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A b s t r a c t - - I m p r o v e m e n t s  over a Runge-Kutta pair of orders six and five are presented in this 
paper. Methods with minimised truncation errors, phase-lag errors, dissipation errors, and with 
extended stability regions are given and tested in the standard test problems within each category. 

K e y w o r d s - - O r d i n a r y  differential equations, Initial value problems, Runge-Kutta pairs, Phase- 
lag, Dissipation error. 

1. I N T R O D U C T I O N  

Expl ic i t  R u n g e - K u t t a  (RK)  pa i rs  are  wide ly  used for the  numer ica l  solut ion of the  in i t ia l  value 

p r ob l em y '  = f ( x ,  y), y(xo) = Yo E R m, x • [x0, xe], where  f :  R × l~ m H R m. These  pa i rs  are 

cha rac te r i sed  by  the  ex t ended  Bu tche r  t a b l e a u  

c A 

b 

wi th  b T,/~7-, c E Rs,  and  A E ]E 8×~ is s t r i c t ly  lower t r i angula r .  The  p rocedure  t h a t  advances  the  

so lu t ion  from (xn,  Y,0 to  Xn+l = x,~ + hn computes  at  each s tep  two a p p r o x i m a t i o n s  Y~+I, Yn+l 

b to  y(x,~+l) of orders  p and  p - 1, respect ively,  given by  Yn+l = Yn + h~ }-~=1 ~ f~  and ~)n+l = 
s i--1 

Yn + hn~-']i=l[~ifni wi th  fni  = f ( xn  + c~hn,yn + h n ~ j = l a i j f n j ) ,  i = 1 , 2 , . . . , s .  ~ ' o m  this  
e m b e d d e d  form we can o b t a i n  an e s t ima te  E~+I  --- y~+l - ~)~+1 of the  local t r u n c a t i o n  error  of 

the  p - 1 o rder  formula.  So the  s tep-size control  a lgo r i thm h~+l  = 0.9.  h~ • ( T O L / E n + I ) 1 / ~  is in 

c o m m o n  use, wi th  T O L  being  the  reques ted  tolerance.  The  above  formula  is used even if T O L  

is exceeded  by  E n + l .  Then  h~+l  is used as cur ren t  step-size.  

2. PAIRS OF O R D E R S  6(5) 

In  o rde r  to  cons t ruc t  a 6(5) pair ,  37 equat ions  for the  6 th order  formula  and 17 equa t ions  

for the  5 th o rder  formula  have to  be solved. These  nonl inear  equa t ions  involve b, A, c for the  

h igher  o rde r  and/~, A, c for the  lower order  formula,  and  can be found easi ly  in the  b ib l iography,  
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i.e., [1]. Usually in parallel, 48 equat ions of 7 th order are to  be minimised in order  to  reduce the 
t runca t ion  error  of  the 6 th order me thod  which is used to  advance the solution. Many  authors  
in the  last few years have dealt  with RK pairs of orders 6 and 5. See [2-5]. Some new families 
of solutions for these sets of equat ions have been discovered and especially [2,3] belong to  the 
same one, while [4] is a special case of the family studied recently in [5]. All these families use 
the FSAL device (First  Stage As Last),  so even if s = 9, only eight stages are used effectively 
every  step. According now to the size of the t runca t ion  error for each individual pair suggested 
in [2-5] and exhaust ive numerical tests between CMR6(5) (see [4]), DLMP6(5)  [3], VE6(5)a  I2], 
and P T P 6 ( 5 )  [5], performed in [5], the later pair  is the one recommended.  This  is due to the  one 
ex t ra  free pa ramete r  t ha t  this family offers in order to satisfy the RK design criteria. 

Unfor tunately ,  no explicit  a lgori thm furnishing the coefficients of t ha t  pair  can be derived. This  
is a drawback in the construct ion of pairs with various properties,  such as minimized t runca t ion  
errors or ex tended stabil i ty regions. Thereaf ter ,  using the compact  theory  which appeared  in [6], 
we can give an explicit  (symbolic and numerical) a lgori thm of the  Verner-Dormand,  Lockyer,  
McCorr igan  and Prince family, which demands  only the solution of linear equations.  

