The purpose of this note is to characterize the class of all equationally complete non-associative algebras over a finite field \mathbb{F} each of which has at least one associative element $\neq 0$, along the line of Tarski's method of dealing with the analogous result for equationally complete rings in [5]. We have established that the only equationally complete non-associative algebras over \mathbb{F} with a non-zero idempotent element are the p-algebras defined in Section 1 and the only such algebras each of which has no idempotent element $\neq 0$ but an associative element $\neq 0$ are the p-zero-algebras in Section 1.

1. We shall use the terminology of Kalicki-Scott in Section 1 of [3] and in this Section we give the definition of p-algebras and p-zero-algebras. First a vector space over a field \mathbb{F} is a system consisting of a non-empty set A, one binary operation, $+$, and a unary operation $f_\lambda(x) = \lambda x$ for each λ of \mathbb{F} such that these operations satisfy commutative, associative and distributive laws. A non-associative algebra (not necessarily associative) over a field \mathbb{F} is a vector space with a binary operation, \cdot, satisfying the two distributive laws for \cdot under $+$ and

$$f_\lambda(x \cdot y) = f_\lambda(x) \cdot y = x \cdot f_\lambda(y), \ \lambda \in \mathbb{F}, \ x, y \in A.$$

The class of non-associative algebras over \mathbb{F} is equational, that is, defined by a set of equations and we can use theorems in Section 1 of [3] and Section 1 of [5] later in Section 3.

Let \mathbb{F} be a finite field of characteristic p. The order of \mathbb{F} is p^m for a positive integer m and the multiplicative group is a cyclic group $\{\xi, \xi^2, \ldots, \xi^{p^m-1}\}$ of order $p^m - 1$. In the rest of the paper the field \mathbb{F} will be fixed as the base field of algebras concerned.

An associative algebra \mathfrak{A} over a finite field \mathbb{F} is called a p-algebra if p is the characteristic of \mathbb{F} and $a^{p^m} = a$ for each element a of \mathfrak{A} where p^m is the order of \mathbb{F}. We note that a p-algebra is algebraic over its base field and has no nilpotent element $\neq 0$. It follows (Jacobson [1], p. 218)

1) Partially supported by NSF through its RPCT at the University of Oklahoma, summer of 1967.
that a p-algebra is commutative. An associative algebra \mathfrak{A} over a finite field Φ of characteristic p is called a p-zero-algebra if $a \cdot b = 0$ for all elements a and b. The class of all p-algebras and that of all p-zero-algebras are both equational. A system of equations defining the first class is obtained from the system of equations for non-associative algebras by adding the associative law for \cdot and the following two equations

$$ px + y = y, \quad x^{p^n} = x. $$

If the last equation is replaced by

$$ x \cdot y + z = z, $$

we have a system of equations defining the class of p-zero-algebras.

2. We shall show that every p-algebra is isomorphic to a subalgebra of a direct power of Φ regarded as the algebra over Φ itself. For this we use the following theorem due to McCoy and Montgomery [4]:

Lemma 1. An associative algebra \mathfrak{A} over a field E is isomorphic to a subalgebra of a direct power of associative algebras \mathfrak{B} over E if and only if for any given non-zero element a of \mathfrak{A} there exists a homomorphism h of \mathfrak{A} into \mathfrak{B} such that $h(a) \neq 0$.

Lemma 2. Let \mathfrak{A} be a p-algebra over the finite field Φ with a unit element 1 and let a be a non-zero element in \mathfrak{A}. Then there exists a homomorphism h of \mathfrak{A} into the algebra Φ over Φ itself such that $h(a) \neq 0$.

Proof. First we shall show that the identical mapping in Φ can be extended to a homomorphism h of the subalgebra $\Phi[a]$ generated by a to the algebra Φ. Let $\mu(x)$ be the minimum polynomial of a. a is a root of $x^{p^n} - x$ which has a factorization over Φ:

$$ x^{p^n} - x = x(x - \xi)(x - \xi^2) \ldots (x - \xi^{p^n - 1}) $$

where ξ is a generator of the multiplicative group of Φ. Since $\mu(x)$ is a factor of $x^{p^n} - x$, $\mu(x) = (x - \eta_1)(x - \eta_2) \ldots (x - \eta_k)$ where the η_i are 0 or powers of ξ. Take one of them, say $\eta = \eta_i$, which is not 0. The identical isomorphism of the subfield Φ_1 of the commutative algebra \mathfrak{A} onto the algebra Φ can be extended to a homomorphism h of $\Phi[a]$ to Φ such that $h(a) = \eta$. This extension is possible because the image of the minimum polynomial $\mu(x)$ of a under the isomorphism has η as its root (see, for instance, Jacobson [2], p. 6). It then remains to extend h to the whole algebra \mathfrak{A}. Take a basis $\{e_i\}$ for \mathfrak{A} which contains a. The desired extension is obtained by transfinite induction if the set $\{e_i\}$ is well ordered.

