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The paper proposes an unitary strategy for the static analysis of general cable nets under conservative
loads. A form-finding is first performed in order to initialize the successive non linear analysis. The
numerical procedures carried on in both steps, form finding and structural analysis of the net, employ
a three dimensional elastic catenary element. Equilibrium conditions at internal nodes and kinematic
compatibility at the end nodes of each cable are used to derive the global equations of the net. When
the pre-stresses are high and the topology of the net is involved, an accurate initializing solution is essen-
tial for the convergence of the successive numeric non linear structural analysis (performed by Newton
method). The numerical applications highlight the capability of the proposed procedure to solve three
dimensional problems with taut and slack cables, out of plane distributed forces (modeling wind loads),
point loads along the cables. The contemporary presence of cables and compression truss elements is also
considered testing the effectiveness of the method in the analysis of tensegrity structures.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

An effective and accurate cable model is a main requisite for the
analysis of cable structures. A most desirable property is the capa-
bility to perform well for both the case of taut and sagged cables.
Furthermore, accuracy and presence of point forces along the
cables should not rely on sub-element division. In this way the
nodes are located at cable intersections and external points only.
Such requisites can only be met by catenary elements, first intro-
duced by Peyrot and Goulois (1978, 1979) and Jayaraman and
Knudson (1981) and extended to the case of non-conservative con-
stant load in Ahmadi-Kashani and Bell (1986, 1988a,b). Catenary
elements without internal joints have been implemented to solve
real engineering problems and have been proven to perform better
than finite elements based on interpolation functions (Irvine,
1992). The study reported in Freire et al. (2006) highlights that
pseudo linear approaches and modified modulus elements are
inappropriate to analyze steel cable-stayed bridges as the non lin-
ear effects produced by the coupling between cable sag and large
displacements, a decisive issue in the global behavior of those
structures, can be accurately estimated by catenary elements.
The strong nonlinearities arising in cable-pulley systems such as
ski lifts, electrical transmission lines and long-span bridges are
correctly reproduced following the catenary model (Bruno and
Leonardi, 1999; Such et al., 2009), which is also suitable for
dynamic analysis (Thai and Kim, 2011) and cable damage evalua-
tion (Lepidi et al., 2007). However, in the study of dynamics and
stability of shallow cables, an asymptotic analytical model is com-
monly used in which the catenary is well approximated by a parab-
ola, see Lee and Perkins (1992) and Luongo and Piccardo (1998,
2008), the actual influence of this hypothesis could be verified by
using a numerical procedure based on elastic catenary elements.

The catenary cable element can take into account elastic defor-
mation and, when the three dimensional analytical equations are
formulated in the global reference system, it allows a simpler res-
olution of cable nets (Andreu et al., 2006). Closed form solution
have also been presented to encompass concentrate and distrib-
uted forces along the cable without increasing the number of nodes
(Sagatun, 2001; Impollonia et al., 2011).

Although the advantage of using cable elements based on cate-
nary solution has been established in the literature, their capability
to tackle more complex layout with several nodes and general
loads has not been fully investigated and it will be the goal of
the present paper. To this aim the initial state under cable pre-
stresses and cable self weight must be accurately predicted by a
suitable form finding procedure. This solution will be the initializ-
ing step for the subsequent analysis with additional external loads
occurring during life service such as wind loads, snow loads and
cladding. Different approaches to the form finding problem of
self-stressed structures are available in the literature, i.e. force
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Fig. 1. Sketch of cable equilibrium; s0; sðSÞ and sL are the internal tension at cable
origin, generic abscissa S and cable end, respectively.
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density method (FDM), dynamic relaxation and natural strain. In this
work we approach the form-finding by FDM. The concept of the
force density as shape parameter was developed by Schek
(1974). Successively Haber and Abel (1982) proposed the assumed
geometric stiffness method, in which the force density parameter
was given mechanical interpretation of geometric stiffness. On this
research line Bletzinger and Ramm (1999) proposed the up-dated
reference strategy as an iterative optimization procedure to detect
the minimal surface. Analogously, Pauletti and Pimenta (2008)
starting from the work of Argyris et al. (1974) presented a proce-
dure called natural force density method.

Force densities play the role of degrees of freedom of the equi-
librium shape which is singled out by a linear procedure or by a
non linear one if some constraint are imposed with the aim to
satisfy additional conditions. Deng et al. (2005) proposed a self
weight parabolic element for the form-finding of slack cable nets
in the analysis of the different configurations during the erection
process of a cable net structure. Cuomo and Greco (2012) devel-
oped the catenary force density method (C-FDM), i.e. an extension
of FDM including self weight of the catenary element in the form-
finding.

