
Journal of Computational and Applied Mathematics 205 (2007) 1002–1018
www.elsevier.com/locate/cam

SDELab: A package for solving stochastic differential
equations in MATLAB

Hagen Gilsinga,1, Tony Shardlowb,∗,2

aInstitut für Mathematik, Humboldt Universität zu Berlin, Unter den Linden 6, Berlin Mitte 10099, Germany
bSchool of Mathematics, The University of Manchester, M13 9PL, UK

Received 22 August 2005

Abstract

We introduceSDELab, a package for solving stochastic differential equations (SDEs) within MATLAB.SDELab features explicit
and implicit integrators for a general class of Itô and Stratonovich SDEs, including Milstein’s method, sophisticated algorithms for
iterated stochastic integrals, and flexible plotting facilities.
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1. Introduction

MATLAB is an established tool for scientists and engineers that provides ready access to many mathematical
models. For example, ordinary differential equations (ODEs) are easily examined with tools for finding, visualising,
and validating approximate solutions [22]. The main aim of our work has been to make stochastic differential equations
(SDEs) as easily accessible. We introduce SDELab, a package for solving SDEs within MATLAB. SDELab features
explicit and implicit integrators for a general class of Itô and Stratonovich SDEs, including Milstein’s method and
sophisticated algorithms for iterated stochastic integrals. Plotting is flexible in SDELab and includes path and phase
plane plots that are drawn as SDELab computes. SDELab is written in C. SDELab and installation instructions are
available from either

http://www.ma.man.ac.uk/∼sdelab
http://wws.mathematik.hu-berlin.de/∼gilsing/sdelab
This article is organised as follows: Section 2 introduces SDEs and the examples we work with. Section 3 describes

the numerical integrators implemented in SDELab, including methods for Itô and Stratonovich equations, and the
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special case of small noise. Section 4 discusses approximation of iterated integrals. Section 5 shows how SDELab is
used and includes the code necessary to approximate geometric Brownian motion. Section 6 uses the explicit solution
for geometric Brownian motion to test the SDELab integrators. We also show that SDELab is much faster when
dynamic libraries are used to specify the SDE rather than m-files. Section 7 uses SDELab to investigate the bifurcation
behaviour of the van der Pol Duffing system.

2. Stochastic differential equations (SDEs)

Consider a drift function f : R × Rd → Rd and a diffusion function g: R × Rd → Rd×m. Let W(t) be an Rm-valued
Brownian motion and y0 ∈ Rd be deterministic initial data. We will consider the Itô SDE

dY = f (t, Y ) dt + g(t, Y ) dW, Y(t0) = y0, (1)

and also the Stratonovich SDE

dY = f (t, Y ) dt + g(t, Y ) ◦ dW, Y(t0) = y0, (2)

where Y and W are evaluated at time t. We will assume that f, g are sufficiently regular that the SDEs have a unique
solution Y (t) on [t0, T ] for each y0. This can be hard to establish, though in specific cases theory is available. For
example, if f and g are continuous in (t, Y ) and globally Lipschitz in Y, there is a unique strong solution [19]. Stronger
conditions will be necessary for statements on the order of accuracy to be correct.

We test SDELab with the following examples.
Van der Pol Duffing: Consider the van der Pol Duffing system [1] (d = 2, m = 1) where Y = (Y1, Y2)

T,

dY =
(

Y2

aY 1 + bY 2 − AY 3
1 − BY 2

1Y2

)
dt +

(
0

�Y1

)
dW , (3)

where a, b, A, B are parameters and � is noise intensity. This second order system is typical of many problems in
physics where the noise impinges directly only on Y2, which represents the momentum of an oscillator. In constant
temperature molecular dynamics, the Langevin equation [18] has this character. The Itô notation is used, but in this
case Stratonovich and Itô interpretations are the same.

This system does not have an explicit solution and numerical approximations are required. There are two types of
approximation that we may be interested in. The first is pathwise or strong approximation: for a given sample of the
Brownian path W(t), compute the corresponding Y (t). This is of interest in understanding how varying a parameter
affects behaviour. The second is weak approximation: for a given test function �: Rd → R, compute the average of
�(Y (t)). For example, we may like to know the average kinetic energy at time t, case �(Y ) = 1

2Y 2
2 . Release 1 of

SDELab focuses on strong approximations and we illustrate its use in understanding the dependence of trajectories on
parameters in Section 7.

Geometric Brownian motion in Rd : To demonstrate the convergence of the methods in SDELab in Section 6, we
use the following generalisation of geometric Brownian motion to d dimensions [8, p. 151]:

dY = AY dt +
m∑

i=1

BiY dWi, Y (0) = y0, (4)

where A, Bi ∈ Rd×d and Wi are independent scalar Brownian motions for i = 1, . . . , m. If the matrices A, Bi all
commute (so that ABi = BiA and BiBj = BjBi for i, j = 1, . . . , m), the solution is known to be

Y (t) = exp

((
A − 1

2

m∑
i=1

B2
i

)
t +

m∑
i=1

BiWi(t)

)
y0. (5)
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3. Integrators

We introduce the integrators used in SDELab and briefly describe their theory. A full theoretical development is
available in [15,8].

