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MOZ and MLL encoding a histone acetyltransferase and a histone methyltransferase, respectively, are targets for
recurrent chromosomal translocations found in acute myeloblastic or lymphoblastic leukemia. We have previ-
ously shown thatMOZ andMLL cooperate to activateHOXA9 gene expression in hematopoietic stem/progenitors
cells. To dissect the mechanism of action of this complex, we decided to identify new proteins interacting with
MOZ. We found that the scaffold protein Symplekin that supports the assembly of polyadenylation machinery
was identified bymass spectrometry. Symplekin interacts and co-localizes with bothMOZ andMLL in immature
hematopoietic cells. Its inhibition leads to a decrease of theHOXA9 protein level but not ofHoxa9mRNAand to an
over-recruitment of MOZ and MLL onto the HOXA9 promoter. Altogether, our results highlight the role of
Symplekin in transcription repression involving a regulatory network between MOZ, MLL and Symplekin.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Acute myeloblastic leukemias (AMLs) are characterized by acquired
somatic mutations and epigenetic alterations in genes that are essential
during hematopoiesis, for cell proliferation and survival pathways. Gene
expression patterns especially in AML-MLL (mixed lineage leukemia) or
-MOZ (Monocytic leukemia zinc finger protein) subtypes corroborate
increased expression of a subset of HOX proteins including HOXA9
[1–3]. HOXA9 is necessary for the tumoral process in MLL leukemias
[4]. Deciphering the mechanisms of HOXA9 regulation is necessary
to evaluate its function in normal and leukemic myelopoiesis. MOZ
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and MLL are recruited to target genes including Hox loci, as part of
complexes enhancing transcription [5–10].

MOZ (also named MYST3 or KAT6A) is a MYST (MOZ/YBF2/SAS2/
TIP60 homology domain) family histone acetyltransferase (HAT), which
catalyzes the transfer of an acetyl group from acetyl-CoA to the ε-amino
group of specific lysine residues. MOZ forms a tetrameric complex with
EAF6 (Esa1-associated factor 6 ortholog), the bromodomain PHD (plant
homeodomain) finger proteins BRPF1, BRPF2 or BRPF3 (bromodomain
and PHD finger-containing protein) and ING5 (inhibitor of growth 5)
to execute its activities [11]. This enzyme is involved in developmental
processes including hematopoiesis [12] and skeletogenesis [13,14].
Reciprocal chromosomal translocations triggering the fusion of MOZ
to various HATs [15,16] are identified in acute myeloid leukemias
(AMLs). Furthermore, analysis ofMoz knockout mice suggests a crucial
role in the maintenance of hematopoietic stem cells and differentiation
of myeloid cells [12,17,18]. MOZ acts as a transcriptional co-activator of
several hematopoietic transcription factors, e.g. Spi-1/PU.1 (spleen
focus forming virus proviral integration oncogene/purine-rich box-1)
or RUNX1 (runt-related transcription factor 1), via specific interactions
[19,20].

MLL (also known as KMT2A), a histone methyltransferase (HMT)
[21], is also involved in hematopoiesis [22], and is one of the most
frequently rearranged genes in acute leukemias [23]. While MOZ is
required for normal status of acetylated lysine 9 and 14 on histone
H3 (AcH3K9, AcH3K14) [9,10], MLL catalyzes H3 lysine 4 di- and tri-
methylation (Me2H3K4 and Me3H3K4) [21].
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We have previously characterized a functional interaction between
MOZ and MLL, leading to the transcriptional activation of the HOXA9
transcription factor in human hematopoietic stem/progenitor cells [24].

To better understand the mechanism of action of HOXA9 regulation,
we decided to identify MOZ andMLL interacting partners. We have iso-
lated and functionally characterized a novel MOZ- and MLL-associated
protein, Symplekin. We show here that this polyadenylation factor can
act as a repressor of the MOZ-MLL complex in human immature hema-
topoietic cells, suggesting a regulatory network betweenMOZ, MLL and
Symplekin.

2. Material and methods

2.1. Cells and cell culture

The human myeloblastic KG1 cell line (American Type Culture Col-
lection, Manassas, VA, USA) was grown in an RPMI 1640 Glutamaxme-
dium (BioWhittaker) supplemented with 20% fetal calf serum (FCS)
(BioWhittaker), penicillin (100 U/mL), streptomycin (100 μg/mL), and
amphotericin B (0.25 μg/mL) (BioWhittaker). The human HEK293T
cells were maintained in 10% FCS and in DMEM supplemented with
4.5 g/L glucose (BioWhittaker). Human cord blood cells were layered
over Ficoll-Paque (1.77 g/L) (Eurobio, Les Ulis, France), and the inter-
face containing mononuclear cells was harvested after centrifugation.
Then, the cells were washed, and CD34+ cells were purified using
a CD34+ cells magnetic isolation kit and AutoMACS™ separator
according to the manufacturer's instructions (Miltenyi Biotec, Bergish
Gladbach, Germany).

