
N O R r H - ~  

On Monge Sequences in d-Dimensional Arrays* 

Riidiger  Rudol f  

Technical University Graz 
Institute for  Mathematics B 
Steyrerposse 30 
A-8010 Graz, Austria 

Submitted by Richard A. Brualdi 

ABSTRACT 

Let C be an n × m matrix. Then the sequence Sa: = ((i l , j l ) ,( i2, j2) . . . . .  
(inm,jnm)) of pairs of indices is called a Monge sequence with respect to the given 
matrix C if and only if, whenever ( i , j )  precedes both (i, s) and ( r , j )  in ~ ,  then 
c[ i, j ] + c[ r, s] <~ c[ i, s] + c[ r, j ]. Monge sequences play an important role in greed- 
ily solvable transportation problems. Hoffman showed that the greedy algorithm 
which maximizes all variables along a sequence ~ in turn solves the classical 
Hitchcock transportation problem for all supply and demand vectors if and only if ~ 
is a Monge sequence with respect to the cost matrix C. In this paper we generalize 
Hoffman's approach to higher dimensions. We first introduce the concept of a 
d-dimensional Monge sequence. Then we show that the d-dimensional axial trans- 
portation problem is solved to optimality for arbitrary right-hand sides if and only if 
the sequence S a applied in the greedy algorithm is a d-dimensional Monge sequence. 
Finally we present an algorithm for obtaining a d-dimensional Monge sequence which 
runs in polynomial time for fixed d. © 1998 Elsevier Science Inc. 

*The author acknowledges financial support by the Fonds zur Ffrderung der wis- 
senschaftlichen Forschung, Project P8971-PHY. 

LINEAR ALGEBRA AND ITS APPLICA770NS 268:59-70 (1998) 

© 1998 Elsevier Science Inc. All rights reserved. 0024-3795/98/$19.00 
655 Avenue of the Americas, New York, NY 10010 PII S0024-3795(97)00007-4 



60 

1. INTRODUCTION 

RiJIDIGER RUDOLF 

The well-known Hitchcock transportation problem (TP) can be formu- 
lated as a linear program in the following way: 

( T P )  min  ~ ~ c [ i , j ] x i j  
i = 1  j = l  

~'~ V i = I ,  . n,  such that xi j =ail .. , 
j = 1  

~ x i j = a  ~ V j = l  . . . . .  m, 
i = 1  

xq >i 0 V i , j .  

It is well known that due to the special structure of (TP) an initial feasible 
solution of (TP) can be obtained as follows: Take an arbitrary order of the 
variables, say a sequence S a := ( ( i l , j l ) ,  ( i~ , j2)  . . . . .  (i . . . .  jnm)) ,  and perform 
the subsequent greedy algorithm G~: 

A L G O R I T H M  Gs , , .  F o r k : =  l t o  n m d o  
.__ • 1 2 Set Xikjk .-- mm{aik, ajk} 

1 .__ 1 a~ . -  a~ - xi~k 
a]k := a~ - xio k 

This algorithm proceeds along the sequence S ° and maximizes each 
variable in turn. Thus its running time is O(nm) .  By choosing special 
sequences S °, the greedy algorithm G~ turns e.g. into the northwest-corner 
rule or the minimum-cij  rule (see e.g. Hadley [8]). 

It is easy to see that in general Gs~ constructs only a feasible but not an 
optimal solution of (TP). Hoffman [9] gives, however, a sufficient and 
necessary condition on S ~ such that G~ always constructs an optimal solution 
of (TP) for arbitrary demand and supply vectors a 1 and a 2. Hoffman's 
condition looks as follows: 

For every 1 ~< i, r ~< n, 1 < j ,  s ~< m, whenever ( i , j )  precedes both (i, s) 
and (r, j) ,  the corresponding entries in the matrix C are such that 

+ c[r,  c[i, s] + 
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Sequences cp which fulfill the property above are called Monge se- 
quences, after a similar condition found by G. Monge [10]. 

Closely related with matrices C for which there exists a Monge sequence 
are Monge matrices, i.e. matrices fulfilling the Monge property 

c [ i , j ]  + c[r ,  s] <~ c[i ,  s] + c [ r , j ]  

for all 1 ~ i  < r ~ <  n, 1 ~ j  ~<s ~< m. 