ALGORITHM. The  free parameters  are c2, c4, c5, c6, c7,/~9. It is known tha t  for this family Cs = 
c9 = 1, b2 = b3 = b9 =/~2 = b3 = 0, and ai2 = 0, i = 4, 5, 6, 7, 8. 

1. Solve 1 be = 1, bc = 1/2, bc ~ = 1/3, bc 3 = 1/4, bc 4 = 1/5, bc 5 = 1/6, for bl,b4, bs, b6, b7, 
and bs. 

2. Pu t  c3 = 2/3c4,  a43 = c2/(2c3) ,  a32 = c~/(2c2) .  

3. Solve s (Ac)5 = c2 /2  and (Ac2)5 = c3 /3  for as3, a54. 
4. Subs t i tu te  3 as7 from (b(A + C - I))7 = 0. 
5. Since (b(C - I )A)3 = 0, evaluate a76 from 

]01 J0 b(C - I ) A ( C  - ¢41)(C - -  c5I )c  - (b(C - I )A)3 = (x - 1) (y - c4)(y - c s ) y d y d x .  

6. as6 is given from (b(A + C - I))6 ? O. ^ 

7. Solve s imultaneously for bl, b4, bs, b6, b7, bs, a63, a73, and a83 the equations: 

1 1 1 

be4--  5,  ( b ( A + C - I ) ) 3 = O ,  ([JA) = 0 ,  
3 

fo x b(C - I ) A ( C  - c 4 I ) ( C  - c5I)c : (x - 1) (y - cs)(y - c 4 ) y d y d x ,  

/o /o [~A(C - c 5 I ) ( C  - e4 I )c  = (y - c5)(y - c 4 ) y d y d x .  

8. From (Ac)6 = c~12, (Ac2)6 = c3/3,  evaluate a64 and a65. 
9. From (Ac)7 = 02/2,  (Ac2)7 = c3/3,  evaluate a74 and a75. 

10. From (Ac)s -- c~12, (Ac2)s = c313, evaluate as4 and as5. 
11. Final ly  from A e  = c, evaluate a21,a31, . . .  ,as1. 

Using a symbolic manipula t ion  package [7], we can derive expressions for all coefficients t ha t  
depend only to  the free parameters .  

lc~ is the vector with the components of c raised in ith power and e -- [1, 1,. . . ,  1] T E R ~. 
~(Ac)5 is the 5 th component of Ac. See [5] for more details. 
3C = diag(c) and I is the identity matrix of proper dimension. 
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3. M I N I M I S A T I O N  OF LOCAL T R U N C A T I O N  E R R O R  

Using the explicit expressions of b,/~, A, c, then the 7 TM order (or principal) local t runcation 

error lIT (7) 112 can be found explicitly. The expression is a little lengthy and independent of b9, but 
it can be used easily with a minimisation package in order to find an optimal  value for lIT (7) 112- 
If we use the constr routine of constrained minimisation of Matlab [8], and require tha t  the 

value Dc~ = max(maxS,j=i laijh Ilblloo, Ilblloo, lichen) is small enough, then the selection c~ = 

17/183, c4 -- 18/83, c5 -- 71/125, c6 -- 42/59, c7 = 199/200,/~9 = 1/20, given in [6], leads to the 
method P6(5). I ts  principal truncation error is of the same level with the error of the method 
PTP6(5) ,  but it is almost four times smaller than the principal truncation error of other methods 
in this family [2,3]. The rest of the characteristics of the method can be found in Table 1. This 
method does not give any clear advantage over PTP6(5)  in any of the numerical tests we have 
tried. 

Table 1. The main characteristics of the RK pairs discussed in this paper. 