The procedure proposed herein takes advantage of the non lin-
ear form-finding method developed in Cuomo and Greco (2012)
which rigorously takes into account cable self weight in the equi-
librium of the pre-stress state and that, therefore, can also be
applied to slack cables or very heavy elements. In this case, indeed,
the initial configuration determined with the equivalent truss ele-
ment can be very far from the effective catenary configuration. This
goal is reached retaining the exact equilibrium equations of the
heavy cable. It is shown that the use of the exact equilibrium con-
ditions leads to a form-finding method that is very similar to the
standard force density method, although it requires the solution
of a non linear system of equations. In this way an accurate initial
configuration is produced for complex cable nets with both slack
and taut cables.

Cable equations are derived in 3D vector form following (Impol-
lonia et al., 2011), allowing cable elastic deformation, arbitrarily
oriented constant distributed loads and in-span point forces. These
equations specify, in closed form and with reference to the strained
configuration: (i) the relationship, in the global reference system,
between cable tension at the generic cable point and the same
quantity at cable origin; (ii) the position of the generic cable point
with reference to cable origin. The conditions of equilibrium at
each internal node and kinematic compatibility at the end node
of each cable are imposed according to cable connectivity so to
derive the non linear global equations of the entire net. No
recourse to rotation matrix is needed as the same reference system
is adopted for all cables.

Numerical applications assess that the solution of the nonlin-
ear system, with unknowns given by free nodes position and
tension vector at cable origins, is easily determined by Newton
method if unknown quantities are set to the initial values
resulting from the preliminary form-finding. In this case even
with slackening and decreasing of stiffness of some cables, the
solution can be reached with few iterations (Impollonia et al.,
2011).

Finally, the study of the Jawerth net (Mollmann, 1970) is
carried on also with the aim to make a comparison of the
results with those of other authors. A 3D version of the net,
obtained by adding out of plane stay cables, is analyzed under
the action of wind load modeled as a simple constant
horizontal load on each cable. More refined wind load such
as those presented in Lazzari et al. (2001), Di Paola (1998),
Impollonia et al. (2011a,b) could be only be considered by
adopting associate catenary formulations (Ahmadi-Kashani
and Bell, 1988a).
2. Cable element formulation

The equilibrium equation is derived with reference to the inter-
nal tension of the cable, sðSÞ, tangent to the current centroid curve
(i.e. the cable in the strained configuration). The Lagrangian
coordinate S, (0 6 S 6 L with L the length of the unstrained cable),
represents the arc length of the unstrained cable between the gen-
eric centroid point and the cable origin. Indicating as p ¼ pðSÞ the
position vector of the cable axis of the generic (strained) configura-
tion, its tangent (non unit) vector can be written as t ¼ dp

dS, then the

unit tangent vector is given by t̂ ¼ t
ktk.

Linear elastic behavior, ksk ¼ EAe, is considered where E is the
Young’s modulus and A is the cross-sectional area in the unstrained
configuration; only small deformations are allowed so that
eðSÞ ¼ ds

dS� 1 > 0 is the strain of the cable (s is the arc-length in
the strained configuration).

2.1. The equilibrium equation

Let be qS the distributed line load (referred to the unstrained
configuration) acting on the cable, R0 and RL the boundary forces
at its ends. The equilibrium equations is cast as follows

�ds
dS
¼ qS; ð1Þ

so that at the boundaries

s0 ¼ sð0Þ ¼ �R0; sL ¼ sðLÞ ¼ RL: ð2Þ

By integrating Eq. (1) in ½0; S�, one gets

sðSÞ ¼ s0 �
Z S

0
qS dS: ð3Þ

In the following, let us assume qS to be constant over S, so
that qSðSÞ ¼ qS ¼ qSp, where qS ¼ kqSk is the intensity and p is
the direction of the line load, both constant with S. Accordingly,
Eq. (3) gives

sðSÞ ¼ s0 � qSS; ð4Þ

for the generic segment ½0; S� and globally

sL ¼ s0 � qSL: ð5Þ

A graphic representation of the equilibrium equations (4) and (5) is
shown in Fig. 1. Eq. (4) is suitable for cables under self weight,
where qS is the self weight per unit unstrained length. However,
in practical applications of cable nets where the displacement pro-
duced by the external loads are small due to high initial pre-stress,



Fig. 2. Unstrained configuration (solid) with 0 6 S 6 L and strained configuration
(dashed) with 0 6 s 6 l under uniformly distributed load.
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qS can also model wind loads. More general cases, such as those re-
lated to the associate catenary cannot be correctly described by Eq.
(4) and are discussed in Ahmadi-Kashani and Bell (1988a). In the
following the pedex S will be omitted and the load q is tacitely re-
ferred to the unstrained configuration.