Note that for each Monge matrix there exists a Monge sequence; e.g., 
choose as sequence the lexicographical ordering of all pairs of indices of C. In 
this special case G j  degenerates to the northwest-corner rule, and therefore 
the transportation problem can be solved in O(n + m) time. 

A generalization of the classical transportation problem (TP) which occurs 
in some applications (see e.g. [7]) is the so-called d-dimensional axial trans- 
portation problem. This problem, (dTP) fi)r short, can be formulated as 
follows: 

(dTP) 

71 1 n 2 n d 

min Y'. ~ . - - ~  c [ i , , i  2 . . . . .  id]xi,i2.. . i ,  t 
i1=1 i2=1 id=l 

k 
such that ~ X i l i 2 , . . i ~ f  = aq 

i l ,  i2,  . . . ,  id 
ik = q 

Vk = 1 . . . . .  d Vq = 1 . . . . .  n k, 

xi~i2...i~ j >~ 0 V i l , i  2 . . . . .  i d. 

Obviously, a similar greedy algorithm to that used for the classical 
problem (TP) can be applied to (dTP) to obtain a feasible solution. Given a 
sequence gP of d-tuples of indices, this greedy algorithm maximizes each 
variable of 5 v in turn. As in the two-dimensional case, the question raises on 
a necessary and sufficient condition on ~ which guarantees the optimality 
of Gj .  

Our Results 
We first introduce the notion of a d-dimensional Monge sequence which 

generalizes Hoffman's Monge sequences. Then we show that being a d- 
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dimensional Monge sequence is a necessary and sufficient condition for a 
sequence ~ in order to guarantee the optimality of a greedy approach to the 
d-dimensional axial transportation problem (dTP). Furthermore, we deal 
with the problem of deciding whether there exists a d-dimensional Monge 
sequence for a given d-dimensional array C. Finally, we present an algorithm 
for constructing d-dimensional Monge sequences which runs in polynomial 
time for fixed d. 

Related Results  
In [2] Aggarwal and Park generalize the concept of a Monge matrix to 

arbitrary d-dimensional arrays. Bein, Brucker, Park, and Pathak [3] then 
prove that a generalized lexicographical greedy algorithm solves the d- 
dimensional axial transportation problem (dTP) if and only if the cost array is 
a d-dimensional Monge array. 

In Rudolf [11] a polynomial time algorithm for recognizing permuted 
d-dimensional Monge arrays is given which generalizes the recognition algo- 
rithm of Deineko and Filonenko [4] for n × n matrices C. 

Alon, Cosares, Hochbaum, and Shamir [1] deal with the problems of 
detecting and constructing a Monge sequence for an n × m matrix C. Their 
results were generalized to matrices with infinite entries by Dietrich [5] and 
Shamir [12] as well as by Dietrich and Shamir [6]. 

2. d-DIMENSIONAL MONGE SEQUENCES 

We start with introducing some basic notation and definitions. Let C be 
an n 1 X n  2 × . . - × n  d array, and let N k :={1,2 . . . . .  n k} be the set of 
feasible indices for dimension k, k = 1 . . . . .  d. Let $r  be a set of q d-tuples 
of feasible indices, say ~r:= {(i~, i~ . . . . .  i d) I 1 <<. k <~ q, i~ ~ Nt}. Then 
Ii(Sr) := {i~ I 1 ~< k ~< q} is defined to be the corresponding list of all indices 
occurring at position l of a d-tuple in ~ .  Note that in contrast to a set, the 
lists Iz(~-) need not contain pairwise distinct elements. 

We call a set 5 r o f  d-tuples feasible  with respect to the d-tuple (i~, i 2, i d) 
iff each index i k is contained at least once in the list Ik(~r), k = 1 . . . . .  d. A 
set 5 r is said to be min ima l  with respect to (il, i2 . . . . .  i a) iff 9- is feasible 
and no proper subset ~ c 5 r is feasible. Furthermore, denote by M(5 r) .'= 
{(il ,  i2 . . . . .  id)  I ik ~ Ik(~r)} the set of all d-tuples which can be composed 
using the indices occurring in ~ .  