Method H T(7) 112 Stability Region Doo 

PTP6(5)S 

PTP6(5) 

DLMP6(5) 

CMR6(5) 

VE6(S)a 
NEW6(5) 

P6(5) 

NEW6(5)S 

NEW6(5)P6Al l  

NEW6(5)P8A9 

PTP6(5)P10A7 

4.32- 10 -5 (-6.6, O) 35.9 

1.25 • 10 -5  ( -4 .4 ,  0) 33.1 

4 .37.10 -5  ( -4 .2 ,  0) 12.5 

6 .00.10 -5  ( -4 .4 ,  0) 16.8 

4 .93.10 -5 (-4.2,  0) 29.6 

2.87 • 10 -6  ( -4 .9 ,  0) 208.2 

1.23 - 10 -5  ( -4 .4 ,  0) 18.4 

5.06. 10 -4  ( -8 .1 ,  0) 50.7 

1.44 • 10 -4  ( -4 .9 ,  0) 48.9 

4.9. 10 -4  ( -4 .3 ,  0) 4.5 

1.55. l0 -4  ( -4 .5 ,  0) 9.3 

If we admit  a little greater coefficients, say no greater than 200, then the selection c2 = 

1/11,c4 = 20/139, c5 = 88/177, c6 = 35/36, c7 = 544/545,/~9 = 1/20 leads to a method with 
principal truncation error which is about  five times smaller than all the methods known until 

now. We have applied the PTP6(5)  and the new method to the DETEST set of test  problems [9] 
for tolerances 10 -1°, 10 -12, 10 -14, 10 -16, 10 -18. According to the tests developed in [5], we notify 

the percentage difference in the number of function evaluations required for achieving a given 
maximum global error over the range of integration. This percentage is called efficiency gain, and 
it is recorded for each problem and accuracy in Table 2 in units of 10%. In that  table, positive 
numbers mean tha t  the second of the two methods is superior. The final row gives the mean 
value of efficiency gain for each problem. The final row's first number is the average efficiency 
gain for all problems. The empty  places are due to unavailability of data  for the respective errors. 

Table 2. The  efficiency gains of PTP6(5) relative to NEW6(5) for the  25 problems 
of DETEST and for tolerances 10 -1° ,  1 0 - m , . . . ,  10 -18. 

A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 Ct C2 C3 C4 C5 D1 D2 D3 Da D5 E1 E2 E3 E4 E5 

- I 0  

--12 --5 3 

--14 5 3 --5 3 5 

--16 4 3 --5 1 6 

--18 3 3 --4 1 7 

19.9% 4 3 --5 2 5 

- 1  

0 2 4 - 4  

0 3 3 5 - 2  

1 3 4 6 0 

3 4 

0 3 4 5 - 2  

3 2 0 

3 3 3 3 0 

3 4 3 3 0 

4 4 3 3 0 

3 3 3 3 0 

2 1 5 

1 2 2 1 4 

0 2 1 1 3 

-I 1 1 1 

0 2 2 1 4 

2 - 2  3 

2 - 1  4 4 1 

2 0 5 4 3 

3 3 

2 - 1  4 4 2 

We observe tha t  an almost 20% reduction of the cost has been gained by the new method.  This 
difference is remarkable for methods of the same algebraic order. 
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4. M E T H O D S  W I T H  E X T E N D E D  S T A B I L I T Y  R E G I O N S  

For mildly stiff problems an extended stabil i ty region is needed. Again,  the  explicit a lgor i thm 

can help us to evaluate bASc and bA6c in terms of c2, c4, c5, c6, c7. So the stabil i ty polynomial  
p(x)  = 1 + x + x2/2] + x3/3[ + x4/4!  + x5/5!  + x6/6!  + xTbASc + xSbA6c depends only on the  five 

nodes, and ]p(x)l < 1 must  hold for as much as possible values of x E C - .  Choosing in advance 

bASc = 1/6331 and bA6c = 1/128550, we ensure an area of 43.95 for the stabil i ty region in the  

left complex plane. We also observe tha t  for z E [ -8 .1 ,0]  C R - ,  the required inequali ty holds for 

all p(z) .  This interval is called real stabil i ty interval and is the longest from all known methods.  

