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Abstract High reliability users of microelectronic devices have been derating junction temperature

and other critical stress parameters to improve device reliability and extend operating life. The reli-

ability of a semiconductor is determined by junction temperature. This paper gives a useful analysis

on mathematical approach which can be implemented to predict temperature of a silicon die. The

problem could be modeled as heat conduction equation. In this study, numerical approach based on

implicit scheme and Arithmetic Mean (AM) iterative method will be applied to solve the governing

heat conduction equation. Numerical results are also included in order to assert the effectiveness of

the proposed technique.
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open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

High power is usually encountered in a power device applica-
tion and it is important to make power devices reliable for

their intended application. In order to achieve this goal, con-
siderations have to be taken regarding reliability and perfor-
mance. During the design phase, especially when a new

platform for new technology is involved, thorough calculations
and simulations are carried out to ensure the designed
electrical parameters and other reliability characteristics are
optimized. High reliability users of microelectronic devices

have been derating junction temperature and other critical
stress parameters for decades to improve device reliability
and extend operating life [1]. It is in the first phase, i.e.,

design phase where semiconductor devices are stressed for
reliability and performance [2] and it is very important to
predict junction temperature at this phase. Consequently,

corresponding electrical circuits as thermal modeling are
widely applied because of their easy application in circuit
simulators.

The present paper gives a performance analysis of the
finite-difference method (FDM) with Arithmetic Mean (AM)
iterative method in determining peak junction temperature of
semiconductor device. Previously, the AM method has been

applied extensively for solving various types of matrix
equations problems. The effectiveness of the AM method
and its variants were studied and tested on linear and nonlinear

systems, refer [3–6] for recent papers.
The rest of this paper is organized in the following way. The

mathematical modeling and numerical approach to determine

peak junction temperature of semiconductor device will be
elaborated in Sections 2 and 3 respectively. In Section 4, some
simulation results are included. The discussions and conclud-

ing remark are given in Section 5.
2. Mathematical modeling

The following one-dimensional heat conduction equation is
considered in modeling the thermal control system

K
@2Tðx; tÞ
@x2

¼ qc
@Tðx; tÞ
@t

ð1Þ

since the thermal characteristics of silicon are assumed to be
independent of temperature [7]. The T;K; q and c represent

the absolute temperature, thermal conductivity of the semicon-
ductor device (silicon), mass density of silicon and specific
heat of silicon respectively. An Eq. (1) satisfies the following

boundary conditions

SK @T
@x

��
x¼0 ¼ �Pin

TðL; tÞ ¼ Tin

)
ð2Þ

where S;Pin;L and Tin are surface of silicon, input power,
thickness of vertical power device and input temperature

respectively.
Heat is generated at the top surface of silicon and flows lin-

early along the x-axis which is perpendicular to the silicon sur-
face, S. Thus, the top surface is considered to be a geometrical

boundary of the device at x ¼ 0 and the input power is
assumed to be uniformly dissipated. Meanwhile, the lower sur-
face i.e. at x ¼ L is considered to be the cooling boundary and
the temperature is assumed to be equal to the input tempera-

ture, Tin. Also, the convection and radiation are assumed to
be negligible.
3. Numerical approach

In this paper, numerical approach based on implicit scheme
and AM iterative method will be considered. The following

subsections will explain in detail the application of the numer-
ical approach.

3.1. BTCS discretization scheme

As aforementioned, in this paper, FDM based on implicit
scheme i.e. Backward Time, Centered Space (BTCS) is utilized

in order to construct algebraic equations for problem (1).
Now, let the solution domain be partitioned uniformly in both
x and t. Thus, the discrete set of points of x and t, respectively,
be given by xi ¼ iDx ði ¼ 0; 1; 2; . . . ; n� 2; n� 1; nÞ and

tj ¼ jDt ðj ¼ 0; 1; 2; . . . ;m� 2;m� 1;mÞ where

Dx ¼ L

n
ð3Þ

and

Dt ¼ t

m
: ð4Þ

For simplicity, the following notation i.e., Ti;j � Tðxi; tjÞ will
be applied subsequently.

By using BTCS scheme

@T

@t
¼ Ti;jþ1 � Ti;j

Dt
þOðDtÞ ð5Þ

and

@2T

@x2
¼ Ti�1;jþ1 � 2Ti;jþ1 þ Tiþ1;jþ1

ðDxÞ2
þOðDx2Þ: ð6Þ

By substituting formulae (5) and (6) (by dropping the trunca-
tion error terms), an application of the BTCS scheme reduces

problem (1) to

K
Ti�1;jþ1 � 2Ti;jþ1 þ Tiþ1;jþ1

ðDxÞ2
¼ qc

Ti;jþ1 � Ti;j

Dt
ð7Þ

which can be rewritten as follows

�aTi�1;jþ1 þ bTi;jþ1 � aTiþ1;jþ1 ¼ cTi;j ð8Þ

with a ¼ K

ðDxÞ2 ; b ¼
2K

ðDxÞ2 þ
qc
Dt and c ¼ qc

Dt.