2.2. Elastic catenary solution

The equation governing the strained cable configuration is
derived assuming uniform distributed load and also allowing the
presence of an additional in-span point force.

2.2.1. Uniform distributed load
The equations of the equilibrated configuration of an extensible

cable are derived under the assumptions of perfect shear and bend-
ing flexibility, following Impollonia et al. (2011). The case of a uni-
form distributed load, q ¼ qp, is first considered.

The equilibrium equation for a segment ½0; S�, with S 6 L, is
given by (4) where s0 ¼ fs0

x ; s0
y ; s0

zg is the vector collecting the
tension force components at cable origin. Recalling that the
cable tension is a vector along the current tangent of the cable
configuration, one has

t̂ðSÞ ¼ sðSÞ
ksðSÞk ; ð6Þ

where, in virtue Eq. (4), the modulus of the tension is given by:

ksðSÞk ¼ ks0 � qSk: ð7Þ

It is not trivial to observe that this definition (as clear from Eq. (6))
rules out compression for the cable. Furthermore, assuming linear
elastic behavior and small deformation one gets

ds
dS
¼ ktk ¼ 1þ e ¼ 1þ ksðSÞk

EA
: ð8Þ

Therefore, from Eqs. (6) and (8) the tangent vector splits in the sum
of two addend

t ¼ dp
dS
¼ ktkt̂ ¼ 1þ ksðSÞk

EA

� �
sðSÞ
ksðSÞk ¼

sðSÞ
ksðSÞk þ

sðSÞ
EA

: ð9Þ

The sought closed form of catenary equation,

pðSÞ ¼ pð0Þ þ
Z S

0
tdS; ð10Þ

is obtained exploiting Eq. (9) and can be cast in the following form:

pðSÞ ¼ pð0Þ þ pCðSÞ þ pEðSÞ; ð11Þ

with

pCðSÞ ¼
Z S

0

sðSÞ
ksðSÞk dS; pEðSÞ ¼

1
EA

Z S

0
sðSÞdS; ð12Þ

where pð0Þ is cable origin position, pCðSÞ represents the unstrained
solution while pEðSÞ gives the contribute of the elastic increment.
The second integral can be easily solved, so to give:

pEðSÞ ¼
qS
EA

s0

q
� p

S
2

� �
: ð13Þ

The first integral in Eq. (12) requires some manipulations that are
exposed in Impollonia et al. (2011) and can be written as follows:

pCðSÞ ¼ ðI� ppTÞ s
0

q
ln

qðSÞ
qð0Þ

� �
� p

s0

q
� pS

����
����� s0

q

����
����

� �
; ð14Þ

where the function qðSÞ is defined as:

qðSÞ ¼ ksðSÞk � pTsðSÞ ¼ ks0 � qSk � pTðs0 � qSÞ: ð15Þ

Finally, the strained configuration of the cable is given by
pðSÞ ¼ qS
EA

s0

q
� p

S
2

� �
þ ðI� ppTÞ s

0

q
ln

qðSÞ
qð0Þ

� �

� p
s0

q
� pS

����
����� s0

q

����
����

� �
þ pð0Þ: ð16Þ

Once s0 and pð0Þ are determined, the length of a strained segment
of the cable can be evaluated by means of Eq. (8):

sðSÞ ¼
Z S

0
1þ sðSÞ

EA

� �
dS ¼ Sþ DLðSÞ; ð17Þ

with the global elongation

DL ¼
Z L

0

sðSÞ
EA

dS ð18Þ

and strained length of the cable l ¼ Lþ DL. Fig. 2 sketches the
defined quantities.

2.2.2. Additional one point force
Let us assume that one point force f is applied at abscissa �S on

the cable along with the distributed load q. The equilibrium equa-
tion of the generic cable segment, analogous to (4), in this case is
given by

sðSÞ ¼ s0 � fU½S� �S� � qS; ð19Þ

where U½S� �S� is the unit step function. For S 6 �S the equilibrium
solution reduces to that for cables with distributed load only, Eq.
(16), while for S > �S, see Impollonia et al. (2011), the solution is
given by

pðSÞ ¼ q
EA

s0S
q
� fðS� �SÞ

q
� pS2

2

 !
þ ðI

� ppTÞ s0

q
ln

qð�SÞqFðSÞ
qð0ÞqFð�SÞ

" #
� f

q
ln

qFðSÞ
qFð�SÞ

" # !