Now we are prepared to introduce the notion of a d-dimensional Monge 
sequence. For the ease of exposition, let us first state the condition for a 
three-dimensional n 1 × n 2 × n 3 array C. 
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DEFINITION 2.1. S a is said to be a three-dimensional Monge sequence if 
and only if the following conditions are satisfied: 

1. (a) Whenever ( i , j ,  k) precedes (i, s, k) and ( i , j ,  t) in S a, then 

c [ i , j , k ]  + c [ i , s , t ]  <<.c[i,j,t] + c [ i , s , k ] .  

(b) Whenever ( i , j ,  k) precedes ( i , j ,  t) and (r , j ,  k) in S a, then 

c [ i , j , k ]  + c [ r , j , t ]  <~ c [ i , j , t ]  + c [ r , j , k ] .  

(c) Whenever ( i , j ,  k) precedes (i, s, k) and (r , j ,  k) in S ~, then 

c[ i , j ,  k] + c[r,  s, k] ~ c[i, s, k] + c [ r , j ,  k]. 

2. Whenever ( i , j , k )  precedes ( i , j , t ) ,  ( r , s , k ) ,  ( i , s , t ) ,  ( r , j , k ) ,  ( i , s , k ) ,  
and ( r, j ,  t) in :,ca, then 

(a) c[i,j, k] + c[r, s,t] ~ c[i , j , t]  + c[r, s, k], 
(b) c[i , j ,k]  + c[r, s,t] <~ c[i, s,t] + c[r,j ,  k], and 
(c) c[i,j, k] + c[r ,s , t]  <~ c[i ,s ,k]  + c[r, j , t] .  

3. Let ( i , j ,  k) ~ 5 z. Then for each set ~r:= {(i, s l ' t l ), ( r l , j ,  t 2 ), ( r 2 , s2 ' k)} 
which is minimal with respect to ( i , j ,  k), the following has to be satisfied: 
Whenever ( i , j ,  k) is the element which occurs first in S z among all 
elements in M(9-) then 

c [ i , j ,  k l + min {c[ rl, s60,, t~,(,)] + c[r2, s6,2,, t~,2)]} 
~,~ 

<. c[i, Sl, t l ]  + c[r l , j ,  t2] + c[r2, s2, k], 

where ~b and ~b are mappings from {1, 2} ~ {1, 2}. 

If we look at the definition above in more detail, we see that conditions 
l(a)-(c) coincide with the classical definition of a Monge sequence in 
two-dimensional matrices. Conditions 2(a)-(c) derive from the Monge condi- 
tion for three-dimensional arrays (see [2] for details), whereas condition (3) 
has to be added to ensure the optimality of a greedy approach. 

To generalize Definition 2.1 to d dimensions we introduce a more 
compact notation. Let (i~, i~ z . . . . .  il a) be a d-tuple and let 5 r be a set of q 

• 1 .2 . . . .  ild). Let again It(~$ r) d-tuples which is minimal with respect to (h,  q ,  
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denote the list of all indices which occur at t h e / t h  position of a d-tuple in ~.. 
Then we define U z := Iz (Sr ) \  {i~} to be the list obtained from It(5 r) by 
removing the element i~. Furthermore, we define 

W ( ~ , ~  . . . . .  ~ ) : =  
q 

min ~_,c[ i~ ,  "2 i~(k)] Z ¢ 2 ( k  ) , • . . , 
4'~ ..... 4~d k = 2 

where ~1)1, l = 2 , . . . ,  d, are mappings from {2 . . . . .  q} onto {2 . . . . .  q}. 
Now we are able to describe the property for a d-dimensional Monge 

sequence J,~ in a very compact form. 

DEFINITION 2.2. S a is called a d-dimensional Monge sequence if and 
1 2 d only if the subsequent conditon is satisfied: Let (i 1, i 1 . . . . .  i l  ) ~ Sz. Then for 

1 ,2 i 0 ,  each set 9 - o f  d-tuples which is minimal with respect to (q ,  11 . . . . .  
whenever (i~, i~ . . . . .  i~) is the element which occurs first in ~ among all 
elements of M(,~r), then 

q 

c[i ,i  . . . . .  i~ l + min ~] c[i~, "~ . . .  i~¢k)] z¢~(k), , < E c~, (1) 
&2 . . . . .  Cd  k = 2  a ~ o q  ~- 

where again ~b 2 . . . . .  ~b d are mappings from {2 . . . . .  q} onto {2 . . . . .  q}. 