2.2. Immunoprecipitation and Western blotting

The HA-MOZ and the c-Myc-MOZ vectors were provided by Issai
Kitabayashi (NCCRI, Tokyo, Japan) and Edward Chan (Indiana Uni-
versity Cancer Center, Indianapolis, IN, USA), respectively, whereas
the Flag-Symplekin plasmid was obtained from James Manley
(Columbia University, New York, NY, USA). Residues 30–395 of
human Symplekin (cloned in pET28a vector obtained from Liang Tong
(Columbia University, New York, NY, USA)) were subcloned into the
Flag-pCDNA3 vector. The N-terminal FLAG-tagged full-length human
MLL complementary DNA was inserted into the pCI-neo vector (James
Hsieh, Washington University School of Medicine, St. Louis, MO, USA).

HEK293T (transiently transfected as indicated above or not) or KG1
cells were harvested, washed with PBS and lysed in a cold immunopre-
cipitation-lysis buffer (1% NP40, 150 mM NaCl, 50 mM Tris-HCl pH8,
protease inhibitor cocktail). The samples were incubated on ice
for 30 min. After centrifugation, 1 mg of total proteins was then pre-
cleared with protein G agarose beads (Upstate Biotechnology). MOZ
(a mouse monoclonal antibody directed against residues 856–870 of
MOZ (IGBMC, Illkirch, France)), Symplekin (Becton–Dickinson), MLL-C
(Upstate Biotechnology), c-Myc (9E10, Santa Cruz Biotechnology),
Acetyl Lysine (Cell Signaling Technology) specific antibodies associated
with protein G agarose beads, were used for immunoprecipitating
proteins with gentle shaking at 4 °C overnight. As controls, each
extract was also immunoprecipitated with irrelevant IgG (Santa Cruz
Biotechnology). For FLAG immunoprecipitations, protein extracts were
immunoprecipitated with an anti-FLAG M2 affinity gel (EZview Red
Anti-Flag M2 Affinity Gel, Sigma-Aldrich, St. Louis, MO, USA). Immuno-
precipitation complexes were washed five times in an ice-cold immu-
noprecipitation-lysis buffer. Proteins were eluted by boiling in a
Laemmli buffer. Eluated proteins were then separated by SDS-PAGE
and electroblotted to nitrocellulose membranes. Equivalent loading be-
tween lanes was confirmed by Ponceau Red staining. Membranes were
blocked in 1× PBS-T (0.1%) and fat-free dry milk or BSA (5%) (blocking
buffer) for one hour at room temperature, then incubated with the
primary antibodies diluted in the blocking buffer at 4 °C overnight.
Membranes were washed three times in 1× PBS-T (0.1%) for 10 min
each. For immunoblotting, anti-HOXA9 and anti-CPSF100were obtained
from Santa Cruz Biotechnology, and anti-c-IAP1 from R&D Technol-
ogy. For biotin blotting, streptavidin conjugated with dylight800
(Thermoscientific, Waltham, MA, USA) was used. Secondary antibodies
conjugated with horseradish peroxidase (FLAG Western-blotting) or
with fluorochromes were added, and the membranes were incubated
at room temperature for one hour. The membranes were washed
three times in 1× PBS-T (0.1%) for 10 min each. Anti-HSC70 (Santa
Cruz Biotechnology) was used to check loading control. For protein de-
tection, an ECLWesternblotting reagent kit (Millipore) and theOdyssey
infrared imaging system (LI-COR Biosciences, Lincoln, NE, USA) were
used.