� p
s0

q
� f

q
� pS

����
����þ s0

q
� p�S

����
����� s0

q

����
����� s0

q
� f

q
� p�S

����
����

� �
þ pð0Þ;

ð20Þ

with

qFðSÞ ¼ ks0 þ f � pSk � pTðs0 þ f � pSÞ: ð21Þ

An extended formula accounting for more point forces along the
cable and thermal loads is available in Impollonia et al. (2011).



Fig. 3. Equilibrium at node i and compatibility for cables connected to node i. Gray
arrows are the forces acting on the node.
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3. Nodal equilibrium and compatibility conditions for cable
structures

The problem equations for cable nets are now defined. These
are: (i) equilibrium equations at free nodes and (ii) compatibility
equations, which are expressed as connectivity conditions at the
end node of each cable exploiting Eq. (16) or (20).

Assume that the cable net has N ¼ N1 þ N2 nodes, with N1 free
nodes and N2 fixed nodes, and M cables. For the sake of simplicity
free nodes will be consecutively numbered from 1 to N1 whereas
the fixed nodes from N1 þ 1 to N. Let i be the generic free node
of the net, with i ¼ 1;2; . . . N1, and j the generic cable connected
to the node j1 (origin of the cable) and j2 (end of the cable), with
j ¼ 1;2; . . . M and j1; j2 ¼ 1;2 . . . N. The equilibrium of the ith node,
joining ni cables, is given by

Xni

j

s�j

 !
þ Fi ¼ 0; ði ¼ 1;2; . . . N1Þ ð22Þ

where Fi is the external force applied to the node and s�j , if only dis-
tributed load is present, is given by

s�j ¼
þs0

j ; if j1¼ i; ði:e: the cable origin is at the nodeÞ

�sL
j ¼� s0

j �qjLj

� �
; if j2¼ i; ði:e: the cable end is at the nodeÞ

8><
>:

ð23Þ

According to the connectivity of the net, the jth cable is joined to
nodes j1 (cable origin) and j2 (cable end), so that the compatibility
equations relevant to the jth cable under uniform distributed load
are

pjð0Þ ¼ Xj1 ; pjðLjÞ ¼ Xj2 ; ð24Þ

being Xj1 and Xj2 the coordinates of the nodes of the net (free or
fixed) in the strained configuration. The position of the cable ends
is derived from Eq. (16) and is given by
pjðLjÞ ¼
qjLj

EjAj

s0
j

qj
� pj

Lj

2

 !
þ I� pjp

T
j

� � s0
j

qj
ln

qjðLjÞ
qjð0Þ

" #

� pj

s0
j

qj
� pjLj

�����
������ s0

j

qj

�����
�����

 !
þ pjð0Þ; ðj ¼ 1;2 . . . MÞ: ð25Þ
Analogous equations can be written if a point force is acting on the
cable referring to Eqs. (19) and (20). An example of equilibrium and
compatibility relationships is shown in Fig. 3.

Assume that unstrained length Lj, cross sectional area Aj, elas-
tic modulus Ej and load qj be assigned for each cable and nodal
forces Fi be given for each free node. Then, the 3N1 equilibrium
equations (22) and the 3M compatibility conditions (25) realize a
non linear set of equations with unknowns given by 3N1 coordi-
nates of free nodes, Xi ¼ fXi;Yi; Zig, and 3M components of cable
tension at cables origin, s0

j ¼ fs0
j;x; s0

j;y; s0
j;zg.

The system of equations allows the structural analysis of
three dimensional cable nets under external nodal forces, uni-
form distributed loads and point forces however oriented on
the cables. On the other hand it is not well suited for the initial
design, i.e. the form-finding of the net, as the initial cable
lengths must be imposed. The latter problem is tackled in the
following according to a strategy proposed in Cuomo and Greco
(2012).

4. Form-finding

The form-finding strategy, named catenary force densities
methods, C-FDM, is resorted to. The strategy is based on the force
density method for slack cable nets and accounts for self weight in
the form-finding.