We use ‖ · ‖ to denote the Euclidean norm on Rd and the Frobenius norm on Rd×m. E denotes the expectation over
samples of the Brownian motion. O(�tp) is a quantity bounded by K�tp, where K is independent of �t but dependent
on the differential equation, the time interval, and initial data.

3.1. Itô SDEs—Euler- and ϑ-methods

One important class of integrators for the ODE dY/dt = f (t, Y ) are the ϑ-methods

Zn+1 = Zn + [(1 − ϑ)f (tn, Zn) + ϑf (tn+1, Zn+1)]�t, Z0 = y0,

where ϑ is a parameter in [0, 1], �t is the time step, and tn = t0 +n�t . It is well known that this method converges to the
exact solution on [t0, T ]. If f is sufficiently smooth, ‖Y (tn) − Zn‖ = O(�tp) when t0 � tn �T for p = 1 (respectively,
p = 2) if ϑ �= 1

2 (resp., ϑ = 1
2 ).

These methods are extended to Itô SDEs as follows:

Zn+1 = Zn + [(1 − ϑ)f (tn, Zn) + ϑf (tn+1, Zn+1)]�t + g(tn, Zn)�Wn, (6)

where initial data Z0 = y0 and �Wn = W(tn+1) − W(tn). The method includes the stochastic version of explicit Euler
(ϑ=0), which is often called the Euler–Maruyama method following [12], the trapezium rule (ϑ= 1

2 ), and the implicit
Euler method (ϑ = 1). This method is implemented in SDELab and referred to as the Strong It̂o Euler method with
parameter ϑ. These methods provide accurate pathwise solutions for small time steps if the drift and diffusion are well
behaved. Suppose [8, Theorem 10.2.2] for a constant K > 0 that f and g obey

‖f (t, Y1) − f (t, Y2)‖ + ‖g(t, Y1) − g(t, Y2)‖�K‖Y1 − Y2‖,

‖f (t, Y )‖ + ‖g(t, Y )‖�K(1 + ‖Y‖),
‖f (s, Y ) − f (t, Y )‖ + ‖g(s, Y ) − g(t, Y )‖�K(1 + ‖Y‖)|s − t |1/2 (7)

for t0 � t �T and Y, Y1, Y2 ∈ Rd . Then, the solution Zn of (6) converges to the solution Y (t) of (1) and has strong
order 1

2 ; i.e., (E‖Y (tn) − Zn‖2)1/2 = O(�t1/2) for t0 � tn �T . The conditions (7) are restrictive and do not apply for
instance to the van der Pol Duffing system. Theory is available [7] for systems with locally Lipschitz f if the moments
can be controlled, but it is hard to characterise completely when the methods will converge. The user should be aware
that integrators in SDELab may fail if asked to approximate an SDE with poor regularity.

There are two main issues in implementing this class of method: the generation of random numbers and solution
of nonlinear equations. To generate the increments �Wn, we must take m independent samples from the Gaussian
distribution N(0, �t). SDELab employs the Ziggurat method [11]. This method covers the Gaussian distribution
curve with a set of regions, comprising rectangles and a wedge shaped area for the tail. By careful choice of the
covering, a Gaussian sample is generated by choosing a region from the uniform distribution and rejection sampling on
the chosen region. We use the efficient implementation provided in [11] that uses 255 rectangles and includes its own
uniform random number generator. The algorithm is able to generate a Gaussian sample using only two look up table
fetches and one magnitude test 99% of the time. To allow efficient linking from our C implementation of the algorithms,
the method is implemented within SDELab, rather than calling MATLAB’s own random number generators (which
use the same basic algorithm [16]).

For ϑ �= 0, the integrator requires solution of a system of nonlinear equations for all but the most trivial drift functions.
We employ Minpack [17], a library of FORTRAN routines freely available through http://www.netlib.org/,
to solve the nonlinear equations. Minpack implements a variation of the Powell hybrid method [20] that can be used
with exact or numerical derivatives.

http://www.netlib.org/
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3.2. Milstein methods

The basic tool for developing integration methods of higher order is Taylor expansions. Taylor expansions for
Itô equations may be developed as follows: expand both drift and diffusion terms in (1) using the Itô Formula:

df (t, Y ) = ft (t, Y ) dt + fY (t, Y )f (t, Y ) dt + fY (t, y)g(t, Y ) dW

+ 1

2

d∑
i,j=1

m∑
k=1

fYiYj
(t, Y )gik(t, Y )gjk(t, Y ) dt

and similarly for g(t, Y ). Substituting these expressions back into (1) yields

Y (T ) − y0 =
∫ T

t0

[
f (t0, y0) +

∫ t

t0

ft (s, Y ) ds + · · ·
]

dt +
∫ T

t0

⎡
⎣g(t0, y0)

+
∫ t

t0

gt (s, Y ) + gY (s, Y (s))f (s, Y (s) ds +
∫ t

t0

gY (s, Y (s))g(s, Y (s)) dW(s)

+1

2

∫ t

t0

d∑
i,j=1

m∑
k=1

gYiYj
(s, Y (s))gik(s, Y (s))gjk(s, Y (s)) ds

⎤
⎦ dW(t).