Note that in the case of d = 3 we arrive at Definition 2.1 by choosing in 
Definition 2.2 minimal feasible sets 3-  with two or three triples of indices. 

REMARK. For ease of exposition, we henceforth adopt the following 
convention: When referring to the terms in an equality of the type (1), we 
assume that the minimum on the left-hand side has already been evaluated. 
So on each side we have exactly q terms. 

3. A GENERALIZATION OF HOFFMAN'S THEOREM 

We are now prepared to prove the main result of this paper, the 
generalization of the theorem of Hoffman to d ~> 3 dimensions. For ease of 
exposition we only show the three-dimensional case; the proof for arbitrary 
dimensions can easily be established using the same techniques. 
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THEOREM 3.1. The greedy algorithm Gj, solves the three-dimensional 
axial transportation problem (3TP) for  all right-hand-side vectors a 1, a 2, and 
a 3 if  and only i f  cP is a three-dimensional Monge sequence. 

Proof. ~ : Let  an instance of  (3TP) with cost array C be given. Assume 
that the greedy algorithm G~ solves this instance to optimality for arbitrary 
right-hand-side vectors a ~, a s, and a a. Suppose that ~ is not a three-dimen- 
sional Monge sequence. Then  there  must exist a triple (i I, i~, i:~) and a 
minimal set ~r  of  triples with respect to (i],i'21,i~) such that (i , ,  
precedes all other  elements of  M(~-) in ~ and 

In order  to construct a contradiction we generate the following special 
instance of  (3TP): Denote  by a /  the number  of  occurrences of an index i in 
the list Ii(o~-). Now choose the right-hand-side vectors a l, a '2, and a :3 in such 

t := c~, for all i E Ii(~a-), l = 1, 2, ,3 and all other  coefficients of  a way that a, 
the vectors a 1, a "2, and a 3 are zero. Then  Q~, applied to this particular 
instance of (3TP) generates a solution with an objective-function value 
bounded  from below by 

+ re(u,, u:0 

This solution, however, is not optimal [cf. (2)]. 
= :  Let  5 '~ be a three-dimensional Monge sequence, and let x be the 

corresponding solution produced by algorithm G~. Assume x is not optimal. 
Choose the optimal solution y which maximizes p such that xl, ' = yp~ 
Vpl < p and whose yp is largest among the set of all optimal solutions 
maximizing p. Let  ( i l , j l ,  kj)  be the triple of  indices corresponding to p. 
Since xt, 4= yp and G j  maximizes each variable in turn, we have xp > yp. To 
compensate  the deficits in a~,, a~,, and a2~, some positive variables with 

indices ( i l ,"  ," ), ( ' , j l ,  " ) and (-, ", k l) have to succeed ( i l , j l ,  k I) in 2/~. The 
triples of indices corresponding to these variables form a feasible set ,V '. 
Next we choose a set 9 - ~ 9 - '  such that ~ is minimal with respect to 
(ij,j~, k j). Note that ~--eontains q ~< d triples. Let  the lists of indices I1(5~-), 
I2(9-), and Ia(9-) be as defined before. 

We now have to show that (il , j~, k 1) is the element  of M(J-)  which 
occurs first in o c~. Assume the contrary, i.e. that there  exists a triple (i, j ,  k ) 
M(9-)  which precedes (i~,j> k 1) in 5 p. Since Q~, maximizes Y*jk, either we 
have y ~ ,  = 0 for all (i, v, w)  which are successors o f ( i , j ,  k) in ~ ,  !t,,j~, = 0 
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for all (u,j ,  w) following (i , j ,  k) in S a, or Y,~k = 0 for all (u, v, k) later in 
S °. This leads, however, to a contradiction to the choice of ~ since this would 
imply that at least one variable indexed by a triple of indices of 5 r has to be 
zero, a contradiction. 