The procedure is clearly non-linear because the length of the
cables are unknown so as their total weights. For this reason we
first consider a linear step, i.e. the classical form-finding problem
neglecting self weight, by linear force density method (L-FDM).
The solution of the linear step is the initializing solution for
the successive non linear C-FDM. A uniform vertical conservative
loads acting on the cable, q ¼ qzpz, ia assumed for each cable
(pz ¼ f0;0;�1g) as self-weight. The equilibrium equations of
the ith node are

Xni

j

s�j;x ¼ 0;

Xni

j

s�j;y ¼ 0;

Xni

j

s�j;z ¼ 0:

ð26Þ

The following decomposition for the tensile force at cable origin is
considered

s0
j ¼ V0

j þH0
j ; ð27Þ

where V0
j and H0

j are vertical and horizontal vectors, respectively,
given by

V0
j ¼ pz p

T
z

	 

s0

j ; H0
j ¼ I� pz p

T
z

	 

s0

j : ð28Þ

The horizontal components are

s0
j;x ¼ sL

j;x ¼ H0
j;x ¼ kH

0
j k

Xj2 � Xj1

Dhj
;

s0
j;y ¼ sL

j;y ¼ H0
j;y ¼ kH

0
j k

Yj2 � Yj1

Dhj
;

ð29Þ

where Dhj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXj2 � Xj1 Þ

2 þ ðYj2 � Yj1 Þ
2

q
is the horizontal span

between cable extremities. The vertical components of the tensile
stress at the cable ends according to the catenary solution, see
Cuomo and Greco (2012), are given by
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V0
j ¼
kH0

j k
Dhj

gj

Cosh½gj�
Sinh½gj�

ðZj2 � Zj1 Þ �
qz;jLj

2
;

VL
j ¼
kH0

j k
Dhj

gj

Cosh½gj�
Sinh½gj�

ðZj2 � Zj1 Þ þ
qz;jLj

2
;

ð30Þ

with

gj ¼
qz;jDhj

2kH0
j k
: ð31Þ

By introducing the cable force density

Q j ¼
kH0

j k
Dhj

; ð32Þ

the nodal equilibrium reduces to

Xni

j

� Q jðXj2 � Xj1 Þ ¼ 0;

Xni

j

� Q jðYj2 � Yj1 Þ ¼ 0;

Xni

j

qz;j

2
�

Cosh½gj�
Sinh½gj�

ðZj2 � Zj1 Þ � Lj

 !
¼ 0;

ð33Þ

where the sign ðþÞmust be imposed if j1 ¼ i (i.e. the node is the ori-
gin of the jth cable), whereas the sign ð�Þ should be retained if j2 ¼ i
(i.e. the node is the end of the jth cable).

The unstrained length of the jth cable is given by

Lj ¼ lj � DLe;j; ð34Þ

where the length of the strained cable is

lj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
j

g2
j

Sinh½gj� þ ðZj2 � Zj1 Þ
2

vuut ð35Þ

and the elastic increment (DLe;j) is given by

DLe;jðkH0
j k;V

0
j ; LjÞ ¼

lðV0
j Þ � lðVL

j Þ
2EAqz;j

: ð36Þ

The operator lð�Þ is given by
Fig. 4. Initial configuration, topology and labels of nodes and cables of the cable net (a);
continuous, dashed and pointed line (b).
lð�Þ ¼ ð�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�Þ2 þ kH0

j k
2

q
þ kH0

j k
2ArcSinh

ð�Þ
kH0

j k

 !
: ð37Þ

By substituting Eq. (34) into (33) a non linear set of equations with
unknown fXi;Yi; Zig is obtained when the force density is assigned
at each cable.

The solution of the form-finding neglecting self weight, accord-
ing to L-FDM, i.e. the solution of the following linear system

Xni

j

� Q jðXj2 � Xj1 Þ ¼ 0;

Xni

j

� Q jðYj2 � Yj1 Þ ¼ 0;

Xni

j

� Q jðZj2 � Zj1 Þ ¼ 0;

ð38Þ

is adopted as the initial step for the solution of the non linear equi-
librium equations (33).
5. Numerical examples

The capabilities of the proposed procedure are preliminarily
assessed by examining a simple slack cable net, first designed by
the proposed C-FDM and successively loaded with a nodal force
and a point force along a cable. Finally, the procedure is applied
to the form-finding and successive structural analysis of a net in
presence of struts. Namely, the plane Jawerth cable structure
(Mollmann, 1970) is analyzed along with its spatial version, where
the effectiveness of the proposed strategy is fully exploited.
5.1. A 5-cable net

The simple very slack 5-cable net reported in Fig. 4(a) is consid-
ered. A form-finding by means of C-FDM is first performed, then
starting from the obtained configuration two load cases are
applied: a nodal force and one point force on a cable.
different configurations at the load Fy ¼ 0;�3;�10 [daN], respectively plotted with



Table 2
Unelastic case ðEA ¼ 1Þ.