An implementation of the BTCS scheme requires solving a

linear system at each time step.
Whereas first order discretization of the boundary condi-

tion gives

SK
T1;jþ1 � T0;jþ1

Dx
¼ �Pin ð9Þ



Figure 1 Equivalent thermal circuit networks obtained by using

FDM. (source [7]).
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and

Tn;jþ1 ¼ Tin: ð10Þ

The equivalent circuit of one dimensional thermal model using
FDM is shown in Fig. 1, where R and C are the elementary

thermal resistance and capacitance, respectively.
Following the conventional process, the generated

BTCS algebraic equations (refer Eq. (8)) with the boundary

conditions (9) and (10) can be represented in matrix
form as

AT ¼ U ð11Þ

where

A ¼

r �a

�a r �a 0

�a r �a

. .
. . .

. . .
.
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;

T ¼
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..
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and U ¼
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..

.
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with

r ¼
b� a; i ¼ 1

b; i ¼ 2; 3; . . . ; n� 2; n� 1

�

and

Ui;j ¼
cTi;j þ a Dx

SK
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cTi;j; i ¼ 2; 3; . . . n� 3; n� 2

cTi;j þ aTin; i ¼ n� 1
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3.2. Arithmetic Mean iterative method

In this section, the formulation and implementation of the AM
method to solve resulting linear system (11) will be discussed.
Fundamentally, each iteration of the AM method consists of

solving two independent linear systems i.e. T1 and T2. Now,
let us consider the following splitting

A ¼ D� V�W ð12Þ

where D;�V and �W are diagonal, strictly lower triangular
and strictly upper triangular matrices of A respectively. The
general scheme of AM method can be written as follows

ðD� xVÞT1 ¼ ½ð1� xÞDþ xW�TðkÞ þ xU

ðD� xWÞT2 ¼ ½ð1� xÞDþ xV�TðkÞ þ xU

Tðkþ1Þ ¼ 1
2
ðT1 þ T2Þ

9>=
>; ð13Þ

where x is an acceleration parameter. The performance of the

AM method can be very often drastically improved with the
proper choice of the x. Based on the scheme (13), the iteration
matrix of AM method, YAM is defined as

YAM ¼
1

2

ðD� xVÞ�1ðð1� xÞDþ xWÞþ
ðD� xWÞ�1ðð1� xÞDþ xVÞ

" #
: ð14Þ

It is already noted that the AM method converges if and only
if spectral radius of the iteration matrix is less than one i.e.
fðYAMÞ < 1 and 0 < x < 2 [5]. By determining values of

D;�V and �W as mentioned in Eq. (12), an algorithm of
AM method to solve problem (1) would be generally described
in Algorithm 1.

Algorithm 1. AM method

i. Set all the parameters

ii. Iteration cycle

for j ¼ 1; 2; 3; . . . ;m� 2;m� 1;m

for k ¼ 0; 1; 2; . . . until convergence do

1. Sweep 1

i) Level 1

for i ¼ 1; 2; 3; . . . ; n� 3; n� 2; n� 1

T1
i;jþ1  ð1� xÞTðkÞi;jþ1 þ x

r Ui;j þ aTðkþ1Þi�1;jþ1 þ aTðkÞiþ1;jþ1

h i
ii) Level 2

for i ¼ n� 1; n� 2; n� 3; . . . ; 3; 2; 1

T2
i;jþ1  ð1� xÞTðkÞi;jþ1 þ x

r Ui;j þ aTðkÞi�1;jþ1 þ aTðkþ1Þiþ1;jþ1

h i
2. Sweep 2

for i ¼ 1; 2; 3; . . . ; n� 3; n� 2; n� 1

T
ðkþ1Þ
i;jþ1  1

2 ðT
1
i;jþ1 þ T2

i;jþ1Þ
iii. Convergence test. If the convergence criterion is satisfied i.e.

the maximum norm kTðkþ1Þ � TðkÞk 6 e (where e is the

convergence criterion) is satisfied, go to Step iv. Otherwise, go to

Step ii.

iv. Stop.



Table 3 Numerical results for case t ¼ 0:010.

n Methods k CPU Tmax

30 GS 46,424 1.55 369.1622

AM 11,457 (x ¼1.8) 1.28 369.1622

pdepe – – 371.5474

60 GS 178,336 6.95 370.3479

AM 29,839 (x ¼1.9) 3.33 370.3479

pdepe – – 371.5452

90 GS 329,889 18.32 370.7430

AM 50,575 (x ¼1.9) 6.15 370.7430

pdepe – – 371.5507

120 GS 450,078 22.35 370.9406

AM 75,013 (x ¼1.9) 9.17 370.9406

pdepe – – 371.5497
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4. Numerical simulations and discussions

It is important to define the initial and boundary conditions
properly, as it will affect the outcome significantly. At time

t ¼ 0, it is assumed to be 294 Kelvin (which is the room tem-
perature). Meanwhile, for boundary conditions (refer Eq.
(2)), it defines the value at x ¼ 0 and x ¼ L. At lower

boundary i.e. x ¼ 0, Neumann condition is considered where
the temperature gradient exists. For upper boundary, x ¼ L
which is considered as the cooling boundary and assumed
the temperature to be constant, Tin ¼ 300:15 Kelvin. The

other input parameters are L ¼ 0:055 cm, S ¼ 0:1 cm2,
qc ¼ 1:63 J/K/cm3, K ¼ 1:54 W/cm/K and Pin ¼ 200 W.