Thus (i l , j l ,  k l) is the first element of M(9-) in S a. Nowoq-is feasible and 
minimal with respect to (il, Jl, kl), and since S '~ is a Monge sequence, we get 
that 

q 

c[ i l , j l , k l ]  + min E c[il,j6(l),k,~(t)] <~ E c,~, (3) 
~b, ~ / = 2  a~, . .  ~- 

where ~b and ~b are mappings from {2 . . . . .  q} onto {2 . . . . .  q}. 
According to our convention there are exactly q variables on both sides of 

(3). Next we construct from the solution y a new solution ~ as follows: First 
note that since 5 r is minimal with respect to (i 1, jl, kl), a triple of indices can 
occur at most once on each side of (3). Next we fix el '= min~ ~ y~ and set 

:= min {xithk~ -- Yijak~, ~1} > 0. Now we can obtain a new feasible solution 
by setting 

{ y~ - e 

Y~ 

if/3 occurs only on the right side of (3) ,  

if /3 occurs only on the left side of (3) ,  

otherwise. 

It is easy to verify that 0 is a feasible solution and because of (3) ~ is also 
optimal. Furthermore we have ~p~ = Xpl Vpl < p and ~t~jlk, = Y~j~k~ + e, 
which leads to a contradiction to the selection of y. Thus the theorem is 
proven. • 

4. CONSTRUCTION OF d-DIMENSIONAL MONGE SEQUENCES 

We start with some negative results, which on one hand point out the 
differences from d-dimensional Monge arrays and from classical Monge 
sequences, and on the other hand show that the construction of d-dimen- 
sional Monge sequences is not as easy as the recognition of d-dimensional 
Monge arrays. 

d-dimensional Monge arrays have the nice property that each subarray is 
again Monge, and moreover, if each k-dimensional subarray of a d-dimen- 
sional array, k ~< d, fulfills the Monge property, then the d-dimensional array 
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itself is a Monge array [2]. In the ease of  Monge sequences no analogous 
result holds. I f  an array C has a d-dimensional  Monge sequence,  clearly all 
subarrays of  C have a lower-dimensional  Monge sequence,  but  in constrast to 
Monge arrays the reverse is not t rue (consider the example given below). 

As a second main difference we point out the following: In an n x 2 
matrix C there always exists a Monge sequence  which can be constructed in 
O(n log n) t ime by sorting the rows of  C such that cjl - el2 ~< "" ~< c,, 1 - 
c,, 2. Unfortunately,  this p roper ty  does not generalize to higher dimensions as 
can be seen from the following example: Consider  the 2 × 2 x 2 array given 
by 

145)1 (32 
This array has no three-dimensional  Monge sequence,  although each 2 × 2 
submatrix clearly has one. 

The  observations above demonst ra te  that an approach as used for the 
recognition of d-dimensional  Monge arrays does not work for the construe- 
tion of d-dimensional  Monge sequences.  

Fortunately, the construction of d-dimensional  Monge sequences can be 
done using a generalization of  a simple algorithm for two dimensions which 
was proposed by Alon et al. [1]. For  the ease of  exposition and to facilitate the 
complexity analysis we assume hencefor th  that  our array is an n × n x . "  × n 
array. An extension to n 1 X n 2 × "" × n a arrays is straightforward. 

The  idea of  our  algorithm for constructing d-dimensional  Monge se- 
quences is based on a directed graph G which has the following properties.  
The  nodes of  G correspond to the entries in the array C, therefore,  we have 
n a nodes. Fu r the rmore  we have an arc (u,  v)  from node u to node v, iff 
u v~ v and u has to p recede  v in the Monge sequence,  i.e. the index 
corresponding to u occurs on the left side of  (1), whereas  v lies on the right 
side of  (1) and (1) is indeed an inequality. Next we n u m b e r  the inequalities in 
(1) consecutively starting from 1. Each arc (u,  v)  in G is then labeled by the 
number  of  the unique inequality which induces this arc. 

LEMMA 4.1. The directed graph G described above can be constructed in 
O(d2(d!) a Xna2) time. 