Now we prove the following

Theorem 1. Every p-algebra over a finite field Φ is isomorphic to a subalgebra of a direct power of algebras Φ.
Proof. If the given p-algebra \mathfrak{A} has no unit element, we can always imbed \mathfrak{A} isomorphically into a p-algebra \mathfrak{A}' having a unit element. \mathfrak{A}' is obtained from \mathfrak{A} by adjoining a unit 1 in a usual way, that is, by taking a direct sum $\mathfrak{A} \oplus \mathfrak{F}1$ with obvious multiplication. It follows from Lemma 2 and 1 that \mathfrak{A}' is isomorphic to a subalgebra of a direct power of algebras \mathfrak{F}. Hence \mathfrak{A} is isomorphic to a subalgebra of a direct power of \mathfrak{F}.

3. We shall prove a theorem analogous to Kalicki-Scott's results for rings.

Theorem 2. Every p-algebra and p-zero-algebra are both equationally complete.

Proof. First we prove the theorem for p-algebras. We know that the algebra \mathfrak{F} is a p-algebra over the field \mathfrak{F} and the class of all p-algebras is equational. Let \mathfrak{A} be any p-algebra. By Theorem 1 \mathfrak{A} is isomorphic to a subalgebra of a direct power of \mathfrak{F}. Hence \mathfrak{A} belongs to the class of algebras generated by the algebras \mathfrak{F}, which is the class of all homomorphic images of subalgebras of direct powers of \mathfrak{F}. We note that every p-algebra has at least one idempotent $\neq 0$, for instance, take a^{p^n-1} of a non-zero element a. \mathfrak{A} has a subalgebra generated by one of its idempotent elements $\neq 0$ which is isomorphic to \mathfrak{F}, and \mathfrak{F} belongs to the class of algebras generated by \mathfrak{A}. It follows from Theorem 1.2, [5] that \mathfrak{A} and \mathfrak{F} are equationally equivalent, that is, they have the same set of identities. Consequently, any two p-algebras are equationally equivalent and this implies, by Theorem 1.3, [5], that every p-algebra is equationally complete. Next we define a p-zero-algebra \mathfrak{A}_0 to be an algebra $\mathfrak{F}u$ over \mathfrak{F} where u is a symbol satisfying $uu = 0$, the zero of the algebra. Then, in a similar way, we can prove the remaining case of p-zero-algebras if we use the following fact instead of Theorem 1: Every p-zero-algebra \mathfrak{A} is isomorphic to a direct power of \mathfrak{F}_0. This follows immediately from the facts that members of any basis $\{e_v\}$ for the given p-zero-algebra satisfy the relations: $e_v^2 = 0$ and $e_v e_{v'} = 0$ for all indices v and v', and $\mathfrak{F}e_v$ is isomorphic to \mathfrak{F}_0.

From now on we consider non-associative algebras over the finite field \mathfrak{F}. Theorem 2 furnishes the proof of the sufficiency in the following two theorems.

Theorem 3. A non-associative algebra \mathfrak{A} over a finite field \mathfrak{F} of characteristic p which has a non-zero idempotent element is equationally complete if and only if \mathfrak{A} is a p-algebra.

Proof. We assume that \mathfrak{A} is equationally complete and let a be an idempotent $\neq 0$ in \mathfrak{A}. The subalgebra generated by a is isomorphic to the algebra \mathfrak{F} so that the class of algebras generated by \mathfrak{A} contains \mathfrak{F}. It follows from Theorem 1.6, [3] that \mathfrak{A} and \mathfrak{F} have the same set of identities. Hence \mathfrak{A} is a p-algebra.

Theorem 4. Let \mathfrak{A} be a non-associative algebra over a finite field \mathfrak{F}
of characteristic \(p \) which has no idempotent \(\neq 0 \) but an associative element \(\neq 0 \). \(\mathfrak{A} \) is equationally complete if and only if \(\mathfrak{A} \) is a \(p \)-zero-algebra.

Proof. To prove the necessity we first show that \(\mathfrak{A} \) has a subalgebra homomorphic to the \(p \)-zero-algebra \(\mathfrak{A}_0 \) over \(\Phi \) in a similar way as in [5]. Let \(a \) be a non-zero associative element in \(\mathfrak{A} \) and let \(\mathfrak{B} \) be the subalgebra generated by \(a \). The principal ideal \((a^2) \) in \(\mathfrak{B} \) does not contain \(a \). For suppose that \(a \) is in \((a^2) \). Since \(\mathfrak{B} \) is commutative and associative, we would have, for some element \(b \) in \(\mathfrak{B} \) and some integer \(n \), \(a = b \cdot a^2 + na^2 = (b \cdot a + na)a \). This implies that \((b \cdot a + na)^2 = b \cdot a + na \neq 0 \) which is impossible. Hence the difference algebra \(\mathfrak{B}/(a^2) \) is generated by \(a = (a^2) \) so that \(\mathfrak{B}/(a^2) \) is isomorphic to \(\mathfrak{A}_0 \) because \(a^2 = 0 \) and \(pa = 0 \). It follows then that the subalgebra \(\mathfrak{B} \) of \(\mathfrak{A} \) is homomorphic to \(\mathfrak{A}_0 \). The rest of the proof is entirely analogous to that of Theorem 3.

East Tennessee State University,
Johnson City, Tenn., U.S.A.

BIBLIOGRAPHY

 18, 39–46 (1956).