Further iteration yields an expansion akin to the Taylor expansion that can be truncated to find new integrators in terms
of iterated integrals∫ �t

0

∫ s1

0
· · ·
∫ sp−1

0
dWip(sp) dWip−1(sp−1) . . . dWi1(s1),

where dW0 =dt and ik ∈ {0, 1, . . . , m}. These terms have order �t (p+q)/2, where q is the number of ij =0, and are the
generalisation of the building blocks �tp of the deterministic Taylor expansion. It is difficult to compute these quantities.
Usually, the work involved outweighs the benefits of high order convergence and SDELab provides integrators that
depend on the first level of iterated integrals only. The basic example is the Milstein method [13], which is implemented
in SDELab as the Strong Itô Milstein method with parameter ϑ:

Zn+1 = Zn + [(1 − ϑ)f (tn, Zn) + ϑf (tn+1, Zn+1)]�t + g(tn, Zn)�Wn

+
m∑

j=1

�

�y
gj (tn, Zn)(g(tn, Zn)�j ), Z0 = y0, (8)

where gj (t, Z) is the jth column of g(t, Z), �j = (I1j,n, . . . , Imj,n)
T, and

Iij,n =
∫ tn+1

tn

∫ r

tn

dWi(s) dWj(r).

We discuss how SDELab approximates �j in Section 4. To implement this method without requiring the user to specify
the derivative of g, we include derivative free versions,

Zn+1 = Zn + [(1 − ϑ)f (tn, Zn) + ϑf (tn+1, Zn+1)]�t + g(tn, Zn)�Wn

+
m∑

j=1

Dg(n, j)�j , Z0 = y0, (9)

where Dg(n, j)= (g(tn, Z
aux
n,j )−g(tn, Zn))/�t1/2 and the support vectors Zaux

n,j can be set in SDELab as Zaux
n,j =Zn +

�t1/2g(tn, Zn)ej or Zaux
n,j = Zn + �tf (tn, Zn) + �t1/2g(tn, Zn)ej (where ej denotes the jth standard basis function in
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Rm). The Milstein methods converge with order 1, more rapidly than the order 1
2 convergence of methods (6). Further

regularity on f and g is required, but details are not given here; see [8, p. 345].

3.3. Small noise

Many SDEs of interest in science and engineering feature small noise and have the form

dY = f (t, Y ) dt + �g(t, Y ) dW, Y(t0) = y0, (10)

for a small parameter �. Certain methods are especially useful in this context, as they give an improvement over
the Euler–Maruyama method when �>�t and this improvement does not depend on iterated integrals and therefore
is efficient. This is true of (6) with ϑ = 1

2 (the trapezium rule). SDELab also provides the second order backward
differentiation formula (Strong Itô BDF2):

Zn+1 = 4
3Zn − 1

3Zn−1 + 2
3f (tn+1, Zn+1)�t + g(tn, Zn)�Wn − 1

3g(tn−1, Zn−1)�Wn−1 (11)

for n�2 and with starting values given by

Z1 = Z0 + [ 1
2f (t0, Z0) + 1

2f (t1, Z1)]�t + g(t0, Z0)�W0, Z0 = y0.

The solution Zn from either (11) or (6) with ϑ = 1
2 satisfies (E‖Y (tn) − Zn‖2)1/2 = O(�t2 + ��t + �2�t1/2) for

t0 � tn �T . See [2,14] for further details. In the small noise case �>�t , the O(�2�t1/2) term becomes negligible and
the error is O(��t + �t2). The methods look like they have order 1 for a range of �t even though in the limit �t → 0
they are order 1

2 . This is illustrated in Section 6.

3.4. Stratonovich SDEs

The Itô methods can be used to approximate Stratonovich SDEs by converting to the Itô formulation. To work
directly with the Stratonovich SDE, SDELab provides the Euler–Heun and Stratonovich Milstein methods. The Heun
method for the ODE dY/dt = f (t, Y ) is

Zn+1 = Zn + [f (tn, Zn) + f (tn+1, Z
aux
n+1)]�t ,

where a predicted value Zaux
n = Zn + f (tn, Zn)�t is used. In the Euler–Heun method for SDEs, we approximate the

diffusion with the Heun method and the drift with the ϑ method as in (6). We choose the simplest value of the predictor
that results in convergence to the Stratonovich SDE (2). In SDELab, the Strong Stratonovich Euler–Heun method with
parameter ϑ ∈ [0, 1] is

Zn+1 = Zn + [(1 − ϑ)f (tn, Zn) + ϑf (tn+1, Zn+1)]�t

+ 1
2 [g(tn, Zn) + g(tn, Z

aux
n )]�Wn, Z0 = y0 (12)

with predicted value Zaux
n = Zn + g(tn, Zn)�Wn. This method converges to the solution of (2) with order 1 when the

noise is commutative and order 1
2 otherwise.