2.3. In vitro binding assays

For direct in vitro binding assays, in vitro translation of c-Myc-MOZ,
MLL, Flag-Symplekin or Flag-Nter-Symplekin was carried out in rabbit
reticulocyte lysates (T7 Quick Coupled Transcription/Translation Sys-
tem, Promega, Madison, WI, USA). Transcend™ tRNA (Promega) was
added to the reaction mixture to biotinylate translated proteins.
Unbiotinylated in vitro translated products were precleared with
neutravidin-coated agarose beads (Pierce, Rockford, IL, USA). The pro-
teins were incubated overnight at 4 °C. Then, biotinylated proteins
were collected by incubation with neutravidin-coated agarose beads.
The beads were washed five times in the IP lysis buffer. Bound
proteins were eluted by boiling in the SDS loading buffer, separated by
SDS-PAGE, and analyzed by immunoblotting with appropriate antibod-
ies. The labeled protein bands were visualized by scanning the gel on an
Odyssey infrared imaging system (LI-COR).

2.4. Mass spectrometry

A lysate from HEK293T cells was prepared as described above.
MOZ associated with protein G agarose beads was used for
immunoprecipitating proteins. Eluated proteins were then separated
by SDS-PAGE. Coomassie blue stained bands were excised manually
from the gel and cut into 1 mm3 pieces. The gel fragments were
prepared as recently described [25]. Peptides were then analyzed by
MS and MS/MS with a MALDI-TOF/TOF UltraFlex II (Bruker Daltonics,
Bremen, Germany) mass spectrometer. Proteins were identified by
comparison to the humanMSDB (Mass Spectrometry protein sequence
DataBase) databank.

2.5. Immunofluorescence microscopy

Hematopoietic KG1 orHEK293T cellswere fixed in 4% paraformalde-
hyde, permeabilized in 0.1% Triton X-100 and saturated in PBS 1× 4%
BSA. The cells were incubated for 1 h at RT with the anti-MOZ (N19,
Santa Cruz Biotechnology) (dilution of 1:50), anti-Symplekin (dilution
of 1:200), anti-FLAG (Sigma-Aldrich) (dilution of 1:500) or anti-c-Myc
(dilution of 1:500). Then, the cells were incubated for 1 hwith antibod-
ies specific for mouse or goat immunoglobulin subclasses conjugated
to fluorochromes (anti-goat-Alexa 488 or anti-mouse-Alexa 568)
(dilution of 1:1000). Nuclei were counterstained with DAPI. The cells
were analyzed using a confocal laser scanning microscope (Leica TCS
SP2). Images were processed with Adobe Photoshop (adjustment of
brightness and contrast).

2.6. SiRNA knockdown

Ten millions of KG1 cells were transfected with siRNAs by
nucleoporation, according to the manufacturer's protocol (Amaxa).
SiRNAs, synthesized by Invitrogen, target human Symplekin (Sense:
5′-CGUCUGUGCUGUUUGGAGCUGACAA-3′) or MOZ (Sense: 5′-UUAA
UCUGCACUUCAGAGCCUCAGG-3′). A control siRNAwas used as a nega-
tive control (Silencer® Negative Control No. 1 siRNA Ambion).
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2.7. RNA isolation, reverse transcription, Q-PCR, poly(A) tail length

Total RNAwas extracted with a TRI Reagent® (Ambion) and reverse
transcribed with a random primer (Promega). Real-time PCR was
Fig. 1. Symplekin is associated with MOZ and MLL. (A) Symplekin interacts with MOZ in KG1 c
(B) Symplekin interacts with MLL. IP was performed with anti-MLL, then immunoprobed wi
performed with anti-MOZ, then immunoprobed with anti-MOZ or anti-Sympk. (D) Flag-Sym
into HEK293T cells. IP were performed with anti-Flag or anti-c-Myc, then immunoprobed as i
in vitro pulldown assays were performed with Flag-Sympk, Flag-Nter-Sympk, c-Myc-MOZ (E,F)
locytes lysates. Pulldown of biotinylated proteins was performed with neutravidin-coated agar
anti-Flag, Streptavidin, anti-c-Myc.
performed in triplicates with TaqMan probes from Applied Biosystems
and analyzed in an Applied Biosystems 7500 Fast Thermocycler. Values
for each PCR were normalized with 18S. The TaqMan® assays were the
following: Hs00191361_m1 (Symplekin), Hs00365956_m1 (Hoxa9),
ells. IP was performed with anti-MOZ, then immunoprobed with anti-MOZ or anti-Sympk.
th anti-MLL or anti-Sympk. (C) Symplekin interacts with MOZ in HEK293T cells. IP was
plekin interacts with c-Myc-MOZ. Flag-Sympk or c-Myc-MOZ vectors were transfected
ndicated. (E, F, G) Symplekin interacts directly with MOZ but not with MLL. As indicated,
or MLL (G), biotinylated (biot) or not (unbiot), produced by in vitro translation in reticu-
ose beads and protein interactions were revealed by SDS-PAGE and immunoblotted with