Lj [m] kH0
j k [daN] V0

j [daN] VL
j [daN]

Cable-1 1.2887 0.5870 �2.7928 �0.2153
Cable-2 1.2887 0.5870 �2.7928 �0.2153
Cable-3 0.5912 0.5250 �0.7517 0.4307
Cable-4 1.1874 0.5870 �2.5310 �0.1561
Cable-5 2.0978 0.5870 �4.7911 �0.5955

Table 3
Elastic case ðEA ¼ 5000 ½daN�Þ.

DLj [m] kH0
j k [daN] V0

j [daN] VL
j [daN]

Cable-1 0.000424 0.5864 �2.7928 �0.2153
Cable-2 0.000424 0.5870 �2.7934 �0.2160
Cable-3 0.000075 0.5247 �0.7511 0.4313
Cable-4 0.000357 0.5870 �2.5328 �0.1580
Cable-5 0.001163 0.5861 �4.7887 �0.5931
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Fig. 5. Incremental evolutions of kV0
j k; kH

0
j k and elastic elongation for each c

Table 1
Node positions.

Node Unelastic Elastic

x [m] y [m] z [m] x [m] y [m] z [m]

P1 0.5 0.25 �1.1143 0.4999 0.2499 �1.1148
P2 0.5 0.75 �0.9954 0.4994 0.7500 �0.9963

P3 0 0 0 0 0 0
P4 1 0 0 1 0 0
P5 0 1 0 0 1 0
P6 1 1 1 1 1 1
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5.1.1. Form-finding
The initial design is generated considering a self weight qz ¼ 2:0

[daN/m] and force densities Q j ¼ 1:05 [daN/m] for each cable. The
axial stiffness of each cable is set to EA ¼ 5000 [daN]. Also the
unelastic case (EA ¼ 1) is treated.

Table 1 shows the nodal coordinates of free nodes (P1;P2) and
fixed nodes (P3;P4;P5 and P6). Table 2 and Table 3 list vertical
and horizontal components of tensile forces, obtained by means
of C-FDM, for the unelastic and elastic case, respectively. The
unstrained length Lj, which is non affected by cable elasticity, is
reported in Table 2, whereas cable elongation DLi is show in
Table 3.

As expected, due to cable slackness, elasticity plays a minor role
and the horizontal component of the tensile force, kH0

j k, is smaller
when elasticity is accounted for.
5.1.2. Analysis under increasing nodal force
An horizontal force is applied to node 2 of the elastic net. The

force is directed in the y-direction and is incremented from
Fy ¼ 0, to Fy ¼ �10 [daN]. Fig. 4(b) plots the configurations due
to the values of nodal force Fy ¼ 0;�3;�10 [daN].

The horizontal and vertical components of the axial force at the
first end of each cable are plotted in Fig. 5(a). The results evidence
the transition in the behavior of cable 4 from the initial slack cat-
enary to the final linear elastic truss-like solution. Cable 4 attains a
straight configuration when the force is increased, whereas the
other cables maintain a slack configuration and their elastic strain
is only slightly influenced by the nodal force increment. The hori-
zontal force H0 on cable 1 reduces to zero, meaning that this cable
has become completely slack and transmits the vertical weight
only to end nodes. Fig. 5(b) plots the displacements of the two free
nodes, and reveals a strong non-linear behavior.
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Fig. 7. Incremental evolution of kV0
j k; kH

0
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cable 5 marked with F (b).

Fig. 6. Different configurations obtained for qz ¼ 2 [daN] on all cables and
Fy ¼ 0;�6;�10 [daN], respectively plotted with continuous, dashed and pointed
line (b).
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In particular the stiffening effects due to cable 4 is evident from
the y-displacement plot.

5.1.3. One point force along the cable
The same force of the previous analysis is now

applied to abscissa S5 ¼ 0:84 ½m� of cable 5, (cable origin
is at node 6).

Fig. 6 depicts the configurations related to three values of inten-
sity of the point force (Fy ¼ 0;�6;�10 [daN]). Cable 5 is modelled
by the element defined in Section 2.2.2. Fig. 7(a) displays the incre-
mental evolution for vertical and horizontal components of the
axial force at the origin of the cables and their elastic elongation.
Fig. 7(b) plots the displacements of free nodes and of the loaded
point of cable 5. A linear trend in the incremental behavior of the
cable 5 appears when the force increases.

The numerical application assesses a god performance of the
element to capture the different behaviors in the slack and in the
truss-like regime.