SDELab provides the Strong Stratonovich Milstein method with parameter ϑ:

Zn+1 = Zn + [(1 − ϑ)f (tn, Zn) + ϑf (tn+1, Zn+1)]�t

+ g(tn, Zn)�Wn +
m∑

j=1

�

�y
gj (tn, Zn)(g(tn, Zn)�j ), Z0 = y0, (13)

where�j=(J1j,n, . . . , Jmj,n)
T for the iterated Stratonovich integralJij,n=

∫ tn+1
tn

∫ r

tn
◦ dWi(s)◦ dWj(r).The Stratonovich

Milstein method converges to the solution of (2) with order 1. Again SDELab includes versions that do not require
user-supplied derivatives.
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4. Iterated stochastic integrals

We look at how SDELab generates second order iterated integrals. We work with Stratonovich iterated integrals on
[0, �t] and use the notation

Ji =
∫ �t

0
dWi(s), Jij =

∫ �t

0

∫ r

0
◦ dWi(s) ◦ dWj(r).

SDELab computes the second order Itô integrals from the Stratonovich version by Iij =Jij for i �= j and Iii =Jii − 1
2�t

for i = 1, . . . , m. There are a number of important special cases that are used by SDELab to improve efficiency. If the
diffusion g(t, Y ) is diagonal, Jij are not required for i �= j . If

�

�xi

gkj (t, Y )g(t, Y ) = �

�xj

gki(t, Y )g(t, Y ), (14)

for k = 1, . . . , d and i, j = 1, . . . , m, the diffusion is said to be commutative and the identity Jij +Jji =JiJj is used to
simplify the Milstein method. In particular, we compute only the product JiJj and avoid approximating Jij directly. If
g(t, Y ) does has not have the above structures, we must approximate each Jij . There are a number of efficient methods
[21,5] for sampling Jij with m= 2. Unfortunately, Jij cannot be generated pairwise for m > 2 because correlations are
significant. Such specialist methods are not included in SDELab as we prefer algorithms that are widely applicable.
SDELab generates samples using a truncated expansion of the Brownian bridge process with a Gaussian approximation
to the tail.

The Brownian bridge process Wi(t) − (t/�t)Wi(�t) for 0� t ��t has Fourier series

Wi(t) − t

�t
Wi(�t) = 1

2
ai0 +

∞∑
r=1

air cos
2�rt

�t
+ bir sin

2�rt

�t
, (15)

for i = 1, . . . , m, where (by putting t = 0)

ai0 = −2
∞∑

r=1

air (16)

and the coefficients bir , air are independent random variables with distributions N(0, �t/2�2r2) for r = 1, 2, . . . .
This representation was developed [9] to express numerically computable formulae for iterated stochastic integrals and
in particular Jij by truncating the expansions to p terms. By integrating (15) over [0, �t] with respect to dt, we find
Ji0 = 1

2�t (Ji + ai0), and using the symmetry relation J0i + Ji0 = JiJ0, we see J0i = 1
2�t (Ji − ai0). Integrating (15)

over [0, �t] with respect to Wj(t),

Jij = 1
2JiJj − 1

2 (aj0Ji − ai0Jj ) + �tAij , i, j = 1, . . . , m, (17)

where Aij = (1/�t)
∑∞

r=1 �∗
ir�

∗
jr − �∗

ir�
∗
ji and �∗

jr = √
�rajr and �∗

jr = √
�rbjr . Because �∗

jr , �∗
jr , and Wj(�t) are

independent, we easily find �∗
jr and �∗

jr by sampling from N(0, �t/2�r). We approximate Aij by truncating the sum
to p terms,

A
p
ij = 1

�t

p∑
r=1

�∗
ir�

∗
jr − �∗

ir�
∗
ji , (18)

and define the approximate iterated integral J
p
ij = 1

2JiJj − 1
2 (a

p
j0Ji − a

p
i0Jj ) + �tA

p
ij , where from (16)

a
p
i0 = −

p∑
r=1

2√
�r

�∗
ir . (19)

To understand the importance of the tail correction, consider the estimate

(E[|J̃ p
ij − Jij |2])1/2 � �t√

2p�
,
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which holds for approximations J̃
p
ij = 1

2JiJj − 1
2 (ã

p
j0Ji − ã

p
i0Jj )+�tA

p
ij that include a higher order correction to ã

p
i0,

ã
p
i0 = a

p
i0 − 2

√
�t	p
jp, (20)

where 
jp = (1/
√

�t	p)
∑∞

r=p+1 ajr and 	p = ( 1
12 ) − ( 1

2�2)
∑p

r=1 1/r2. To use this approximation in the Milstein

scheme and retain order 1 convergence, J̃
p
ij must approximate J̃ij with error O(�t3/2) and the number of terms, p, in

the expansions must be at least O(1/�t).
Wiktorsson [23] introduced a technique that reduces the number, p, of terms necessary to achieve an O(�t3/2) error.

Recall the Levy area

Aij = 1
2 (Jij − Jji) = ai0Jj + aj0Ji + �tAij .