Fig. 2. (A)MOZ interactswith CPSF100 inKG1 cells. IPwas performedwith anti-MOZ, then
immunoprobedwith anti-MOZ or anti-CPSF100. (B) Symplekin is acetylated. A first IPwas
performedwith anti-Sympk, eluated, then a second IPwas performedwith anti-acetylated
lysine (anti-acK) and immunoprobed with anti-Sympk.
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Hs00198899_m1 (Moz), and Hs00610538_m1 (Mll). To measure
poly(A) tail lengths of Hoxa9 RNA, we employed the Poly(A) Tail-
Length Assay Kit provided by Affymetrix. Two gene-specific forward
and reverse primer setswere designed upstreamof the polyadenylation
site to correspond to controls for Hoxa9. The gene specific primers used
were the following: site 1 forward 5′-AACTTCTGTGTACTGGGTGAT-3′;
site 1 reverse CACTGGGAAATTCTTACAGCT-3′; site 2 forward 5′-TTA
TACACTATGAAACCGCCATT-3′; and site 2 reverse 5′-GGCCTTGAGGT
AACTATTGC-3′. The second set of primers uses the gene-specific
forward primer and the universal reverse primer provided with the
kit to generate a product that includes the poly(A) tails of Hoxa9.
Human actin polyadenylation was measured as a positive control with
primers from the kit. The PCR products were analyzed on polyacryl-
amide gels. To evaluate mRNA degradation, KG1 cells (20 × 106) were
transfected with siRNAs by nucleoporation. Twenty-four hours after
transfection, the cells were treated with Actinomycin D (1 µM)
(Sigma-Aldrich). RNA was extracted and analyzed at a different time.

2.8. ChIP assays

Briefly, 5 × 106 KG1 cells were fixedwith 1% formaldehyde to cross-
link DNA with proteins, lysed, and fragmented by sonication to obtain
DNA fragments of 200–1000 bp. A ChIP procedure was carried out
with modifications according to the manufacturer's instructions
(Upstate Biotechnology). After pre-clearing with salmon sperm DNA/
protein A (antibodies specific for histone modifications) or G agarose
beads, the samples underwent immunoprecipitationwith antibodies
specifically directed against Symplekin, MOZ, MLL-C, Me2H3K4 (Up-
state Biotechnology), Me3H3K4 (Upstate Biotechnology), AcH3K9
(Upstate Biotechnology), AcH3K14 (Upstate Biotechnology), RNA
polymerase II CTD repeat YSPTSPS phosphorylated Ser 5 (Abcam,
Cambridge, UK), IgA (Santa Cruz Biotechnology) (Control ChIP) or IgG
(Control ChIP) at 4 °C overnight. The beads were washed, protein/DNA
complexes eluted, then cross-links reversed by heating at 65 °C over-
night. After RNA and protein digestions, DNAwas purified on a spin col-
umn (NucleoSpin Extract II: Macherey-Nagel, Düren, Germany). For
sequential ChIP assays, the primary immunoprecipitation was done
using a Symplekin, MLL-C or MOZ antibody. The immunoprecipitated
complexes were eluted with a ChIP buffer. The eluate from Symplekin
orMOZ IPwas re-immunoprecipitatedwith the antibody corresponding
to the other protein. The presence of the promoter sequences in the
resulting re-ChIP immunoprecipitates were examined as described for
one-step ChIP. Real-time Q-PCR analysis was performed in an Applied
Biosystems 7500 Fast Real-Time PCR System. The ChIP primers used to
amplify regions of the promoter locus of HOXA9 were 5′-GGGGAGAC
GGGAGAGTACAG-3′ and5′-CGTCCAGCAGAACAATAACG-3′ (Invitrogen).
For internal controls of ChIP-Q-PCR, we designed the primers to amplify
an intronic region of HOXA9 (5′-CTCCTCCCTTCAAATCCGCC-3′ and 5′-
CAACTTCTGGCTCCTGGCC-3′). Input corresponding to total sonicated
DNA was used as a cell number control. Delta-delta Ct values of each
immunoprecipitated sample were normalized with those obtained
from the amplification of their respective input and by subtracting the
values obtained in the corresponding samples incubated without anti-
bodies. Results with IgA or IgG were arbitrarily considered as 1. Error
bars (standard deviation) correspond to the average of triplicates.
Therefore, in Q-ChIP experiments, the relative recruitment corresponds
to the ratio between the cycle threshold (Ct, obtained by Q-PCR) for
each specific ChIP (MOZ,MLL, Symplekin, histonemodifications or phos-
phorylated CTD), and the Ct obtained from the ChIP using an irrelevant
antibody (IgG or IgA).