5.2. Plane cable roof

The symmetric roof truss, shown in Fig. 8, designed by Jawerth
for the Johanneshov Ice Stadium in Stockholm, is considered with
cable sections reported in Table 4. This structure has already been
studied by Mollmann (1970) and successively by Ahmadi-Kashani
and Bell (1988a).

The initial pre-stress distribution and the initial geometry are
defined in Mollmann (1970). Accordingly, the force densities
6 8 10 0 2 4 6 8 10
0

2

4

6

8

Fy daN

STRAINx 104

5

1

1

2
2

4

4

3

6 8 10

N
0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fy daN

Z DISPL. m

2

21

1F

F

placement components of the two free nodes, P1 and P2, and of the loaded point of



Table 4
Cross sections.

Element group Area [cm2]

Top cable 25.1
Bottom cable 17.2
Diagonals 2.84
Longer stays 63.7
Shorter stays 15.9
Columns 222.6

Table 5
Force density Q j .

Top [kN/m] Bottom [kN/m] Diagonal [kN/m]

Q6 ¼ 68:397 Q9 ¼ 42:217 Q4 ¼ 2:110
Q8 ¼ 51:695 Q13 ¼ 70:291 Q7 ¼ 2:261
Q12 ¼ 77:494 Q17 ¼ 82:825 Q10 ¼ 5:422
Q16 ¼ 122:404 Q20 ¼ 35:065 Q11 ¼ 2:507
Q19 ¼ 55:249 Q14 ¼ 8:436

Q15 ¼ 1:748
Q18 ¼ 30:431

Table 6
Unstrained length Lj .

Top [m] Bottom [m] Diagonal [m] Columns [m] Stays [m]

L6 ¼ 7:692 L9 ¼ 13:142 L4 ¼ 10:510 L3 ¼ 3:799 L1 ¼ 14:807
L8 ¼ 10:124 L13 ¼ 7:742 L7 ¼ 7:558 L5 ¼ 9:098 L2 ¼ 8:201
L12 ¼ 6:863 L17 ¼ 6:265 L10 ¼ 5:743
L16 ¼ 4:555 L20 ¼ 13:169 L11 ¼ 4:068
L19 ¼ 11:163 L14 ¼ 4:090

L15 ¼ 2:815
L18 ¼ 2:168

Table 7
Element forces under dead load.

el. group n. Mollmann
(1970) [tons]

Ahmadi-Kashani and
Bell (1988a) [tons]

Present
analysis
[tons]

Columns 3 �151:9 �154:63 �153:47
5 �137:9 �139:40 �138:03

Stays 1 140:5 140:00 141:06
2 46:4 46:97 47:34

Top-c. 6 70:9 70:71 71:16
8 69:6 69:22 68:37
12 69:1 68:70 69:54
16 68:9 68:48 69:36
19 72:3 72:15 73:15

Bottom-
c.

9 41:5 41:55 41:75
13 41:4 41:50 41:36
17 41:1 41:19 40:95
20 38:6 38:54 37:89

Diagonals 4 1:00 1:00 1:40
7 1:80 2:00 1:38
10 1:40 1:50 0:97
11 1:40 1:51 1:10
14 1:40 1:50 1:11
15 1:40 1:47 2:65
18 3:90 4:18 5:21

Fig. 8. Geometry of the Jawerth cable truss with node labels (a) and cable labels (b).
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Qj ¼ kH0
j k=Dhj have been evaluated for top, bottom and diagonal

cables and reported in Table 5. The modulus of elasticity
E ¼ 14790 [kN/cm2] is assumed for all the elements (including
columns). As in Ahmadi-Kashani and Bell (1988a), element self
weight is determined assuming a density q ¼ 77:784 [kN/m3].

The unstrained lengths of stays (element n. 1, 2, 37, 40) and
columns (element n. 3, 5, 36, 39) are determined imposing the
coordinates of their end nodes (see Fig. 8), and equilibrium at
nodes 3, 4 and 21, 22. The unstrained length for the elements is
listed in Table 6.

First we compare our results with those obtained by Mollmann
(1970) and successively by Ahmadi-Kashani and Bell (1988a),
referred to a dead load of the roof equal to 1:786 [kN/m] and
applied to top cable. The unstrained lengths are those given in
Table 6. Table 7 shows the results obtained by Mollmann (1970)
and Ahmadi-Kashani and Bell (1988a) and the proposed strategy
for the considered load case. As appears from Table 7 there are
no significative differences in the results obtained for top, bottom
and stay cables (i.e. taut elements).