Wiktorsson uses the conditional (on Wj(�t)) joint characteristic function of the Levy areas to derive a Gaussian
approximation to the tail of Aij . Sampling from this Gaussian provides a small correction to J

p
ij that improves the rate

of convergence. SDELab implements the following algorithm:

(1) Fix a constant C. Choose the smallest number p such that

p� 1

C�

√
m(m − 1)

24�t

√√√√m + 4
m∑

j=1

Wj(�t)2/�t . (21)

Note that the number, p, of terms grows like 1/
√

�t , not 1/�t as in the first method, and that p depends on the
path.

(2) Using (18)–(19), compute approximations J
p
ij = 1

2 JiJj − 1
2 (a

p
j0Ji − a

p
i0Jj ) + �tA

p
ij .

(3) We now define the tail approximation Ap,tail. Let x, y ∈ Rm, M = 1
2m(m − 1), and em

i denote the ith standard

basis element in Rm. We introduce Pm: Rm2 → RM , the linear operator defined by Pm(x ⊗ y) = y ⊗ x, and
Km: Rm2 → RM , the linear operator defined by Km(em

i ⊗ em
j ) = eM

k(i,j) and Km(em
j ⊗ em

i ) = 0 = Km(em
j ⊗ em

j ),
where i < j and k(i, j) is the position of (i, j) in the M term sequence

(1, 2), (1, 3), . . . , (1, m), (2, 3), . . . , (2, m), . . . , (m − 1, m).

Denote by Im the m × m identity matrix. The tail approximation is

Ap,tail = (Im2 − Pm)KT
m

�t

2�
a

1/2
p

√
�∞Gp, (22)

where ap =∑∞
k=p+1 k−2, Gp ∈ RM is chosen from the distribution N(0, IM),

�∞ = 2IM + 2

�t
Km(Im2 − Pm)(Im ⊗ W(�t)W(�t)T)(Im2 − Pm)KT

m,

and W(�t) = (W1(�t), . . . , Wm(�t))T. To compute (22), we use the following expression for the square root
of �∞ [23]:

√
�∞ = �∞ + 2�IM√

2(1 + �)
where � =

√√√√1 +
m∑

j=1

Wj(�t)2/�t .

(4) Add the correction term to J
p
ij to define J

p+tail
ij = J

p
ij + A

p,tail
ij .
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Under the truncation condition (21), [23] proves that

max
ij

E[|Jij − J
p+tail
ij |2|W(�t)]�C2�t3,

where E[Υ |W(�t)] denotes the expectation of Υ conditioned on W(�t). In terms of Gaussian samples, the tail
expansion is justified in the limit �t → 0. The Euler methods (6) required O(1) Gaussians per time step, Milstein
(8) with J̃ij requires O(1/�t) Gaussians, and Milstein with J̃

p+tail
ij requires O(�t−1/2). On the other hand, rates of

convergence areO(�t1/2) for Euler andO(�t) for Milstein. Hence, to achieve a particular level of accuracy ε both Euler
and Milstein with J̃ij require ε−2 samples, whilst Milstein with J̃

p+tail
ij requires only ε−3/2 samples. Asymptotically

in �t → 0, the use of the tail approximation means fewer Gaussian samples are required.
In practice, the method is expensive for large m, because the covariance matrix �∞, which is an M × M matrix

where M = 1
2m(m− 1), is treated as a dense matrix with O(m4) entries. This is impractical for very high m as it is hard

to take �t sufficiently small to see its benefits. To give some understanding, the table compares the two methods J
p
ij

and J
p+tail
ij for different values of m. The time to compute 106 samples is given (in seconds) and the error in computing

the variance (again using 106 samples) of J12/dt , which is known to equal 1
2 , is given.

m �t J
p
ij : time error J

p+tail
ij : time error

5 0.1 1.9 0.1 3.5 3.7e − 3
0.01 4.8 2.3e − 2 3.5 5.5e − 4

10 0.1 4.2 0.9e − 1 13.65 6.5e − 3
0.001 66.04 2e − 3 12.39 6.3e − 5

100 0.1 114 0.1 3420 0.04

5. The use of SDELab

We describe the most important features of SDELab; extensive documentation is provided online. To start using
SDELab within MATLAB, type sdelab_init. To find approximate paths for (1) or (2), one of the following is used

[t,y] = sdelab_strong_solutions(fcn, tspan, y0, m, opt, ...);

sdelab_strong_solutions(fcn, tspan, y0, m, opt, ...);

The return values give approximate solutions y(:,i) at times t(i). If [t, y] is omitted, a MATLAB figure
appears and the approximate paths are plotted as they are computed. The arguments are

fcn: SDELab provides the single structure fcn for specifying the drift f and diffusion g. The fcn fields may point to
a variety of implementations, including m-files, mex files, and dynamic library routines. This flexibility allows users to
prototype quickly using m-files and develop efficient code by linking to dynamic libraries of C or FORTRAN routines.