2.9. Analysis of mRNA degradation

KG1 cells (20 × 106)were transfectedwith siRNAs bynucleoporation.
Twenty-four hours after transfection, the cells were treated with Actino-
mycin D (1 µM). RNA was extracted and analyzed at a different time.
2.10. Statistical analysis

A Mann–Whitney U test was used for statistical analysis. Differ-
ences were considered significant when p was less than .05. In all
cases, ⁎ represents p less than .05; ⁎⁎, p less than .01; and ⁎⁎⁎, p less
than .005.

3. Results

3.1. Symplekin is associated with MOZ and MLL

To isolate proteins associating with MOZ, the latter was
immunoprecipitated from human embryonic kidney HEK293T cells by
the anti-MOZ already described [24]. Mass spectroscopy analysis of
co-eluted proteins allowed the identification of Symplekin (Supplemental
Fig. 1A). Symplekin, which supports the assembly of polyadenylation
complexes [26,27], has been detected among other members of the
MLL supercomplex [28]. However, up to now the interaction between
MLL and Symplekin has not been validated by immunoprecipitation
assays.

To evaluate further the interactions that may occur between MOZ,
MLL and Symplekin in human immature hematopoietic cells, we
performed co-IP experiments using the KG1 AML0 cell line that
expresses these proteins. We observed that Symplekin interacts with
both MOZ and MLL (Fig. 1A, B). As a negative control, MOZ does not
immunoprecipitate cIAP1 (Supplemental Fig. 1B). In the human cord
blood CD34+ cells, Symplekin was detected after immunoprecipitation
with the MOZ antibody (Supplemental Fig. 1C), indicating that the
two proteins interact in normal hematopoietic stem/progenitor cells.
In HEK293T cells, endogenous Symplekin andMOZ proteins interact
with each other (Fig. 1C). We confirmed this interaction with
exogenous epitope-tagged proteins. The Flag-tagged Symplekin
co-immunoprecipitates the c-Myc-tagged MOZ from extracts of
HEK293T cells co-transfected with the corresponding expression
vectors (Fig. 1D).

To determine a direct interaction, we carried out in vitro binding
assays. In vitro translated c-Myc-MOZ, MLL, Flag-Symplekin and Flag-

image of Fig.�2
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Nter-Symplekin biotinylated (biot) or not (unbiot) were used as indi-
cated in the figure (Fig. 1E–G). Symplekin pulldown co-precipitates
c-Myc-MOZ, indicating that MOZ and Symplekin interact directly
(Fig. 1E, right and left panel). Otherwise, Nter-Sympk cannot interact
with MOZ, suggesting that the N-terminal extremity of Symplekin is
not involved in this interaction (Fig. 1E, middle and left panel). MOZ
pulldown leads to the precipitation of Symplekin, confirming the direct
interaction between these two proteins (Fig. 1F). We then tested if MLL
interacts directly with Symplekin. Biotinylated MLL pulldown precipi-
tates neither Symplekin nor Nter-Sympk (Fig. 1G), indicating that the
interaction we detect in KG1 cells is not direct. MOZ and MLL interact,
thus the interaction we detect between MLL and Symplekin may be
achieved through MOZ.

In mammals, effective cleavage requires four multi-subunit com-
plexes including CPSF (cleavage and polyadenylation specificity factor)
[29]. CPSF is required for the polyadenylation step. As symplekin exists
in a complex with CPSF100, we decided to examine a potential interac-
tion between MOZ and CPSF100. CPSF100 is found to interact with
MOZ (Fig. 2A) in KG1 cells, suggesting that various proteins of the
polyadenylation complex could be associated with MOZ.

Since MOZ is known to acetylate not only histones, e.g. RUNX1 [19],
we then examinedwhether the interaction observed between Symplekin
Fig. 3. Symplekin co-localizeswithMOZ. (A)MOZwas stainedwith anti-MOZand Symplekinwi
of both images (scale bar: 9 µm). (B)MOZwas stainedwith anti-MOZ and Symplekinwith anti-
both images (scale bar: 9 µm). (C) Flag-Sympk or c-Myc-MOZ vectors were transfected into HE
Nuclei were counterstained with DAPI. The merge is the overlay of both images (scale bar: 6 µ
and MOZ could lead to its acetylation. A first IP performed using anti-
Symplekin followed by subsequent IP with an acetylated lysine antibody
suggests its acetylation (Fig. 2B). This post-translational modification
may result from its direct interaction with MOZ.

