring radii 5000, 7000 and 9000 km) are because the number of rings
reduces. When the number of rings reduces, the average hop length increases. However,
there are fewer rings between a host and Ring 1, which results in lower distance routes
on the average.

In Fig. 7, the number of Mist2 Routers varies from 1,000 to 10,000. The figure

shows how the average path lengths are much lower than a Crowds-like solution. The
figure also includes a curve for Mist2-fixed-hops, in which the number of host to
Lighthouse hops is fixed to 10.

2

Fig. 6. Comparing average path lengths for various ring radii.

 An Efficient Overlay Infrastructure for . . .

55

The other two curves correspond to a routing probability of 0.1, which provides
10 hops on the average. This is done to provide a fair comparison between Mist2 and a
Crowds-like approach. However, while using Mist2, the user will be able to specify the
number of hops to the lighthouse, which would then result in slightly better performance.
This improvement is illustrated in the Mist2-fixed-hop curve.

 Fig. 8 and 9 provide a visualization of the CAIDA AS Graph using the simulation
code, and illustrate two sample paths for the same host-Lighthouse pair using Mist2 and a
Crowds-like solution. Both paths are fixed at 10 hops. As one would expect, the hops for
Crowds are large. Since Mist2 is structured using Rings, Mist2 follows a path that is much
more efficient. In this case, the router traverses the following rings: <9 8 7 6 7 6 5 4 3 2 1>.
In this instance, the path lengths for Crowds and Mist2 were 53,272 km and 15490 km
respectively.

4.2. Privacy analysis of Mist2

Mist2 provides shorter routes because our routing is topology aware. It uses
Rings to reduce hop latencies. However, this does not compromise a user’s anonymity.
A router cannot tell if your communication originates in its neighboring ring, or if it is
merely relaying your packets on a much longer path. Since paths can traverse rings in
both directions, an intermediate router cannot make any assumptions on which direction
the packet originated. Traffic analysis is outside the scope of this paper. Several other
approaches [1, 7] discuss how “mixing” and “cover traffic” can be added to foil traffic
analysis. Mist2 can be augmented with mixing and cover traffic to counter traffic

Fig. 7. Comparing average path lengths for Crowds and Mist2 for varying number of participants.

2
2

Jalal Al-Muhtadi

56

analysis. However, many privacy scenarios on the Internet do not really require this
functionality and, hence, this paper focuses mainly on providing endpoint user
anonymity. Tarzan [14] adds another layer of security to foil traffic analysis by creating
Onion data packets. This prevents attacks where malicious routers can reroute data
packets or compare packets and short-circuit routes. Tarzan approach is extremely
heavyweight, since each data packet would have to be encrypted with several rounds. In
Mist2, a malicious router can do two things: either drop the packet or short circuit a
route between itself and another malicious router that it knows along the path. The
former case is not important since a user would reestablish a route if packet
acknowledgments were not received. In the latter case, the number of hops may be
reduced. While packets are not lost, this may be seen as a violation of a user’s requested
level of privacy (i.e., desired hops to the Lighthouse). However, a user picks this desired
level of privacy to specifically “tolerate” such routing misbehaviors. In this manner,
Mist2 provides a good tradeoff, where a user’s level of privacy may be reduced, while
relieving the user from the overhead of creating Onion data packets. Of course, Mist2
can be easily augmented to use Onion routing packet, if a user needs the added
protection.

Fig. 8. CAIDA AS graph with a sample path generated by Mist2.

Small dots represent ASes. Large dots represent the communication endpoints.

 An Efficient Overlay Infrastructure for . . .

57

4.3. Resilience to failure
Both Mist (first generation) and Mist2 employ a structured peer-to-peer approach

to reduce communication latency while providing anonymity. Evaluations show that the

performance of Mist and Mist2 is comparable. However, Mist2 provides more resilience
to route failures in the overlay since routers are not restricted to a fixed hierarchy (as the
case in the original Mist). Furthermore, the center ring in Mist2 consists of a cluster of
Lighthouses. If a specific Lighthouse fails, then another Lighthouse can be selected and
used for resuming communication. The ring-based structure of Mist2 provides better
scalability since Mist2 Routers only need to keep track of neighbors in adjacent rings,
rather than all routers in the system.

5. Conclusion

The paper describes an efficient infrastructure for privacy-preserving
communication called Mist2. Mist2 uses a self-organizing overlay network of rings to
significantly reduce communication overheads in comparison to a Crowds-like
implementation. The expectation here is that other overlay implementations that are not
topology-aware, like the Tor network [9], exhibit similar behavior to the Crowds-like
implementation, since each overlay hop can potentially span the diameter of the Internet.
While the proposed approach provides more efficient routes, it does not sacrifice
anonymity. Moreover, through the use of rings, routers in a particular ring only need to
be aware of routers in adjacent rings, thereby making our approach scalable to a Crowds-
like solution. Hence, Mist2 provides a scalable, efficient, and distributed approach to
providing privacy preserving communication on the Internet.