When using m-files, the fields drift and diff_noise, and optional fields drift_dy and diff_noise_dy
contain the names of the m-files. An example is given later. When using dynamic libraries, the fields drift,
diff_noise, etc. each have subfields Libname (name of dynamic library) and Init_fcn, Exec_fcn, and
Cleanup_fcn (names of functions in the dynamic library that initialise, compute, and clean up).

tspan is a vector that indicates the time interval for integration [t0, T ]. If tspan has more than two points, it specifies
the times at which Y (t) is approximated and is returned in t.

y0 is the initial condition.
m equals the dimension of the Brownian motion W.
opt is a structure whose fields set SDELab options.
. . . is an optional list of model parameters.
The following are specified by setting the corresponding field in opt.
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MaxStepSize: The time step �t is the largest value less or equal to MaxStepSize such that an integer multiple of
steps fits into [t0, T ]. A default value of (T − t0)/100 is used.

IntegrationMethod specifies the type of equation (Itô /Stratonovich) as well as the integrator. The default is
StrongItoEuler and the options are

StrongItoMilstein, StrongItoBDF2,

StrongStratoEulerHeun, StrongStratoMilstein.

The parameter ϑ in (6), (8), (12), and (13) is controlled by the following:

StrongItoEuler.Alpha, StrongItoMilstein.Alpha,

StrongStratoEulerHeun.Alpha, StrongStratoMilstein.Alpha.

RelTol is the relative error used by Minpack as a termination criterion.
MaxFeval controls the behaviour of the nonlinear Minpack solve. If positive, MaxFeval is the maximum number

of function evaluations allowed by Minpack. If −1, the Minpack default value is chosen.
Stats controls the reporting of number of function calls and Minpack information. It should be set to on or off.
NoiseType indicates the structure of the diffusion term. If NoiseType= 1, the diffusion is considered to be

unstructured and second order iterated integrals are approximated using Wiktorsson’s method. If NoiseType= 2,
the diffusion is treated as diagonal and if NoiseType= 3 as commutative (see (14)).

MSIGenRNG.SeedZig is the seed for the random number generator.
OutputPlot is set to 1 if plots are required; 0 otherwise.
OutputPlotType specifies the type of plot. The possibilities are

sdelab_path_plot (path plot; default);
sdelab_phase_plot (two dimensional phase plot);
sdelab_time_phase (two dimensional path plots against time);
sdelab_phase3_plot (three dimensional phase plot).

OutputSel controls which components of y are used in the plots.
We show how to approximate geometric Brownian motion (4) with SDELab using m-files to specify drift and

diffusion functions. The drift is defined by the following m-file:

function [z]= drift(t, y, varargin)
A= varargin{2}.A;% Extract parameters
z= A*y; % Compute drift

The specification of the diffusion is more involved. SDELab requires that we specify the diffusion in two ways: (1)
as the product of the matrix g(t, Y ) with the Brownian increment, which is beneficial for sparse diffusion matrices,
and (2) as the matrix g(t, Y ). SDELab uses the two ways in its implementation of the Milstein methods to reduce the
number of function calls.

function z= diff_noise(t, y, dw, flag, varargin)
B= varargin{2}.B; % Extract parameters
m= length(dw);
d= length(y);
B2= zeros(d,m); % Compute the diffusion
for (i= 1:m)
B2(:,i) = B(:,:,i) * y;

end;
if (flag= = 0)
z= B2 * dw;

else
z= B2;

end;
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Fig. 1. The two components of a realisation of Y (t) satisfying (23).

We now use SDELab to approximate paths of

dY =
(−0.5 0

0 −1

)
Y dt + Y dW1(t) + Y dW2(t), Y (0) =

(
1
2

)
. (23)

Set up the problem dimensions, time interval and initial data:

d= 2; % dimension of y
m= d; % dimension of W(t)
tspan= [0, 1]; % time interval
y0= [1; 2]; % initial condition

Define the drift and diffusion functions with their parameters:

fcn.drift= ’drift’; % name of MATLAB m-files
fcn.diff_noise = ’diff_noise’;
params.A= [-0.5, 0; 0, -1]; % parameters
params.B= zeros(d,d,m);
params.B(:, :, 1)= diag([1; 1]);
params.B(:, :, 2)= diag([1; 1]);

Finally, run SDELab with the default method, Itô Euler with ϑ = 0.

opt.IntegrationMethod= ’StrongItoEuler’;
opt.MSIGenRNG.SeedZig= 23; sdelab_init;
sdelab_strong_solutions(fcn, tspan, y0, m, opt, params);
xlabel(’t’); ylabel(’y’);

A window pops up and you see the path plotted as it is computed. See Fig. 1.
To assist the nonlinear solver, the user may provide derivatives of the drift function. SDELab can utilise a function

drift_dy that returns the Jacobian matrix of f with entries �fi(t, Y )/�Yj for i, j = 1, . . . , d. For (4), the Jacobian
is A.

function z = drift_dy(t, y, varargin)
A= varargin{2}.A;
z= A;
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Fig. 2. Plots of error (computed with 2000 samples) against time step and run time for Itô geometric Brownian motion. Notice Milstein methods
have order 1 convergence, and the Euler and BDF 2 methods have order 1

2 convergence.