For the numerical simulations, parameters such as the num-

ber of iterations (k), computational time in seconds (CPU) and
maximum temperature (Tmax) are measured for the
Table 1 Numerical results for case t ¼ 0:002.

n Methods k CPU Tmax

30 GS 12,155 0.88 355.7851

AM 4322 (x ¼1.6) 0.50 355.7851

pdepe – – 357.5525

60 GS 45,725 1.85 356.5180

AM 10,462 (x ¼1.8) 1.30 356.5180

pdepe – – 357.5523

90 GS 99,891 4.68 356.7612

AM 18,881 (x ¼1.8) 2.34 356.7612

pdepe – – 357.5435

120 GS 173,960 10.14 356.8826

AM 27,746 (x ¼1.9) 3.59 356.8826

pdepe – – 357.5460

150 GS 211,122 12.38 356.9554

AM 36,920 (x ¼1.9) 4.85 356.9554

pdepe – – 357.5539

Table 2 Numerical results for case t ¼ 0:006.

n Methods k CPU Tmax

30 GS 31,506 1.11 368.5538

AM 8915 (x ¼1.7) 0.85 368.5538

pdepe – – 370.9317

60 GS 120,789 4.65 369.6896

AM 22,635 (x ¼1.9) 2.57 369.6896

pdepe – – 370.9455

90 GS 264,487 12.88 370.0674

AM 37,943 (x ¼1.9) 4.64 370.0674

pdepe – – 370.9221

120 GS 388,332 21.25 370.2562

AM 55,476 (x ¼1.9) 6.74 370.2562

pdepe – – 370.9241

150 GS 573,252 27.36 370.3694

AM 75,428 (x ¼1.9) 9.77 370.3694

pdepe – – 370.9451

150 GS 506,660 29.02 371.0591

AM 103,400 (x ¼1.9) 13.35 371.0591

pdepe – – 371.5454

Table 4 Percentage gains in terms of number of iterations and

computational time.

Elapsed time %k %CPU

t ¼ 0:002 64.44–84.06 29.72–64.60

t ¼ 0:006 71.70–86.85 23.42–68.29

t ¼ 0:010 75.32–84.67 17.41–66.44
comparative analysis and the value of initial datum, Tð0Þ, is
set to zero. The optimal value of x for AM method is chosen

within �0:1 by a trial and error process. All the simulations are
performed on a personal computer with Intel(R) Core(TM) i3-
2328 (2.20 GHz, 2.20 GHz) and 2.60 GB RAM, and the pro-

grams are compiled by using MatLab. In addition, numerical
results of the conventional Gauss–Seidel (GS) method and
built-in function in Matlab i.e. pdepe are also included in order
to verify the performance of the AM method. In this study, the

convergence criterion for GS and AM methods is e ¼ 10�10

and three different elapsed time i.e. t ¼ 0:002; t ¼ 0:006 and
t ¼ 0:010 are considered. Numerical results from the simula-

tions are presented in Tables 1–3. Meanwhile, temperature
profile of each tested n for t ¼ 0:002; t ¼ 0:006 and t ¼ 0:010
is illustrated in Figs. 2–4, respectively. Based on numerical
results obtained (Tables 1–3), percentage gains in terms of

number of iterations (%k) and computational time (%CPU)
of the AM method compared with GS method are presented
in Table 4.

5. Conclusion

In this paper, numerical approach based on BTCS scheme and

AM method has been successfully implemented in determining
peak junction temperature of semiconductor device. Based on
the numerical results obtained, it clearly shows that an applica-

tion of the AM method reduced the number of iterations and
computational time compared to conventional GS method,
refer Table 4. The numerical solutions obtained by using

AM iterative method are in good agreement with the GS
and pdepe methods. Overall, AM method is more superior



Figure 2 (a)–(e) Show the temperature profile for the case t ¼ 0:002.
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Figure 3 (a)–(e) Show the temperature profile for the case t ¼ 0:006.

1208 M.S. Muthuvalu et al.



Figure 4 (a)–(e) Show the temperature profile for the case t ¼ 0:010.
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compared to GS method in determining the peak junction
temperature. For the future works, this work can be extended
to predict the actual IC die temperature of semiconductor

device.
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