Despite its clear role in mRNA polyadenylation, Symplekin has been
first identified in tight junctions and its sub-cellular localization can
change depending on the cell type [30–32]. We carried out double
staining of MOZ with Symplekin in KG1 cells (Fig. 3A). Symplekin,
which appears to be confined in the nucleus, co-localizes with MOZ.
Co-localization was confirmed in HEK293T cells, either using endoge-
nous proteins or exogenously expressed tagged proteins, c-Myc-MOZ
and Flag-Symplekin (Fig. 3B, C).

Altogether, these results demonstrate the association between
Symplekin, MOZ and MLL.

3.2. Symplekin modulates HOXA9 in immature hematopoietic cells

Symplekin is an essentialmember of the polyadenylationmachinery,
supporting its assembly and its activity [27,33]. In addition, Symplekin
has been described as a transcription co-regulator through its associa-
tion with transcription factors such as ZONAB/DbpA and HSF1 [34,35].
Since we previously showed that MOZ and MLL cooperate to activate
th anti-Sympk inKG1 cells. Nucleiwere counterstainedwithDAPI. Themerge is the overlay
Sympk inHEK293T cells. Nucleiwere counterstainedwithDAPI. Themerge is the overlay of
K293T cells. c-Myc-MOZ was stained with anti-c-Myc and Flag-Symplekin with anti-Flag.
m).

image of Fig.�3
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HOXA9 transcription, we thus examined whether the interaction of
Symplekin with MOZ andMLL could affect HOXA9 expression. To inves-
tigate the potential recruitment of Symplekin onto theHOXA9 promoter,
we carried out ChIP analyses in KG1 cells. After IP, the segment of the
HOXA9 promoter is amplified, indicating that Symplekin, like MOZ and
MLL, is recruited onto the HOXA9 promoter (Fig. 4A). Sequential ChIP
demonstrates that Symplekin is simultaneously recruited with MOZ or
MLL (Fig. 4B, C). Therefore, Symplekin, MOZ and MLL associate with
theHOXA9 locus in KG1 cells. These results may suggest that Symplekin
is a regulator for HOXA9 transcription.
Fig. 4. Symplekin is recruited onto HOXA9 promoter in KG1 cells. (A) The occupancy of
MOZ, MLL and Sympk at the HOXA9 promoter was measured by ChIP (n = 3). ChIP
analyses examining the MOZ, MLL, and Symplekin recruitment on HOXA9 promoter in
KG1 cells were performed. The enrichment of MOZ, MLL, and Symplekin was measured
byQ-PCR. The fold enrichment corresponds to the calculated ratio between the recruitment
of the different proteins or modifications (values obtained by the standard curve method)
and the input, normalized by the result obtained with the IgG. (B, C) MOZ or MLL are
simultaneously recruited with Symplekin. For sequential ChIP experiments (n = 3), a
second step of protein immunoprecipitation was carried out after the first elution.
We thus analyzedHOXA9 expression in absence of Symplekin orMoz
in KG1 cells (Supplemental Fig. 2). Surprisingly, Hoxa9 mRNA is not
affected by Symplekin down-regulation (Fig. 5A) while the HOXA9
protein level is markedly decreased (Fig. 5B). In contrast, the inhibition
of Moz induces a down-regulation of HOXA9 mRNA and protein level
(Fig. 5A,B).

Polyadenylation, a multi-step processing consisting in the cleavage
of the 3′ end of the mRNA and the synthesis of the poly(A) tail, is deter-
minant for RNA stability or export and translation efficiency. The role of
Symplekin in polyadenylation could explain why the HOXA9 protein
level decreases whereas Hoxa9 mRNA is not affected. A PCR-based
assay was used to assess the effect of Symplekin on Hoxa9 RNA 3′
poly(A) tail length. Total RNA from KG1 cells transfected with siRNA
targeting Symplekin (siSympk) or control siRNA (siCtrl) (Supplemental
Fig. 2) was retro-transcribed and annealed with two different primer
pairs reflecting the length of the poly(A) tail of Hoxa9 (Supplemental
Fig. 3). Experiments with siCtrl or siMoz were performed as controls.
There is amarked reduction in the length of the poly(A) tailwith siSympk
compared to that of the controls (Fig. 6A). Since polyadenylation is a
determining element for translation efficacy, decreased polyadenylation
by siSympk could explain reduced levels of the HOXA9 protein.