Let gij (t, Y ) denote the (i, j) entry of g(t, Y ) for i = 1, . . . , d and j = 1, . . . , m. SDELab can utilise a function
diff_noise_dy that returns the derivative of the jth column of g(t, Y ) with respect to Y in the direction dy ∈ Rd ;
that is, dgj dy ∈ Rd , where dgj is the d × d matrix with (i, k) entry �gij /�Yk . For (4), dgj dy = Bj dy.

function z = diff_noise_dy(t, y, dy, j, varargin)
B= varargin{2}.B;
z= B(:,:,j) * dy;

Finally define the fcn structure and compute the solution using Itô Milstein with ϑ = 1. Rather than plot, we store
the results in [t, y].

fcn.drift= ’drift’;
fcn.drift_dy= ’drift_dy’;
fcn.diff_noise= ’diff_noise’;
fcn.drift_noise_dy= ’diff_noise_dy’;
opt.IntegrationMethod= ’StrongItoMilstein’;
opt.StrongItoMilstein.Alpha= 1.0;
[t, y]= sdelab_strong_solutions(fcn, tspan, y0, m, opt, params);

6. Geometric Brownian motion

We consider the behaviour of five of SDELab’s Itô methods for approximating geometric Brownian motion (4):

• Eq. (6) with ϑ = 0: Euler–Maruyama.
• Eq. (6) with ϑ = 1

2 : trapezium rule with explicit diffusion.
• Eq. (8) with ϑ = 0: Milstein with explicit drift.
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Fig. 3. Plots of error (computed with 2000 samples) against time step and run time for Stratonovich geometric Brownian motion. As the noise is
commutative, the Euler–Heun method has the same order 1 convergence as the Milstein methods. The Milstein method is slower to compute, as this
test was done without the commutative noise flag set.

• Eq. (8) with ϑ = 1
2 : Milstein with trapezium rule for drift.

• Eq. (11): BDF2.

The following matrices are used

A = −2I, B1 =
(

0.3106 0.1360
0.1360 0.3106

)
, B2 =

(
0.9027 −0.0674

−0.0674 0.9027

)
.

These matrices are commutative and the exact solution (5) is available. Using the exact solution, we compute the strong
error with L samples by⎛

⎝ 1

L

∑
L samples

‖Y (T ) − ZN‖2

⎞
⎠

1/2

, N�t = T .

Fig. 2 plots error against time step and run time (with drift and diffusion functions implemented as C dynamic library
functions), with L = 2000. To test the approximations to the iterated integrals, we set opt.NoiseType= 1 during
these calculations (rather than take advantage of the commutative structure). We see the order 1 convergence of the
Milstein methods and the order 1

2 convergence of the Euler methods. Even allowing for the extra time to compute
a single time step, it is more efficient to use the Milstein methods in this case. Fig. 3 shows the same plot for the
Stratonovich version of geometric Brownian motion. Here the Euler–Heun method has order 1 because the matrices
are commutative. Fig. 4 shows the same plot for the Itô equation with small noise; specifically, (4) with the diffusion
matrices Bi replaced by �Bi with � = 10−3. We clearly see the benefits of choosing the method carefully and the
BDF 2 and trapezium rule ((6) with ϑ = 1

2 ) are most efficient. Fig. 5 shows how the CPU time depends on problem



1014 H. Gilsing, T. Shardlow / Journal of Computational and Applied Mathematics 205 (2007) 1002–1018

10-5 10-4 10-3 10-2 10-1 100 101 102
10-8

10-7

10-6

10-5

10-4

10-3

10-2

time step

er
ro

r

10-8

10-7

10-6

10-5

10-4

10-3

10-2

er
ro

r

run time

Euler α=0 
Euler α=0.5
Milstein α=0 
Milstein α=0.5 
BDF 2

Fig. 4. Plots of error (computed with 2000 samples) against time step and run time for the Itô equation (4) with small noise. Each method appears
to have order 1.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

dimension

cp
u 

tim
e

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

dimension

cp
u 

tim
e

Euler α=0 
Euler α=0.5
Milstein α=0 
Milstein α=0.5 
BDF 2

Fig. 5. Plots of CPU time against problem dimension m = d for the Itô equation (4) for both MATLAB m-files (left) and dynamic library functions
(right).



H. Gilsing, T. Shardlow / Journal of Computational and Applied Mathematics 205 (2007) 1002–1018 1015

-5 0 5 10

x 10-5

-1

-0.5

0

0.5

1
x 10-4

x 10-4

x 10-4

x 10-4

x 10-4

position

m
om

en
tu

m

α=-0.1 α=0.0

α=0.1α=0.05

-1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

position

m
om

en
tu

m

0 2 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

position

m
om

en
tu

m

-1 -0.5 0 0.5 1
-0.4

-0.2

0

0.2

0.4

0.6

position

m
om

en
tu

m

Fig. 6. Paths of (3) for a = −0.2, 0, 0.05, 0.1 with b = −1.0 over time interval [500, 1000] with initial data [0, 0.001] specified at t0 = 0. Notice the
change of scale in the bottom right plot.

dimension m. Matrices A, B1, . . . , Bm are chosen and approximations computed using both the m-file and dynamic
library implementation of the drift and diffusion functions. We see the cost of using Milstein methods scales badly
with m due to the difficulties of computing the stochastic integrals. We also notice considerable speed improvements
in using a dynamic library implementation.