T h e n  the two equat ions are solved directly for 

303888c4 

c5 = (151944 - 3085200c4 + 27128335c~ - 54256670c~) 

and 

c6 = 24 (438490994730048 - 14165385440558976c4 ÷ 324642117388786080c42 

- 4945954966284568320c 3 ÷ 44911241045914807915c 4 - 220996382998067560650c 5 

÷538926866232165410350c 6 - 508883495861727676300c47) / 

(27128335c4 (455832 - 561456c4 - 18011695   + 48178910  ) 

( 1 5 1 9 4 4 -  3996864c4 ÷ 34818175c~-  108513340c43 ÷ 108513340c44)). 

Again  using the routine constr  of Matlab,  we conclude tha t  the selection c2 = - 2 5 / 2 0 4 ,  

c4 = 620/261, c7 = 452/385, and/~9 = 1/20 leads to  the min imum t[T(7)[[2 for the  new me thod  

NEW6(5)S  as we see in Table 1. Testing PTP6(5)  and NEW6(5)S  in the linear D E T E S T  problems 

A1, B2, e l ,  C2, C3, and C4, where it is expected such methods  to  perform bet te r  t han  the 

conventional  ones, we get the corresponding efficiency gains in the left-hand of  Table 3. 

Table 3. On the left, we present the efficiency gains of PTP6 (5) relative to NEW6(5)S 
for the six problems of linear DETEST for tolerances 10 -2 . . . .  ,10 -7, while on the 
right, we give PTP6(5)P10A7 vs. NEW6(5)PSA9 efficiency gains table. 

A1 B2 C1 62 63 64 

- 3  0 3 3 2 1 1 
- 4  0 2 2 1 4 4 
- 5  -1  3 0 2 3 3 
- 6  -1  2 -1  2 3 3 
- 7  -1  1 - 2  2 4 3 

15 .7%-1  2 0 2 3 3 

GI G2 G3 G4 G5 

-3  2 1 
- 4  1 1 1 1 -1  
- 5  1 1 1 1 1 
- 6  2 2 1 1 
- 7  2 2 1 2 0 
- 8  2 3 1 2 0 
-9  0 

10.4% 1 2 1 1 0 

I t  is obvious tha t  the extended stabili ty region helps NEW6(5)S  to  give bet ter  results. In  [5] 
PTP6(5)S ,  a me thod  with extended stabili ty interval was also suggested, but  it was only  5.7% 

bet te r  t han  PTP6(5) .  The  area in the left complex plane for t ha t  me thod  was about  32.5 and it 
was the  largest among  the known pairs 6(5). 

5. M E T H O D S  F O R  P E R I O D I C  P R O B L E M S  

For these problems, it is instructive to  examine the performance of  a RK pair to the  test  problem 

y' = iwy ,  y(O) = Co, and w, Co E R with exact  solution y(x )  = co e x p ( i w x ) .  The  applicat ion 
of  a RK pair to this problem leads to a numerical scheme of  the form Yn = p(v,~)yn-1, with  
v~ = whn  and p(v,~) = q(v,~) ÷ ir(vn) .  For a generic v = vn, the quanti t ies ~(v) = v - arg(p(v))  
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and a(v)  = 1 - I p ( v ) l  are called phase-lag and amplif ication or dissipation error,  respectively. 
If  5(v)  = O(vP+l), we have phase-lag order p, while a(v)  = O(v t+l) implies dissipation order  t. 