Fig. 9. Initial (F ¼ 0) and final (F ¼ 57:8 ½kN�) configurations of the net.
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Let us now consider the load case defined by vertical forces ap-
plied to the nodes of half top cable with intensity F. In order to
show the performance of the numerical procedure, the intensity
of the force is increased from F ¼ 0 to F ¼ 57:8 [kN]. The initial
and final configurations of the cable-net are shown in Fig. 9. The
unloading of diagonals, especially those under vertical nodal
forces, is evident.

The ratio ks0k=ks0
pre�stressk, where s0 is the tensile force in

the loaded configuration and s0
pre�stress is the same quantity
6
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Fig. 10. Results of the incremental analysis f
for F ¼ 0, are reported in Figs. 10 and 11. As expected, the
tensile force of the top cable increases with the load; an
higher increment is shown for the loaded side of the net (left
side), see Fig. 10(a). On the other hand, the bottom cable
shows a reduction of the tensile force when the load increases,
see Fig. 10(b).

A more complex scenario appears for the diagonals. Some of
them become slack (elements n. 4, 10, 14, 18, 23 and 27) when
the force increases, see Fig. 11(a). Diagonals n. 11 and 15 exhibit
22
25
29
33
38

28.9 57.8

B L E right side of the net

21
24
28
32

28.9 57.8

A B L E right side of the net

or top cables (a) and bottom cables (b).



Fig. 11. Results of the incremental analysis for diagonal cables (a) and stay cables and columns (b).

Fig. 12. Labels of half 3D cable roof.
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a non monotonous trend for increasing forces; high sensitivity of
the tensile force at diagonal n. 26 is evident. It can be observed that
diagonal cables are most affected by node force increments when
compared with other cables.

Finally, Fig. 11(b) shows that shorter stay cables (element n. 2
and 37) lose tension when nodal forces increases, whereas
an opposite trend is shown by longer stay cables. The axial
compressive force increment on columns is basically linearly
related to nodal force intensity.

5.3. Space cable roof

The structure of the previous section is investigated for a differ-
ent configuration of the stay cables. These are now positioned out
of the main vertical plane (the plane containing all free nodes), as
shown in Fig. 12, where half of the symmetric three-dimensional
cable roof is depicted. The net is now capable to withstand hori-
zontal actions along y-direction. The longer stays have unstrained
length L1 ¼ L21 ¼ 16:50 [m]; for the shorter ones L2 ¼ L22 ¼
10:96 [m]. The other elements of the structure are defined as in
the previous section, since the same force densities are adopted
(see Table 5 and first four columns of Table 6).

A structural analysis is conducted under an incremental hori-
zontal load (orthogonal to the main vertical plane) uniform on
each element of the net (cables and columns) and defined as
qj ¼ k � qref � /j, where /j is the diameter of the element,
qref ¼ 2:6 [kN/m] and the load factor k 2 ½0;1�. The load condition
could be a rough model of wind action on the net. The columns
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have hollow circular cross section with diameter / ¼ 0:5 [m],
whereas all the cables have solid circular section and their diame-
ter can deduced by Table 4.

The results of the incremental analysis are reported in Figs. 13–
16 and the final configuration (k ¼ 1) is depicted in Fig. 13(a).

The onset of the out-plane load is balanced by up-wind stays
as only the tension of cables 21 and 22 exhibit a prompt
increment, whereas down-wind stays are initially unloaded (see
Fig. 14(b)). All the other elements do not vary appreciably their
tension when the load factor is small. In fact as depicted in
Figs. 13(b), 14(a), 15(a) and 15(b) an horizontal tangent appears
for k! 0. When k increases the stiffness gain is evident and ten-
sile stress rises in all elements but in the longer down-wind stay
(element n.1). The geometric stiffening behavior is evident from
the trend of y-displacement of the center of the net plotted in
Fig. 16.
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6. Conclusions

A general procedure has been developed which can accurately
solve cable structures under different load conditions. The proce-
dure relies on the three dimensional vector form solution of the
catenary equation which allows a straight derivation of compati-
bility conditions in the global reference system. Both the case of
uniformly distributed load and point force generally oriented in
space can be handled. The non-linear algebraic governing equa-
tions with unknowns given by cable tension components and
free node coordinates are easily assembled according to cable
connectivity and position of fixed nodes. The numerical solution
may be conveniently pursued by the Newton–Raphson method
by choosing suitable initial conditions under cable pre-stress and
self weight. To this aim the catenary force density method is
resorted to in order to determine the initial cable stresses and
configuration of the net. The effectiveness of the method is shown
for slack cable nets, the plane Jawerth cable net and its three
dimensional version.
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