References
[1] Sherwood, R.; Bhattacharjee, B. and Srinivasan, A. "P5: A Protocol for Scalable Anonymous

Communication". IEEE Symposium on Security and Privacy, 2002.
[2] "SafeWeb." http://www.safeweb.com.
[3] "Anonymizer." http://www.anonymizer.com.

Fig. 9. CAIDA AS graph with a sample path generated by a Crowds-like solution.

Jalal Al-Muhtadi

58

[4] Reiter, M. and Rubin, A. D. "Crowds: Anonymity for Web Transactions". ACM Transactions on
Information and System Security (TISSEC), 1 (1998).

[5] Al-Muhtadi, J.; Campbell, R.; Kapadia, A.; Mickunas, D. and Yi, S. "Routing Through the Mist:
Privacy Preserving Communication in Ubiquitous Computing Environments". International
Conference of Distributed Computing Systems (ICDCS 2002), Vienna, Austria, 2002.

[6] Reed, M.; Syverson, P. and Goldschlag, D. "Anonymous Connections and Onion Routing". IEEE
Journal on Selected Areas in Communication, Special Issue on Copyright and Privacy Protection, 1998.

[7] Shields, C. and Levine, B. N. "A Protocol for Anonymous Communication over the Internet". 7th ACM
Conference on Computer and Communications Security (CCS), N.Y.: ACM Press, 2000, pp. 33–42.

[8] Chaum, D. "Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms".
Communications of the ACM Transactions on Information and System Security , 24, (1981).

[9] Dingledine, R.; Mathewson, N. and Syverson, P. "Tor: The SecondGeneration Onion Router". 13th
USENIX Security Symposium, 2004.

[10] "Gnutella." http://www.gnutella.com/.
[11] "Kazaa." http://www.kazaa.com.
[12] Stoica, I.; Morris, R.; Karger, D.; Kaashoek, M. F. and Balakrishnan, H. "Chord: A Scalable Peer-to-

peer Lookup Service for Internet Applications". ACM SIGCOMM, San Deigo, CA, 2001.
[13] Ratnasamy, S.; Francis, P.; Handley, M.; Karp, R. and Shenker, S. "A Scalable Content Addressable

Network". ACM SIGCOMM 2001, San Diego, CA, 2001.
[14] Freedman, M. J. and Morris, R. "Tarzan: A Peer-to-Peer Anonymizing Network Layer". 9th ACM

Conference on Computer and Communications Security, Washington, D.C., 2002.
[15] "CAIDA's Skitter Data." http://www.caida.org/tools/measurement/skitter/.
[16] Francis, P.; Jamin, S.; Jin, C.; Jin, Y.; Shavitt, D. R. Y. and Zhang, L. "IDMaps: A Global Internet Host

Distance Estimation Service". IEEE/ACM Trans. on Networking, 2001.
[17] Shankar, N.; Komareddy, C. and Bhattacharjee, B. "Finding Close Friends over the Internet". ICNP,

Riverside, California, 2001.
[18] "University of Oregon's Route Views Project". http://www.antc.uoregon.edu/route-views/.

 An Efficient Overlay Infrastructure for . . .

59

 نية تحتية فعالة لحماية الخصوصية أثناء الاتصال على الإنترنتب

 جلال المهتدي
 الملك سعود، جامعة المعلوماتعلوم الحاسب و كلية

 الرياض، المملكة العربية السعودية

 م)١٣/١٢/٢٠٠٦م؛ وقبل للنشر في ١٦/٠٩/٢٠٠٦(قدّم للنشر في

والذي يمُثل بنية تحتية لحماية الخصوصية أثناء Mist2شرحاً لنظام هذا البحث يقُدِّم ملخص البحث.
الاتصال على الإنترنت. في هذا النظام، الأطراف المتصلة موزعـة علـى حلقـات دائريـة، تشـترك في المركـز

بحيـث يـوفر عـدة فوائـد إضـافية Mistهـو تطـوير لنظـام Mist2وتتفاوت في طول نصف القطر. نظـام
 طـــول مســـارات نقـــل البيانـــات، ومقاومـــة الأخطـــاء في توصـــيل منهـــا تقليـــل العـــبء الاتصـــالي، وتقصـــير

قــترحَ
ُ
رسِــل في آنٍ واحــد. كمــا يتســم النظــام الم

ُ
البيانــات، وتــوفير قــدر أكــبر مــن الخصوصــية للمُســتَقبِل والم

قــترحَ إلى ســرعة أداء النظــام بفاعليــة عاليــة، وســرعة في الأداء. هــذا وقــد أشــارت نتــائج محاكــاة النظــام
ُ
الم

ة مــع الحفــاظ علــى نفــس القــدر مــن حمايــة الخصوصــية. كمــا أشــارت مقارنــة بالأنظمــة الأخــرى المشــا
النتائج أن سرعة الأداء أفضل بشكل ملحوظ من الحلـول الـتي تعتمـد علـى نقـل البيانـات عـبر مسـارات

 طويلة.