Proof. A frxed d- tuple  (i~, i~ . . . . .  i a) occurs on the left side of  at most 
O(na~a - 1)) inequalities of  type (1). Thus we have to consider O(n d2) inequal- 
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ities. To calculate the minimum in (1) we need O((d!) a- 1) time per inequal- 
ity. Since each inequality induces at most d e arcs in G, G can be constructed 
in overall O(d2(d!) a- 1rid2) time. • 

After the initialization of G described above, our algorithm proceeds as 
follows: We construct a d-dimensional Monge sequence step by step. In each 
step we have to find a node v ~ G with indegree equal to zero. If  no such 
node exists, no d-dimensional Monge sequence exists, and we stop; otherwise 
the corresponding d-tuple of indices can be chosen as next element in the 
Monge sequence. I f  the algorithm stops with an empty graph, we have 
obtained a d-dimensional Monge sequence; otherwise no such sequence 
exists. 

In each step, after the selection of a node v with indegree 0, we have to 
update the graph G. More precisely, we need to delete the node v and all 
ares adjacent to v together with all ares which are assigned a label of an arc 
with tail v. This is equivalent to canceling all conditions in which v occurs. 

LEMMA 4.2. The update of G as described above can be performed in 
O(d2(df) d- lnd2-d) time. 

Proof. Since there are almost O((d!) a- 1rid(d-1)) arcs emanating from 
node v which have distinct labels, and since there are at most d 2 arcs with 
the same label, we can perform the necessary updates in O(d2(d!) a- lnd2-a) 
time. • 

THEOREM 4.3. The algorithm above constructs a d-dimensional Monge 
sequence in case one exists in O(d2(d!) d- lnd~) time. 

Proof. First we have to show the correctness of  our algorithm. Suppose 
the algorithm stops while G is nonempty. Then each node in G has indegree 
greater than zero. But this means that all nodes in G occur at least once on 
the right side of an inequality which is still to be considered, i.e. an inequality 
all of whose terms correspond to nodes still in G. But this implies that no 
Monge sequence exists. 

Now only the running-time complexity remains to be proven. From 
Lemma 4.1 we have that the initial graph G can be constructed in the 
claimed time. Each update needs O(d2(dT)d-ln a~-a) time per step, and 
since we have n d steps (G has n a nodes), we are finished. • 

It seems not worth trying to derive an improved algorithm for construct- 
ing d-dimensional Monge sequences which proceeds along the lines of  the 
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second algorithm of Alon, Cosares, Hochbaum, and Shamir [1], since using 
these techniques would lead to a very large increase of needed space while 
gaining only a minor improvement in running time. 

We close this section by mentioning that the results described in this 
paper directly lead to a new class of polynomially solvable d-dimensional axial 
assignment problems. The d-dimensional axial assignment problem, (dAP), is 
obtained from the d-dimensional axial transportation problem by setting all 
right-hand-side coefficients aj equal to 1 and by requiring additionally that all 
variables xi~i~., .i~ are integer and thus either 0 or 1. (dAP) is NP-hard in 
general, but in case that the cost array C has a d-dimensional Monge 
sequence, the problem becomes polynomially time solvable. 

We mention that for the (dAP) the condition for a d-dimensional Monge 
sequence can be slightly relaxed. It is sufficient to require only those 
inequalities in (1) which are induced by minimal sets 5 v for which the lists 
II(~-) are indeed sets and no lists, i.e. contain no multiple entries. For the 
greedy algorithm applied to (dAP) Theorem 3.1 can then be strengthened to 
hold for this relaxed notion of a d-dimensional Monge sequence. Hence 
(dAP)'s whose cost array has a d-dimensional Monge sequence can be solved 
in O(n d2) time. [If the Monge sequence is already at hand, O(n a) time 
suffices.] 

5. CONCLUSION 

In this paper we have investigated d-dimensional Monge sequences and 
generalized a known theorem of Hoffman for d = 2 to higher dimensions. 
Furthermore, we presented a polynomial-time algorithm for the construction 
and detection of a d-dimensional Monge sequence in a d-dimensional array 
for a fixed value of d. 

We would like to thank Bettina Klinz for pointing out some inconsistencies 
in a first version. 
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