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Abstract

Given m states, which form a union, every year a chairman has to be selected in such a way
that at any time the accumulated number of chairmen from each state is proportional to its
weight. In this paper an algorithm for a chairman assignment is given which, depending on the
weights, guarantees a small discrepancy.

1. Introduction

Suppose a set of m (>2) states S = {S;,S,, ....S,} forms a union and a union
chairman has to be selected every year. Each state S; has a positive weight 4; with
Y7, 4= 1. We denote the state designating the chairman in the jth year by w;.
Hence, w = {w;}{% is a sequence in S. Let A(N, i,w) denote the number of chairmen
representing S; in the first N years. Put

DN(Q)): Sup |N/ll - A(Na iaw)|'
The assignment problem is to choose @ in such a way that the global discrepancy
D(w):= sup Dy(w)
N

is minimal.

The problem was posed by Niederreiter [5], where it arose from a method for
explicitly constructing uniformly distributed sequences in a compact space. Connec-
tions with a problem in combinatorial geometry were pointed out in [6]. The results
of [5] were successively improved in [4, 7] and finally it was proved in [3] that for all
sets of weights there is a sequence w with D(w) < 1 — 1/2(m — 1). (In [7] it was shown,
that for ¢ > 0 there are weights such that D(w)>=1— 1/2(m — 1) — ¢ for every
sequence w.) However, the method of [3], using Hall’s theorem on distinct representa-
tives, does not provide an effective algorithm to construct a sequence with small
global discrepancy when the weights are given. Such an algorithm was given in [8],
where also the notion ‘chairman assignment problem’ was coined.
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In Section 2 a different algorithm to construct sequences w is presented which,
while yielding the same bound as that one in [8] in general, leads to sequences with
D(w) smaller than 1 — 1/2(m — 1) for special weights.

A survey of questions related to those in this paper can be found in [9]. An
algorithm for solving the related apportionment problem in the House of Representa-
tives of the USA 1is described in [1].

2. An algorithm for constructing good sequences

Theorem 1. Let S = {S,,S,, ...,Su},m = 2,beafinite set and let A = {A1, A2, ..., An}
be positive weights for S with Y Li=1and 4.1 2 A for 1 <i<m— L
If there is an integer I, 1 <1< m/2 such that for all j, 1<j<l ¥i23 4>
1—2m—1+j)m—1— 1)/2(m — 1)(m — I) — m), then the following algorithm yields
a sequence w with
1

To describe the algorithm we first need the following notations and conventions:
Set d,:= 1/2(m — ). For integers k, t, N with k > 0 and ¢, N > 0 and a sequence
o in S define

B(k,t,N):= {S;e S|NA; — AN,i,w) > k —d, — tA;}
and
u(N):=min{t > 0]3 S;e B(L,t,N) with (N + 1)4; — A(N,i,w) > d,}.
This minimum exists, otherwise
(N+ 14— AN,i,w)<d, VS;€S,

and so

1= (N + DA — ANN,i,w)) < m-d,

Y

i=1

which is clearly impossible with | < m/2.
For N =0 we set A(0,i,w) =0.

Algorithm. Suppose that w,,,, ..., @y have already been defined. Choose S;, so
that it is an element of B(1,u(N), N) for which (N + 1)4; — A(N, i, w) is maximal and
set WN+1 — Sio'

Proof of Theorem 1. We shall prove that the above algorithm creates a sequence
which fulfills the requirements of the theorem. Let us write A(N,i) instead of
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A(N,i, ). First we show by induction that
Ni;—A(N,i)= —-1+d, ViNZz=0. (1

For N =0 this is obvious.
Now if oy, # S; then A(N,i) = A(N + 1,i) and so

N+ DA —AN+ L) =NL—AN, D+ A4z —1+d,+ 4,2 —1+4d,.

If wy+, = S; then AN + 1,i) = A(N,i) + 1 and S; e B(1,u{N),N) with (N + 1)4,
— A(N,i) = (N + 1)A4; — A(N, j) for all j with S;€ B(1,u(N), N). Since in B(1,u(N),
N) there is an S; with

(N+1)2; — AN, j) = dy,
we have by construction of
(N + 1)4; — A(N,i) = d,,
and so
(N+Di— AN+ Li)=(N+ D4 —AN,i) -1 = —14+4d,.
To prove that also
N — AN, iy<1—-d, Vi,N=0 (2)

we shall show that

i |B(k,t,N)|

k=1

=Y max(k > O0|Ni; — AN, i) >k —ds— th) <t YN,t>0 (3)

and so especially |B(1,0,N)| < 0 for all N from which (2) follows.
First suppose that N = 0. Then with k; = max(k > O|N4; — A(N, j) > k —d, — t4))