Recent ly  the  me thod  P T P 6 ( 5 ) P 1 0 A 7  derived from the family discussed here was presented in [10], 

and it was of  the  highest possible phase-lag order 10, but  only of 7 th amplification order. PTP6(5 )  
and P6(5) share 7 th dissipation order and 6 th phase-lag order only. Here we present the me thod  

N E W 6 ( 5 ) P 8 A 9  of 8 TM phase-lag order and 9 th amplification error order which outper forms the 

previous me thod  in a periodic set of  test  problems [10], including Model, Inhomogeneous ,  Wave, 

Bessel, and Duffing equations. 
The  theory  appear ing in [10,11] informs us tha t  two equations have to  be solved for achieving 

the NEW6(5 )P8A9:  bA5c = 1/7! and bA6c = 1/8!. These equations are solved giving c5 = 

- 2 c 4 / ( - 1  + 8c4 - 56c42 + 112c43) and 

--3 -~- 60C 4 -- 792(32 -a t. 6616C 3 -- 34032C44 + 109760C 5 -- 211456C~ + 188160C 7 

C6 = 56(1 -- 4C4)C4(1 -- 10C4 + 42C~ -- 56C3)(3 -- 16C4 + 4C 2 + 72C 3) 

The  minimisat ion of IIT(7)112 results the coefficients c2 = 3/31,c4 = 8/29,c7 = 2/17,  with 
b9 = 1/20 as always. As it was done in [10], we compare  for tolerances 10 -3,  1 0 - 4 , . . . ,  10 -9,  

the me thod  P T P 6 ( 5 ) P 1 0 A 7  appeared there with the new method  and we obtain  an average 10% 

super ior i ty  of the later one. More details are given in the r ight-hand of Table 3. The  new formula 
is also about  2570 bet ter  than  the conventional method  PTP6(5 )  of [5]. 

Another  me thod  N E W 6 ( 5 ) P 6 A l l  with 11 th order dissipation error was also found sharing the  

coefficients c2 = - 5 / 1 8 ,  c4 = 2/15, c5 = 180/389, c6 = 163679/242280, c7 = 125/126,/~9 = 1/20, 
tha t  satisfy bA5c = 11/57600 and bA6c = 1/57600. The  results of this me thod  were inferior than  

the other  methods  with special properties for periodic problems. So it is obvious tha t  the  me thod  

balancing the increment  in the order of the two types of "periodic" errors is the best  choice. 

R E F E R E N C E S  

1. E. Hairer, S.P. Ncrsett and G. Wanner, Solving Ordinary Differential Equations I, Second edition, Springer, 
Berlin, (1993). 

2. J.H. Verner, Some Runge-Kutta formula pairs, SIAM J. Numer. Anal. 28, 496-511 (1991). 
3. J.R. Dormand, M.R. Lockyer, N.E. McCorrigan and P.J. Prince, Global error estimation with Runge Kutta 

triples, Computers Math. Applic. 18 (9), 835-846 (1989). 
4. M. Calvo, J.I. Montijano and L. Randez, A new embedded pair of Runge-Kutta formulas of order 5 and 6, 

Computers Math. Applic. 20 (1), 15-24 (1990). 
5. S.N. Papakostas, Ch. Tsitouras and G. Papageorgiou, A general family of explicit Runge-Kutta pairs of 

orders 6(5), SIAM J. Numer. Anal. 33, 917-936 (1996). 
6. S.N. Papakostas, Ph.D. Dissertation, National Technical University Athens, Athens, (1996). 
7. S. Wolfram, Mathematica. A System for Doing Mathematics by Computer, Second edition, Addison-Wesley, 

Redwood City, CA, (1991). 
8. Matlab, User's Guide, The MathWorks Inc., Natick, MA, (1991}. 
9. W.H. Enright and J.D. Pryce, Two FORTRAN packages for assessing initial value methods, ACM Trans. 

Math. Software 13, 1-27 (1987). 
10. G. Papageorgiou, Ch. Tsitouras and S.N. Papakostas, Runge-Kutta pairs for periodic initial value problems, 

Computing 51, 151-163 (1993). 
11. P.J. van der Houwen and B.P. Sommeijer, Explicit Runge-Kutta (-Nystrom) methods with reduced phase- 

errors for computing oscillating solutions, SIAM J. Numer. Anal. 24, 407-442 (1987). 