7. Van der Pol Duffing

Consider the van der Pol Duffing system (3) with parameters A=B =1. We use the plotting facilities of SDELab to
illustrate two bifurcations in this system. In order to use the same Brownian path for each plot, we set the seed of the
random number generator at the start of each simulation. This is effective if we fix the time step for all our simulations.
In the long run, we would like to add functionality to decrease the time step and refine the same Brownian motion.

The MATLAB m-files are given in Appendix A. Set the fcn structure as in the previous example, and set the
dimensions, initial data, and time interval for the van der Pol Duffing system:

d= 2; m= 1; % problem dimensions
tspan= [0, 500]; % time interval
y0= [0.0, 0.0001];% initial condition

Define the problem parameters:

params.a= -1.0; params.b= 0.1;
params.A= 1.0; params.B= 1.0;
params.sigma= 0.1;
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Fig. 7. Paths of (3) for b = −0.1, −0.01, 0, 0.1 with a = −1.0 over time interval [250, 500] with initial data [0, 0.001] specified at t0 = 0. Notice
the change of scales in the plots.

A phase plot with seed 23 and maximum time step 0.01 can be produced as follows:

opt.MaxStepSize= 1e-2;
opt.OutputPlotType= ’sdelab_phase_plot’;
opt.MSIGenRNG.SeedZig= 23;
sdelab_strong_solutions(fcn, tspan, y0, m, opt, params);

It is now easy to explore the dynamical behaviour of the system and its response to varying a and b. Without noise
(case � = 0) and with  < 0, the system experiences a pitchfork bifurcation (when a fixed point loses its stability and
gives rise to two stable fixed points) as the parameter a crosses 0. We explore this situation for � = 0.4 in Fig. 6.
We see the dynamics do not settle down to fixed points when there is noise, but oscillate near two meta stable states.
Only the last plot shows the two meta stable states created by the bifurcation (notice the change in scale on the plots),
even though three of the figures have parameter a�0. This is a well known phenomenon [1]: noise delays a pitchfork
bifurcation. In this case, the bifurcation is delayed until a ≈ 0.1.

If a < 0, a Hopf bifurcation (or creation of a periodic orbit) can be found in the deterministic system as the parameter
b crosses 0. With noise present, the bifurcation point is known to occur for b < 0. Fig. 7 illustrates the behaviour of
(3) with a = −1 and � = 0.1 for values of b = −0.1, −0.01, 0, 0.1. We see the trajectories are focused on a circle for
b� − 0.01, which shows that the bifurcation occurs for negative b.

8. Further directions

There are a number of ways we would like to develop SDELab.

(1) SDELab does not provide special algorithms for computing averages of �(Y (t)) for a test function �. This is an
important problem and will be dealt with in future releases of SDELab.
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(2) One of the key features of the MATLAB ODE suite is its use of error estimation to select time step sizes. The theory
of error estimation for SDE integrators is not well developed (see [10,3] for recent work) and we are unaware of
any technique robust enough for inclusion in a software package for (1) or (2). We hope the algorithms will mature
and eventually be included in SDELab.

(3) It is frequently of interest to determine times at which certain events happen, such as Y (t) crossing a barrier. At
this time, no such algorithms are included in SDELab.

(4) Some classes of SDEs deserve special attention, such as Langevin equations, geometric Brownian motion, and the
Ornstein–Uhlenbeck process, and we would like to address this within SDELab.

9. Final remarks

For some complementary reading, we refer to [4,6]. We thank the referees and the guest editors for their interest in
our work and their helpful observations.

Appendix A. Van der Pol Duffing

function z= drift(t, y, varargin)
a= varargin{2}.a; % Extract parameters
b= varargin{2}.b;
A= varargin{2}.A;
B= varargin{2}.B;
z= [y(2); ...
(b-B*y(1)*y(1))*y(2)+ (a-A*y(1)* y(1))*y(1) ];

function z= drift_dy(t, y, varargin)
a= varargin{2}.a; % Extract parameters
b= varargin{2}.b;
A= varargin{2}.A;
B= varargin{2}.B;
z= [ 0 1; ...
a-(3*A*y(1)+2*B*y(2))*y(1) b-B*y(1)*y(1)];

function z= diff_noise(t, y, dw, flag, varargin)
sigma= varargin{2}.sigma;
if (flag)
z= [0; sigma*y(1)]; % Return g(t,y)
else
z= [0; sigma*y(1)*dw]; % Compute g(t,y) * dw
end;

function z= diff_noise_dy(t, y, dw, j, varargin)
sigma= varargin{2}.sigma;
z= [0; sigma * dw(1)];
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