So we have

j=1

J

m
Y i

i=1

and using that m-d, < 1 and 7., 4; =1 we obtain that
Y oki<t+1,
j=1

and therefore Y °, |B(k,1,0)| < t.
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Now suppose that (3) has been proved for N > 0. An easy computation shows that
max(k >O|(N + )A; — AN+ Lj)>k—d,—(t — 1)4;)
=max(k >0|NAi; — AN, j)>k—d,—td;) — 1iff §; = wn+, and
S;eB(1,t,N)
and else
max(k>O0|(N + DA; — AN+ 1, j)>k—d,—(t — 1)4;)
=max(k >O0|NA; — AN, j) >k —d, —t4;).

If t 2 u(N) then wy,; € B(1,t, N) and so
Y |Bk,t —1,N +1)|= )Y [Bkt,N)—-1<t—1
k=1 k=1

If t < u(N) then

i |Bk,t —1,N + 1)] = i |B(k,t, N)|
k=1

k=1

and we have to show that the above sum is less than t.
So suppose t < u(N). Defining k;:= max(k > O|NA;, — A(N,i) >k —d,—tl;) it
follows from the construction of w that for all §;€ B(1,t,N)

(N + DA — AWN,i) <d,
and
ki—ds— (@ — 1) <(N 4+ 1)A4; — A(N,i)
and therefore
(t— DA >k, —2d,.
If we can prove that |B(1,u(N) — 1, N)| < m — [ then it follows that
t—=12t-1DY 4>Yk—-2m—NDd,=) k;— 1,

where the sums run over all j with S; € B(1,¢, N), and from the definition of B(k,t,N)
we get

Y IBk,t,N)| <t
k=1
and (3) is proved.

So suppose that with wv>m—1I Sy,...,5,€B(l,u(N)—1,N) and
Se+1s oo SmEB(L,u(N) — 1, N). Then one has for j > v,

1 —dy— (u(N) — )i; > NA; — A(N, j)
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and forj < v,
d,— 2;> Ni;— A(N, j). “4)

Using that 37, 4; =1 and that }7_, (N4; — A(N, j)) = 0 and adding the above
inequalities one obtains that

(m—v—1) —m—20)d —@N) =2 Y 4>0, (5)
Alsofor j <o o

N2 — AN, j) > 1 — d, — u(N) — 1)4;, (6)
and by (4) and (6)

dy— 4> 1 —dy — @(N) — 1A,
and so

(w(N)—2)4;>1—2d, (7)

(from this it follows that 4; > 0). Summing up (7) and transforming the resulting
inequality one obtains

v—2vd,  v—2vd,
§=1 )v' 1— Z;'n=,,~+1 ’11'.

Replacing u(N) — 2 in inequality (5), multiplying with 1 — Y7 ., ; and using the
definition of d, yields after some transformations

u(N)—2 >

“ 2om —1—1)
L A e T ) —m

contradicting the assumptions of the theorem. [

For some sets of weights A one can with the help of the above algorithm construct
a sequence w for which D(w) <1 — 1/m. The following theorem shows that this
cannot be improved without knowing more about the diophantine properties of A.

For the definition of linear independence and the result on uniform distribution
used in the theorem see [2, Ch. 1, Section 6]. From the theorem also follows that for
almost every A there is no w with D(w) <1 — 1/m.

Theorem 2. Let S = {S,,S,, ...,Sp}.m =2, beafiniteset andlet A = {Ay, A3, ... . A}
be positive weights for S. If 1, A, A5, ..., Am—1 are linearly independent over the
rationals, then for all sequences w

Dw)>1——.
m
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Proof. Suppose that w is a sequence with
1
Dy(w) < 1 —;1—5 V N and some ¢ > 0.

Since 1,4y,4,, ...,4,-, are linearly independent over the rationals the sequence
(NA{,NA,, ...,NA,_,)is uniformly distributed mod 1. So for ¢ = d/(m — 1) there is an
N having

1 1
1 —— A: 1—— forie{l, ... — 1}
m+8>{N/1.,}> -~ orie{l,...,m }

Therefore, A(N,i) =[N4;] + 1 and

and so
1 , ) L
——+&>Ni — AN,i) > — —.
m m
Summing up and using that [~ ,(NA; — A(N,i)) = 0 one obtains that
1
1 - —{(m—1e < N1, — A(N,m)

a contradiction. [
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