Polyadenylation is crucial for RNA stability. We tested whether
knockdown of Symplekin enhanced Hoxa9 mRNA degradation. KG1
cells transfected eitherwith the control siRNAor siSympkwere incubated
with actinomycin D, which interferes with the process of transcription.
The decay of Hoxa9 mRNA was measured from 10 min to 4 h (Fig. 6B).
Fig. 5. Symplekin affects HOXA9 protein level in KG1 cells. (A) Symplekin impacts HOXA9
expression. Cells were transfected with siCtrl, siMOZ or siSympk. HOXA9 expression was
measured 24 h after transfection by RQ-PCR (bar graphs: error bars represent standard
deviation) (n = 5). (B) Symplekin affects HOXA9 protein level. Cells were transfected
with siCtrl, siMOZ or siSympk. HOXA9 expression was measured 24 h after transfection
by immunoblotting performed with anti-Sympk, anti-MOZ, anti-HOXA9 or anti-HSC70.
One independent experiment out of three is shown (left panel). Quantitation of HOXA9
and Symplekin proteins from three independent experiments are also shown (bar graphs:
error bars represent standard deviation) (right panel).
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Fig. 6. Symplekin acts on polyadenylation of Hoxa9 mRNA. (A) Impairment in Hoxa9 polyadenylation after Symplekin knockdown. Cells were transfected with siCtrl (1), siMOZ (2) or
siSympk (3). The amplified products corresponding to polyadenylatedHoxa9 (left panel) or controls (right panels)were analyzed by PAGE. (B) Cellswere transfectedwith siCtrl or siSympk
and treated for 4 h with actinomycin D, 24 h after transfection. Hoxa9 mRNA level was measured by RQ-PCR. Error bars represent standard deviation (n = 3).
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After 1 h of treatment, Hoxa9 mRNA levels were significantly lower in
siSympk-treated cells than in the control cells. Therefore, a lack of
Symplekin decreases Hoxa9 mRNA stability. This is consistent with the
impairment of Hoxa9 mRNA polyadenylation observed after Symplekin
knockdown. From this result we could expect a decrease in global
Hoxa9 mRNA level after Symplekin inhibition. However, we observed
no variation of Hoxa9 mRNA level (Fig. 5A). We decided to clarify this
phenomenon since a specific molecular mechanism may counteract the
higher degradation of Hoxa9 mRNA.

3.3. Symplekin affects MOZ and MLL recruitment on HOXA9 promoter

We focused our work on the transcriptional effects of Symplekin on
HOXA9. Cells were transfectedwith siSympk, siMoz or siCtrl, followed by
ChIP analysis of theHOXA9 promoter. As expected from our previous re-
port [24], binding of MOZ or MLL to the HOXA9 promoter is decreased
afterMoz knockdown in KG1 cells, leading to a fall in histone modifica-
tions catalyzed by MOZ and MLL, i.e. AcH3K9, AcH3K14, Me2H3K4 or
Me3H3K4 (Fig. 7A, B and Supplemental Fig. 4). Interestingly, contrary
to what is observed in the intron of HOXA9 (Supplemental Fig. 5),
Symplekin inhibition induces an over-recruitment of MOZ or MLL onto
the HOXA9 promoter (Fig. 7A and Supplemental Fig. 4). Meanwhile,
the level of the corresponding post-translational modifications is
increased (Fig. 7B and Supplemental Fig. 4). To test if the accrued re-
cruitment of MOZ and MLL is associated with an activation of HOXA9
transcription, we assessed the phosphorylation status the C-terminal
domain (CTD) of the RNA-polymerase II (CTD-RNA-PolII) by ChIP
assays. Indeed, when transcription is initiated, this domain is phosphor-
ylated, thus initiation of transcription is associated with an increase in
CTD-RNA-PolII phosphorylation on the serine 5 onto target promoters.
After Symplekin knockdown, we can observe a rise in the serine 5-
phosphorylated form of the CTD-RNA-PolII onto HOXA9 promoter
(Fig. 7C). These results suggest an increase in HOXA9 transcription
after Symplekin inhibition through an accrued recruitment of MOZ and
MLL. Thus, depletion of Symplekin leads to a balance between a more
important Hoxa9 mRNA degradation and a boosted transcription,
making clear the constant global level of Hoxa9mRNA.

4. Discussion

HOXA9 is a homeobox transcription factor with pivotal functions
in embryogenesis, hematopoiesis and leukemogenesis [36]. HOXA9 is
greatly expressed in mouse and human primitive blood cells, and
downregulated as multipotent hematopoietic progenitors are commit-
ted into unipotent progenitors and mature cells [37–39]. High levels of
HOXA9 expression are very frequently observed in leukemic cells har-
boring the rearranged MLL gene [1] since HOXA9 is a direct target
gene for MLL chimeric proteins [40]. Its enhanced expression has also
been demonstrated to be crucial for proliferative advantage and survival
in leukemic cells [41], and it is related to poor prognosis for patients
with acute myeloid leukemia [42]. We have previously reported a func-
tional cooperation betweenMOZ andMLL, leading to the transcriptional
activation of the HOXA9 in human hematopoietic stem/progenitor cells
[24].

In this work we identified Symplekin as a new MOZ and MLL part-
ner, and we showed that Symplekin prevents their recruitment onto
HOXA9.

Pta1, the yeast counterpart of Symplekin, a member of the
polyadenylation machinery, is necessary for both cleavage and
polyadenylation tail synthesis [43]. Pta1 is known to interact with the
CTD-RNA-PolII [44] and with Ssu72, a CTD-RNA PolII phosphatase
[45], linking transcription initiation to polyadenylation [46], and

image of Fig.�6


Fig. 7. Symplekin prevents MOZ and MLL recruitment on HOXA9 promoter. ChIP experiments were carried out in cells transfected with siCtrl, siMOZ or siSympk. Cells were transfected
once with 500 pmol of Ctrl siRNA, MOZ siRNA or Sympk siRNA. Then, ChIP analyses examining MOZ, MLL, Symplekin or phosphorylated CTD-RNA-PolII recruitment and the status of
histonemodifications onHOXA9 promoter in KG1 cells were performed 48 h later. The enrichment ofMOZ, MLL, Symplekin and posttranslational modifications of histones wasmeasured
byQ-PCR. The fold enrichment corresponds to the calculated ratio between the recruitment of the different proteins ormodifications (values obtained by the standard curvemethod) and
the input, normalized by the result obtained with the IgG. (A) This panel corresponds to ChIP measuring MOZ, MLL or Symplekin occupancy (one out of five independent experiments).
(B) These panels represent post-translational modifications of histones (one out of four independent experiments). (C) This panel corresponds to ChIP measuring the occupancy of the
phosphorylated CTD-RNA-PolII. Error bars represent standard deviation (n = 3).
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improving gene-looping, a mechanism which promotes transcription
[47]. In vitro studies performed with the N-terminal domain of human
Symplekin revealed that it also interacts with human Ssu72 and the
CTD of RNA PolII [48] to stimulate polyadenylation when processing is
coupled with transcription.

Symplekin has also been described as a transcriptional co-regulator
via its association with several transcription factors. In case of cell stress,
Symplekin is recruited onto the HSP70 promoter through its interac-
tion with HSF1 (heat shock factor 1) promoting the polyadenylation
linked to transcription. Thus,Hsp70mRNA newly transcribed is more
efficiently processed, and its translation rate is improved [35]. In
contrast, Symplekin is an important co-factor for ZONA/B, a repressive
transcription factor, and altogether they silence RUNX1 expression in
undifferentiated intestinal cells [34]. In this case, Symplekin is crucial
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for ZONA/B recruitment onto the RUNX1 promoter. However, its role in
polyadenylation was not explored. Interestingly, our results indicate
that human endogenous Symplekin is bound onto a specific promoter
and acts as a repressive co-regulator to prevent the recruitment of the
well-known transcription co-activators MOZ and MLL (Fig. 7). Our
study is in contradiction with the idea that Symplekin may be involved
in the activation of transcriptional machinery. Pta1 representing ~50%
of Symplekin in size and sharing only 31% of similarity [26], this could
explain mechanistic differences reported by this study and other re-
ports. Finally, a differential interaction network promoter-dependent
targeted by Symplekin may also influence its transcriptional activity
(co-repressor versus co-activator) [34,35].

Symplekin's post-translational modifications could highlight its con-
tradictory role. Indeed, its sumoylation is essential for its activity as a
polyadenylation factor [49]. Since we have shown that Symplekin is also
acetylated, further studies on these modifications will be necessary to
explain its complex role in regulating transcription and polyadenylation.

Altogether, these findings indicate that Symplekin exhibits a tran-
scriptional role by controlling the function of MOZ-MLL in human
immature hematopoietic cells.
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